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Abstract: In this work, we have characterized the iron local structure in samples of two different
types of atmospheric dust using X-ray absorption spectroscopy and selective leaching experiments.
Specifically, we have investigated samples of long-range transported Saharan dust and freshly
emitted steel plant fumes with the aim of individuating possible fingerprints of iron in the two cases.
Findings include (1) prevalence of octahedral coordinated Fe3+ for all samples; (2) presence of 6-fold
coordinated Fe3+, aluminosilicates and iron oxy(hydr)oxides in Saharan dust and (3) of Fe-bearing
spinel-like structures in the industrial fumes; (4) general predominance of the residual insoluble
fraction with a notable difference: 69% for Saharan dust and 93% for steel production emissions,
associated with aluminosilicates and non-reducible iron oxy(hydr)oxides, and Fe spinels, respectively.
The remarkable differences between the X-ray absorption spectroscopy (XAS) spectra and leaching
test results for the two sample types suggest the possibility to exploit the present approach in more
complex cases. To this aim, two additional case studies of mixed aerosol samples are presented
and discussed.

Keywords: iron speciation; XANES; EXAFS; selective leaching experiments; Saharan dust; steel
plant emissions

1. Introduction

Airborne iron is widely studied in environmental chemistry because of the implications of
its solubility on bioaccessibility. As an illustration, the deposition of desert dust provides the
iron fertilization of high-nutrient-low-chlorophyll areas like open oceans [1] and the Amazonian
rain-forest [2], despite this is still a debated hypothesis [3]. Moreover, this process promotes the
sequestration of CO2 from the atmosphere [4], exerting an effect on global biogeochemical cycles.
On the other side, when desert dust transport affects densely populated areas, it becomes important to
assess its impact on local air quality and human health. For example, Stafoggia et al. [5] demonstrated
that, even if Saharan dust is classified as a natural aerosol, it affects human health as much as
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anthropogenic aerosols because of its elevated mass concentrations. However, deserts are not the
only source of airborne iron. For instance, industrial emissions and in particular steel plant fumes
also provide significant inputs of atmospheric aerosols which may impact on urban areas. Emitted
aerosols typically show a high content of iron, mainly in oxide structures, mixed with other transition
metals [6] and they have been proven to exert an adverse impact on human health [7]. Eventually,
the solubility of iron in aerosols is the relevant feature for toxicological issues related to the interaction
with biological tissues inside the lungs [8].

A detailed understanding of properties such as metal solubility and reactivity is based on the
knowledge of the local structure at the atomic level (coordination number, redox state, and speciation).
For example, it has been demonstrated that iron solubility in dust is driven by its chemical speciation
and mineralogy [9,10]. Moreover, particles size can also play a role [11]. In this frame, the chemical
and structural complexity of an atmospheric aerosol matrix may be a challenging obstacle in the
determination of these structural parameters. In particular, the abundance and structural characteristics
of iron in atmospheric aerosols is highly variable and determined by many different factors. Indeed,
spatial and temporal variations in aerosol iron speciation depend critically on the source region and
this fact could have a significant effect on aerosol iron solubility. Moreover, iron solubility can change
during the permanence of aerosol in the atmosphere, due to atmospheric and cloud processing [12].
As a consequence, iron solubility values reported in the literature range widely from 0.05% to 80%
(e.g., Mahowald et al. [13]).

Iron valence state and mineralogy can be characterized using different approaches. These
range from classic wet-chemical methods such as ferrozine [14], to Mössbauer spectroscopy [15] and
techniques based on synchrotron radiation such as X-ray Absorption Spectroscopy (XAS). Basically,
XAS allows to determine the valence state of the metal [16] and to obtain information on the local order,
ligands, coordination number and inter-atomic distances [17]. Moreover, XAS can be applied both
for bulk and single-particle analyses, and thus provides in principle the possibility to investigate
the structural features of minerals in atmospheric aerosols that may impact the environmental
biogeochemistry. The complexity of investigating environmental matrices using XAS has been shown
by several studies, where this technique has been applied to the characterization of atmospheric
aerosols [18,19], and more specifically to urban particulate matter [20–22] and road dust [23]. The study
of paleoclimatic archives of mineral dust, such as ice cores, has been achieved by applying an integrated
experimental approach described by Marcelli et al. [24], recently applied also by Baccolo et al. [25].

