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1. Supplementary Data and Methods 23 

1.1 CMIP5, reanalyses and Lamb’s catalogue 24 

The climate model output used to represent historical, future Representative Concentration Pathway 25 

8.5 (RCP8.5) and RCP4.5 projections of LWTs [1,2] originate from a multi-model sub-ensemble 26 

(MME) of 10 Atmosphere-Ocean General Circulation Models (AOGCMs) from the Coupled Model 27 

Intercomparison Project Phase 5 (CMIP5) [3]. MME output was obtained from the Earth System Grid 28 

Federation (https://esgf-node.llnl.gov/search/cmip5/). Per each model the historical, RCP8.5 and 29 

RCP4.5 runs of daily (12 UTC) sea-level pressure (SLP) are used to calculate daily LWTs across the 30 

BI as described above. The historical period is defined as 1980s (1971-2000). Model runs for the RCPs 31 

(2006-2100) are divided into consecutive 30-year periods covering the 2020s (2011-2040), 2050s 32 

(2041-2070) and 2080s (2071-2100). Each AOGCM was re-gridded to 5°×10° (latitude × longitude) 33 

to match the grid of the objective LWT classification [2,4]. The choice of AOGCMs was constrained 34 

by availability of daily SLP for historical, RCP8.5 and RCP4.5 runs. Table 2 lists these models along 35 

with some of their characteristics and Figures S1-S5 show results for RCP4.5. 36 

 37 

To evaluate CMIP5 MME realism, LWTs were derived from two reanalyses [5] then compared with 38 

the 30-year historical (1980s) run of the MME. These were the 20CR [6] and NCEP [7] LWTs datasets 39 

[5], available from https://crudata.uea.ac.uk/cru/data/lwt/. In addition to reanalyses, we also compared 40 

the historical MME with Lamb’s catalogue of subjectively defined LWTs [1,8] which ends in 1997. 41 

We evaluate the MME realism using LWTs occurring in four seasons, namely: summer (June-July-42 

August, JJA); autumn (September-October-November, SON); winter (December-January-February, 43 

DJF); and spring (March-April-May, MAM). Seasons were assigned to the year with the