The chemical composition of Saharan dust has been investigated by various techniques [26,27]
including XAS methods for iron mineralogy and speciation [28]. Atmospheric processing of Saharan
dust has been studied by atmospheric modeling [29] and artificial ageing with a few applications of
XAS techniques to these kinds of laboratory experiment [30,31]. In any case, XAS has been used only
for samples collected close to the source regions or after short-range transport [28], while no studies are
currently available on the characterization of long-range transported Saharan dust, as we have carried
out in the present work. Long-range transport is a crucial point since it influences, through atmospheric
and in-cloud processes, the redox state, local structure and also the solubility of the particulate matter
constituents, including iron. Despite several studies have applied chemical speciation methods to the
study of iron and other metals solubility in industrial fumes [32], XAS techniques have been applied
so far only to trace metals such as Zn, Cd and Pb [33]. Regarding industrial fumes, XAS and speciation
studies on aerosols sampled directly at chimney stacks are limited in the literature [34].

In this work, we applied an integrated experimental approach to the characterization of two
different and well-defined iron-bearing aerosol types. In particular, XAS measurements have been
complemented with iron bulk determination by the application of a sequential extraction scheme and
successive ICP-OES (Inductively Coupled Plasma - Optical Emission Spectroscopy), which allowed
us to investigate the iron selective solubility and the influence of the sampling conditions. The two
cases under study are (1) Saharan dust collected after a long-range transport at the EMEP regional
background site of Monte Martano (Central Italy; [35]) and (2) freshly emitted welding fumes collected
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at the chimneys of the TK-Acciai Speciali Terni (AST) steel plant in Terni [36], a historical industrial
town located at a short distance from Monte Martano. These two types of atmospheric aerosols
which contain enough iron to be speciated with XAS techniques, are expected to have a very different
microstructure and mineralogy. Moreover, we carried out the characterization of two additional urban
aerosol samples. The first has been collected in Terni during the same Saharan advection sampled
at Monte Martano and therefore represents the case of desert dust contaminated by urban aerosol.
The second has been taken near the steel plant, in the absence of dust from long-range intrusion.
The second example depicts the case of an industrial fume mixed with an urban aerosol. In both cases,
we exploited the same experimental techniques as for the previous samples.

2. Materials and Methods

2.1. Sampling Sites

The atmospheric aerosol samples analyzed in this study were collected at four sampling sites in
Central Italy: the rural regional background station of Monte Martano (MM) during a very intense
Saharan dust outbreak in December 2014 [37], the chimney stack of the steel plant located in Terni
(TK-AST ThyssenKrupp) during an intensive sampling campaign in May 2016, and two sites in the
Terni urban area. A geographical terrain map of the sites can be found in the Supplementary Material,
Figure S1.

MM (1100 m a.s.l.; 42◦48′19′′ N, 12◦33′55′′ E; Figure S1a) is a well-suited site for the
characterization of long-range transport events such as Saharan dust outbreaks [38] due to its elevation,
a completely free horizon and the low impact of local sources. The site is located in the free troposphere
for most of the year except for a few daily hours in the summertime [35]. Since 2013 the MM site
has been part of the Sand and Dust Storms Warning Advisory and Assessment System (SDS-WAS)
network of the World Meteorological Organization.

Terni (130 m a.s.l.; 42◦33′58′′ N, 12◦38′56′′ E; Figure S1b) is an industrial city which has been
well-known for stainless steel production since XIX century. The city is situated 40 km south of MM
and lies in a valley surrounded by mountains which prevent the dispersion of pollutants from local
sources such as traffic, domestic heating, and industrial plants [39]. The AST steel plant is in the urban
area and has a distinct impact on urban aerosols [36]. The two urban sites chosen for this work are
Borgo Rivo, mainly affected by autovehicular traffic emissions, and Prisciano, an urban/industrial site
located near the AST steel plant.

2.2. Aerosol Samples Description

An extremely intense Saharan dust outbreak (SDO), which occurred in the Central Mediterranean
between 30 November and 1 December 2014, has been taken into consideration. Back trajectories of air
masses, computed hourly with HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
modeling system ([40]; Figure S2a, Supplementary Material), indicated the clear Saharan provenance.
A more detailed analysis of back trajectories, not shown in the figure, revealed that the first-day
trajectories were coming from Tunisia and Libya while a transport from Tunisia and Algeria was
observed the day after; the air masses travelled at low height above ground level on both days. Because
of the massive dust transport and the height of the air masses over the receptor site, as inferred by BTs
calculation, the daily PM10 concentrations at MM were exceptionally high (Figure S2b, Supplementary
Material; Table 1): 83.9 µg m−3 on 30 November and 86.9 µg m−3 on 1 December, which are far above
the average value of 10.1 µg m−3 for the whole year (2014). The Saharan dust load was calculated
following the procedure suggested by Escudero et al. [41], and it was 83.0 µg m−3 on 1 December,
accounting for about 96% of the total mass loaded on the filter. During this event, 12 samples were
collected on different substrates (quartz fiber, and polycarbonate) using both high-volume (Air HVS
flow, Analitica Strumenti, 1140 L/min) and low-volume (SWAM, FAI Instruments, 38.3 L/min and
ECHO-PM, Tecora, 38.3 L/min) samplers with PM10 and PM2.5 size selective impactors. XAS have
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been applied to all the samples and the analysis, described in the following sections, shows no
substantial differences between filter types and sampling flow rates. Therefore, since the primary goal
of the present work is the comparison of Saharan dust with steel plant fumes, we will consider in
the discussion only the low volume PM10 sample of 1 December 2014 (SH_Dec2014 in the following)
for which we employed the same filter type (quartz fiber filter, Whatman QM 47 mm) used for the
sampling of the industrial emissions. Despite this advantage, the choice of quartz filter has also
some disadvantages including the possible contamination of blanks and the impossibility to estimate
accurately the thickness of the deposit due to the fibrous nature of the substrate that allows to aerosol
particles to penetrate inside the filter.

Aerosol particles from steel plant emissions were collected at the five main chimney stacks of the
TK-AST plant in the Terni city, which correspond to three smelters and two converters. The specific
sample discussed in the present paper was collected by an isokinetic sampling of the total suspended
particulate matter at the E45 chimney stack at an average flow of 20 L/min for about 4.5 h. The E45
converter was chosen due to its high aerosol loading. The total aerosol mass, determined by gravimetric
methods on the aerosol sample (AST_E45 in the following), is 9.12 ± 0.05 mg which results in
1.7 × 104 µg m−3 aerosol mass concentration.

The AST_E45 aerosol sample was taken directly at the chimney stack of the steel plant and
therefore provides a direct fingerprint of this specific source. The SH_Dec2014 dust sample was taken
at the MM receptor site, after a very long-range transport in the atmosphere. However, the exceptional
magnitude of the mass concentration showed a clear dominance of the long-range transport component
over the local background portion and this allowed us to consider the SH_Dec2014 sample as
a fingerprint of a nearly pure and aged Saharan dust event.

Two more samples were considered in the present work (Table 1). The first sample (TR_mix1)
was collected in the urban area of Terni (TR) during the December 2014 SDO. The filter analyzed is
the PM10 low volume sample of 1 December 2014, collected on the same quartz fiber filter type as
the SH_Dec2014 and AST_E45 samples. This intrusion had a considerable effect on the urban aerosol
concentration. The PM10 value recorded in Terni on the 1 December 2014 reached 109.9 µg m−3 and
the Saharan dust load, calculated in the same way as for the SH_Dec2014 case, added to 71.2 µg m−3,
thereby accounting for 65% of the aerosol mass on the filter. The Saharan dust load registered in Terni
is similar to the value recorded at the MM site suggesting a strong contribution of the Saharan dust
advection to the urban environment. The second mixed aerosol sample was collected in a different
monitoring station of the Terni urban area, which is the nearest to the steel plant, on 1 December 2016
(TR_mix2 in the following). It is a PM2.5 sample and its aerosol mass concentration is 62.2 µg m−3,
with an iron concentration of 0.17 µg m−3, which accounts for 0.27% of the total mass.

The differences observed in the absolute values of aerosol mass concentration and iron content are
also reflected on the iron mass percentage values, reading 1.8% for SH_Dec2014, 13.5% for AST_E45,
2.1% for TR_mix1 and 0.3% for TR_mix2.

The iron content in blank filters was determined by ICP-OES, providing a concentration of 1.43 µg
on the entire filter, which corresponds to 0.026 µg m−3 for low volume samples (38.33 L min−1, 24 h).
The iron contamination of blank filters accounts for 0.3% of the iron on the SH_Dec2014 sample and
0.1% for the TR_mix1 sample. The exceptional loading of the AST_E45 sample reduces the blank
filter contribution to 0.01% while for the TR_mix2 sample, which shows a lower aerosol loading
and iron content, the filter contribution is 15% of the total iron. The blank filters were also tested
at the synchrotron light source revealing negligible effects both in the XANES and in the EXAFS
spectral regions.
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Table 1. Summary of samples analyzed in this work: total aerosol mass concentration and
Iron concentration.

Sample Size Fraction PM [µg m−3] Fe [µg m−3] Fe [%ww]

SH_Dec2014 PM10 86.9 1.55 1.8%
TR_mix1 PM10 109.9 2.30 2.1%
TR_mix2 PM2.5 62.2 0.17 0.3%
AST_E45 TSP 1.71 × 103 230.4 13.5%

2.3. X-ray Absorption Spectroscopy

XANES and EXAFS spectra at the Fe K-edge (7112 eV) were collected at the European Synchrotron
Radiation Facility (ESRF) of Grenoble, France at the LISA (formerly GILDA) CRG beamline (BM08; [42]).
The beamline is equipped with a sagittally focusing monochromator using Si(311) crystals, a pair of
Pd-coated mirrors (Ecutoff = 18 keV) for harmonic rejection and beam focusing, and a 12 elements Ge
detector. The XAS spectra were recorded between about 6900 and 7700 eV, and a reference sample
spectrum (metallic Fe foil) was collected at the same time of each sample scan to provide a reliable
energy calibration. Three scans per sample were averaged to improve the signal to noise ratio, and the
total measurement of a typical sample lasted about 6 h. However, no evidence of beam damage
was found since the first and the last spectrum did not show any differences. The beam size of
0.5 × 2.0 mm ensures representative bulk analysis and not single particle measurements. Because of
the low concentration of iron in the samples, we decided to work in fluorescence mode. The possibility
of suffering from self-absorption phenomena has been investigated comparing the k-space data
of the samples recorded in fluorescence and transmission mode. As an example, the fluorescence
and transmission spectra for the sample with the highest Fe concentration (AST_E45) are reported
in Figure S3 (Supplementary Material), showing no amplitude distortion that can be attributed to
self-absorption.

EXAFS data analysis was performed using specific codes (Athena and Artemis; [43]).

2.4. Selective Leaching Experiments

The selective solubility of iron was studied by applying the sequential extraction scheme proposed
by the European Community Bureau of Reference [44]. The method, originally developed for soil and
sediment samples, was also applied to the sequential chemical fractionation of atmospheric aerosols,
as reviewed by Smichowski et al. [45]. The BCR procedure consists of three sequential steps. In the first
step (which releases the acid-labile fraction, i.e., carbonates and labile organic matter), sub-samples
were treated with 10 mL of 0.11 M acetic acid (pH 2.8 ± 0.1), shaken for 16 h at room temperature
and centrifuged for 10 min at 5000 rpm. Supernatants were then transferred into graduated flasks,
acidified to 1% with (concentrated) nitric acid and stored at +4 ◦C until analysis. In the second
step (which releases the reducible fraction, i.e., Mn and Fe oxides), 10 mL of 0.5 M hydroxylamine
hydrochloride (pH 1.5 ± 0.2) were added to the residues of the previous step (after washing the
residues with 4 mL of ultrapure water) and the same shaking/centrifugation/acidification procedure
as in the first step was performed. Finally, in the third step (which releases the oxidizable phases,
i.e., organic matter and sulfides), the residues were treated with 6.25 mL of 30% hydrogen peroxide
(pH 2.5 ± 0.5), introduced into the microwave digestion system (MARS-5 by CEM, Matthews, NC,
USA) and heated to 50 ◦C (ramp: 15 min; hold: 60 min). At the end of this step, 6.25 mL of 2 M
ammonium acetate (pH 2.0 ± 0.1) were added to prevent re-adsorption processes and treated for
60 min in an ultrasonic bath (45 kHz, 130 W). Then, solutions were acidified to 1% with (concentrated)
nitric acid and stored at +4 ◦C until analysis. In addition to the three steps of the BCR procedure,
the residual fraction (silicates, aluminosilicates) was also determined by dissolving the residues of
the previous steps in 6 mL of an HNO3:HCl:HF 1:3:2 (v/v) mixture. Microwave-assisted digestion
was conducted at 200 ◦C (ramp: 20 min; hold: 30 min). After cooling, 14 mL of saturated boric acid
solution were added and heated again to 170 ◦C (ramp: 15 min; hold: 10 min). All the solutions



Atmosphere 2019, 10, 8 6 of 15

obtained by the sequential extraction procedure were finally analyzed by inductively coupled plasma
atomic emission spectrometry (Vista PRO by Agilent Technologies, Santa Clara, CA, USA), using
online internal standardization (Lu 291.139 nm) and measuring the emission intensity at selected
wavelengths: (Fe 234.350, 240.489, 259.837 nm). All reagents were of analytical or, whenever available,
suprapure grade quality from Merck (Darmstadt, Germany). Ultrapure water was supplied by the
Milli-Q system, fed by the Elix 3 reverse osmosis system, both from Merck-Millipore (Darmstadt,
Germany). Standard solutions for calibration were prepared from 1000 mg/L single-element standard
solutions by Merck. The accuracy of the analytical procedures was validated with certified reference
materials BCR 701 (European Community Bureau of Reference), PACS-2, MESS-2 (National Research
Council Canada) and MURST-ISS-A1 (PNRA-Istituto Superiore di Sanitá, Rome).

3. Results

3.1. X-ray Absorption Spectroscopy (XAS) Results

XANES and EXAFS spectra are shown in Figures 1 and 2 for a direct comparison of the
SH_Dec2014 and the AST_E45 cases. Remarkable differences are evident even at a qualitative level.
The spectra of the two mixed urban samples (TR_mix1 and TR_mix2) are also shown in the same
figures for comparison purpose and they show similar spectral features to Saharan dust and steel
production emissions, respectively.

The fitting of the pre-edge features in the XANES part of the normalized spectrum allowed us to
determine the centroid position and intensity parameters, and the results are reported in Table 2.

Table 2. XANES: pre-edge peak quantitative data analysis results on Saharan dust (SH_Dec2014), Steel
production emission (AST_E45) and mixed aerosol samples collected in the Terni urban area (TR_mix1
and TR_mix2).

Sample Centroid [eV] Intensity

SH_Dec2014 7114.9 0.04
TR_mix1 7115.0 0.05
TR_mix2 7114.5 0.09
AST_E45 7114.2 0.09

A comparison between the pre-edge peak fit parameters for samples and standard compounds is
reported in Figure 3. The centroid position suggests the presence of Fe3+ in Saharan dust (SH_Dec2014),
steel production (AST_E45) and mixed (TR_mix1 and TR_mix2) samples, while the intensity results
different for Saharan dust and steel production samples, suggesting 6-fold coordination for the first
one and lower coordination for the latter. As shown in Figure 1, the shape of the pre-edge features
is noticeably different for the Saharan dust and the steel production emission samples. In the first
case, the peak is broad and can be fitted with two components while in the AST case it is a single peak.
The broad, double peak of the Saharan dust sample can be attributed to octahedral Fe3+ in iron-silicate
and/or iron-oxide structures. On the other hand, the intense single peak observed for the AST_E45
sample, can be attributed to the dominance of the Fe3+ tetrahedral sites which suggests the presence
of a spinel-type structure.

For the SH_Dec2014 sample, the fit parameters (centroid = 7114.9 eV, intensity = 0.04) are
compatible with those found by Wilke et al. [46] for octahedral coordinated Fe3+ which is characterized
by the centroid position at 7114.4 eV and an intensity of about 0.12. It is worthwhile noting that these
values have been rescaled as suggested by Giuli et al. [47] because our energy calibration of the Fe
K-edge, accordingly to the edge position data by Bearden and Burr 1967 [48], is about 1 eV higher than
the calibration value used by Wilke et al. [46]. These results are compatible with Saharan dust, mainly
constituted by oxidized phases like Fe3+ oxy(hydr)oxides such as ferrihydrite and sheet minerals of
the illite group [47,49]. As regards the E45 sample, the centroid position (7114.2eV) is quite close to
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that of the Saharan sample but the intensity is higher (0.09). These results are more similar to those
obtained by d’Acapito et al. [22] for an urban particulate matter, which shows a centroid position of
about 7114.1 eV and an intensity around 0.18.

A direct comparison of the AST_E45 with magnetite and maghemite XANES spectra is shown in
Figure S4 of the Supplementary Material. These two standards have been chosen on the basis of X-ray
diffraction (XRD) results, which suggests the presence of two spinel-like phases with different unit
cells, one of those compatible with magnetite, and the other compatible with maghemite or trevorite.
The XANES spectrum of the sample result more similar to that of the maghemite standard, suggesting
the presence of a weathered or oxidized magnetite-like structure.

As shown, the XANES region provides information on coordination and valence state of iron
and, despite the centroid position and intensity values are not different enough to offer a specific
fingerprint of the different iron-bearing aerosols, the shape of the pre-edge features is an indication for
discriminating between the two sources that are the subject of this study.

Figure 1. (Lefthand panel) XANES spectra of the Saharan dust (SH_Dec2014), steel production fumes
(AST_E45) and mixed aerosol samples collected in the Terni urban area (TR_mix1 and TR_mix2).
(Righthand panel) Blow-up of the pre-edge features of the same samples is shown in the lefthand
panel. Here the open circles are the experimental points and the lines the model best fits (see text).

The EXAFS spectrum of the SH_Dec2014 sample was fitted with a two-shell ferrihydrite model
and the results are shown in Table 3 and in Figure 2. The first shell fit gives a Fe-O distance of
1.99 ± 0.01 Å that agrees with the one calculated using the bond-valence method (BVM; [50]) for
6-coordinated Fe3+ (2.015 Å ; Table S1), while the Fe-Fe distance is about 2.98 ± 0.01 Å. These results,
obtained from the analysis of the MM PM10 sample of 1 December 2014, are consistent for all the
samples collected on both days, on both sites (MM and Terni) and on all the different filter types
during the Saharan dust event occurring in December 2014 (e.g., TR_mixSH in Table 2, r(Fe-O) = 2.01
± 0.01 Å) This evidence demonstrates the absolute dominance of Saharan dust over local contributions.
Concerning the coordination number, we obtained a local structure constituted by six oxygen atoms
and two iron atoms (Table 3) compatible with the XANES observations and EXAFS bond distances.
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Figure 2. (Lefthand panel) k2 weighted EXAFS spectra and (Righthand panel) the related Fourier
transforms for Saharan dust (SH_Dec2014), steel production fumes (AST_E45) and mixed aerosol
samples collected in the Terni urban area (TR_mix1 and TR_mix2). The open circles are the experimental
data and the continuous lines the model best fits.
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AST_E45, TR_mix1 and TR_mix2; solid dots) and the standard compounds reported in Wilke et al. [46]
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For the AST_E45 sample, the fit of the oscillating part of the spectrum was performed using
a magnetite model and both the octahedral and tetrahedral theoretical paths have been implemented
to determine the different coordination and bond distances for Fe in the two sites. Results are shown
in Table 3 and in Figure 2. The good quality of the fit proves that steel production plants emit mainly



Atmosphere 2019, 10, 8 9 of 15

spinel-type iron oxides. As regards Fe-O bond distances, we obtained 2.06 ± 0.06 and 1.93 ± 0.02 Å for
the octahedral and tetrahedral sites, respectively; these values agree with those calculated with the
BVM method (Table S1) for octahedrally coordinated Fe3+ (2.015 Å), and tetrahedrally coordinated
Fe3+ (1.865 Å), respectively. Fe-Fe bond distances range between 2.98 ± 0.02 and 3.50 ± 0.02 Å for the
octahedral and tetrahedral sites, respectively. The absence of Fe2+ observed in both XANES and EXAFS
results can be explained taking into account other metals concentration in the sample. In particular, Zn
concentration resulted quite high, accounting for 25.1% of Fe concentration. This piece of information
suggests the presence of a prevalent direct Fe-Zn spinel [51] with Zn2+ balancing the overall charge.

The SH_Dec2014 and AST_E45 cases show different features in the EXAFS spectra that also
determine different bond distance values for both the first and second shell. Moreover, when comparing
these results with the literature ones, we noticed that the urban aerosols studied by d’Acapito et al. [22]
shows very similar values to our Saharan dust sample in the first Fe-O shell (1.92–2.04 Å), while the
Fe-Fe bond distance is higher for the urban sample (3.01–3.45 Å) with respect to the present desert
dust aerosol sample. While in urban aerosols the dominating phase for iron is ferrihydrite, Saharan
dust contains not only Fe oxy(hydr)oxides but also aluminosilicates where the six oxygen atoms in
octahedral geometry are maintained but neighboring iron atoms could exhibit different distances.

Table 3. EXAFS: quantitative data analysis results for Saharan dust (SH_Dec2014), Steel production
emission (AST_E45) and mixed aerosol samples collected in the Terni urban area (TR_mix1 and
TR_mix2). Errors in the last significant figure are indicated in brackets.

Fe-O Fe-Fe

Sample r(Fe-O) [Å] N σ2 [Å2] r(Fe-Fe) [Å] N σ2 [Å2]

SH_Dec2014 1.99(1) 6.5(4) 0.011(3) 2.98(1) 1.4(4) 0.01(1)
TR_mix1 2.01(1) 5.0(3) 0.009(2) 2.99(1) 1.8(4) 0.009(6)
TR_mix2o 2.06(6) 2.4(1) 0.02(1) 2.96(1) 2.4(1) 0.02(1)
TR_mix2t 1.94(1) 2.4(1) 0.003(1) 3.48(1) 7.1(1) 0.003(1)
AST_E45o 2.06(6) 3.0(2) 0.03(2) 2.98(2) 3.0(2) 0.03(2)
AST_E45t 1.93(2) 1.9(2) 0.003(5) 3.50(2) 5.8(2) 0.003(5)

Legend: o: octahedral site, t: tetrahedral site.

3.2. Leaching Tests Results

Leaching tests performed on three samples (Table 4) show a general predominance of the insoluble
residual fraction above the others. However, a significant difference is evident between the SH_Dec2014
and AST_E45 samples: for Saharan dust, the residual fraction accounts for 69% of total iron while
in steel production emission it accounts for 93%. According to XAS results, the residual fraction of
SH_Dec2014 may be ascribed to aluminosilicates and iron oxy(hydr)oxides, whereas the AST_E45
residue is attributable to spinel-type non-reducible iron oxides. In fact, well-crystalline (e.g., hematite
and goethite) and short-range-ordered (e.g., ferrihydrite) iron oxides could be not completely extracted
by hydroxylamine hydrochloride - depending on the sample type, the sample mass/solution volume
ratio, and the reagent concentration [52,53] and hence remain in the residual fraction.

These results agree with Sammut et al. [32] who observed a residual iron phase that accounted for more
than 90% in steel plant emissions and attributed it to insoluble iron oxides. Dabek-Zlotorzynska et al. [54]
applied the BCR sequential leaching extraction procedure to samples of the certified NIST-1648-PM urban
aerosols and showed that the refractory fraction accounts for about 80% of total iron. Moreover, the iron
distribution determination performed by the authors [54] using of Mössbauer spectroscopy revealed that
the refractory fraction consists mainly of magnetite, hematite and ferric/ferrous species contained in clay
minerals. The TR_mix1 sample shows intermediate values between the two above cases, probably due to
the external and internal mixing and atmospheric processing.
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Table 4. Leaching test results on Saharan dust (SH_Dec2014), steel production emission (AST_E45) and
mixed Saharan (TR_mix1) samples.

Sample I (%) II (%) III (%) IV (%) tot Fe (µg)

SH_Dec2014 15 8 8 69 21.2
AST_E45 4 2 1 93 308.0
TR_mix1 11 6 5 78 37.6

Legend: I step: acid-labile fraction, II step: reducible Fe oxides and hydroxides, III step: oxidizable phase,
IV step: insoluble residuals.

4. Discussion

This section summarizes the results obtained for the two specific aerosol types and illustrates an
application to two mixed cases, namely urban aerosol contaminated by a Saharan dust advection and
urban aerosol collected near the steel plant.

4.1. Saharan Dust

Saharan dust advections are typically associated with a significant increase of the total iron
concentration in the aerosols [13]. In our long-term measurements started in 2009 [35] we observed
that Saharan dust events recorded at MM are always associated with a high increase in the total iron
concentration together with an increase in the concentrations of other metals such as Mn, Ti, and
Ca. Saharan dust is mainly constituted by aluminosilicates and quartz with variable contributions of
carbonates and metal oxides and hydroxides [55,56]. Interestingly, in a recent work, Formenti et al. [28]
demonstrated that, in African dust, goethite is predominant over hematite.

The pure Saharan dust advection of 30 November–1 December 2014 is characterized by
6-fold coordinated Fe3+. The oxidation state and coordination number are compatible with both
aluminosilicates such as illite [49] and iron oxy(hydr)oxides [22]. Moreover, ferrihydrite is the most
soluble among the iron oxy(hydr)oxides and thus can play an important role on iron solubility and
bioavailability [57]. The presence of oxy(hydr)oxide phases in the Saharan dust has already been
demonstrated and recognized in the literature [27], and increasing amounts of ferrihydrite have been
found for increasing extent of long-range transport [58]. This occurrence is compatible with the ageing
of dust by cloud chemistry processes, as the low pH promotes the removal and oxidation of Fe2+

contained in silicates [29].
Scanning Electron Microscopy (SEM) morphological and compositional analyses of the aerosol

particles collected during the Saharan dust advection of December 2014, reported in Supplementary
Material Figure S5, show the predominance of silicates with the presence of small amounts of Fe
oxi(hydr)oxides nanoparticles which are included in the clay minerals, supporting XAS observations.

Regarding the solubility of the Saharan dust sample, we observed that the insoluble residual
fraction is dominating over the others. Journet et al. [10] have demonstrated that, although the iron
content is far much higher in iron oxy(hydr)oxides, the solubility of iron in mineral dust is mainly due
to aluminosilicates such as clays or feldspars. The two items of evidence lead to a potentially high
iron solubility for desert dust samples. These results are significant in the solubility and bioavailability
context because Saharan dust is shown to have a higher percentage of soluble iron, which enhances
its capacity of interaction with the hydrological cycle (CCN capacity) and the biosphere, both on
ecosystems and health issues.

4.2. Steel Production Emissions

Steel production plants emit mainly submicrometric particles of metal oxides [59,60]. Previous
observations by Moroni et al. [39] on aerosol samples collected at a variable height over the city
of Terni, by tethered balloon experiments, and analyzed using SEM revealed the presence of metal
oxides in the TK-AST emissions. Both XANES and EXAFS results point towards spinel-like structures
containing Fe3+ in octahedral and tetrahedral sites, and, most probably, Zn2+ for charge balance. This
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suggests that the extremely high concentration of iron oxy(hydr)oxides found in steel plant emissions
causes a limited availability of soluble iron. However, this result cannot be generalized to all the
anthropogenic Fe-bearing aerosols: as shown by Moffet et al. [61], some anthropogenic aerosol sources
(i.e., coal combustion) emit aerosols whose iron solubility is higher as compared to mineral dust.

Leaching tests also highlight the presence of other species such as carbonates, oxides, and
sulfides, compatible with steel manufacturing processes. Oxides and sulfides, in particular, develop
in the presence of trace amounts of sulfur in the welding matrices. They are considered undesirable
constituents in steel as they form non-metallic inclusions which tend to worsen the mechanical
properties of steel, although the addition of trace sulfur amounts tends to improve the machinability of
a steel [62]. However, even if leaching test points out the presence of small quantities of other phases,
the EXAFS spectrum is the result of a sum of contributions and the spinel-like one is predominant,
masking the others.

To sum up, since the majority of iron is in spinel-type structures, its solubility in the steel
production emissions is very low. It is worth noting, however, that we analyzed samples of freshly
emitted aerosols, and that the atmospheric processing could bring about changes in composition and
oxidation state. However, in some of our in-progress studies, we are demonstrating that the deposition
of aerosols emitted from the steel production plant in the Terni area is very localized and decreases
drastically in a few kilometers range from the emitting source.

4.3. Mixed Urban Dust Cases

The XAS spectrum of the TR_mix1 sample is very similar to the one of the sample collected at MM
on the same day both in the XANES (Figure 1) and in the EXAFS (Figure 2) regions, demonstrating
the apparent dominance of the Saharan contribution over other local contributions in determining
the observed spectral features. The leaching test on the TR_mix1 sample, on the other hand, shows
a modification in the leaching stages of the urban sample with respect to the pure Saharan dust
sampled at MM (Table 4). Moreover, iron concentration is higher in the urban mixed case (Table 1),
suggesting other Fe-bearing aerosol sources to contribute to the overall iron concentration. Besides
the steel production emissions and the Saharan dust, the remaining airborne iron mass in Terni is
influenced by some other natural and anthropogenic sources such as auto vehicular traffic emissions,
road dust, biomass burning, and residential heating [36,39]. These observations also suggest that
the Saharan dust entrainment process into the urban boundary layer affected the iron concentration
and properties, due to the mixing with the urban aerosols, while affects both the observed iron local
structure and the overall solubility.

The TR_mix2 sample, on the other hand, shows spectral features similar to the pure steel plant
emission case both in the XANES and in the EXAFS region (Figures 1 and 2). However, some differences
between the two samples are observed. In particular, the shift of the pre-edge features at higher energy
values suggest a higher octahedral Fe3+ content with respect to freshly emitted steel plant fumes.
These observations emphasize the role of atmospheric processing and external mixing with other
Fe-bearing aerosol sources of the steel plant fumes in the urban environment.

5. Conclusions

In this work, we assessed iron speciation and local structure for two well-characterized
atmospheric aerosol types, namely Saharan dust and steel production plant emissions. The synergistic
approach applied to combine selective leaching experiments with XAS analyses allowed us
to distinguish the two cases clearly. In particular, Saharan dust result mainly constituted by
aluminosilicates and iron oxy(hydr)oxides which account for 69% of the total iron content. The pre-edge
feature in the XANES spectrum is a broad double peak, and the bond distances obtained from the fit of
the EXAFS spectrum agree with 6-fold coordinated Fe3+. For steel production emissions, the presence
of spinel-like oxide phases, which has also been evidenced by XRD, accounts for 93% of total iron
in the residual insoluble fraction. We considered, in the EXAFS fit, the presence of tetrahedral Fe3+
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shapes the pre-edge feature in a single peak, and both the tetrahedral and octahedral sites. Speciation
analysis evidence the dominance of Fe3+ in both sites, and the elevated concentration of Zinc support
this hypothesis since this element can balance the charge in the defective spinel structure. The two
mixed cases showed very similar spectral shapes to the corresponding pure cases, while we noticed
differences at a quantitative level. Therefore, the applied experimental approach has proved to be
a useful tool in distinguishing natural and anthropogenic Fe-bearing aerosols and has the potential to
be applied to other mixed cases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/1/8/s1,
Figure S1: Sampling sites maps, Figure S2: Saharan dust advection, Figure S3: Self-absorption, Figure S4: AST_E45
sample comparison with model spinels, Table S1: Bond-Valence Method calculations, Figure S5: SEM-EDX
analysis of the Saharan dust sample.
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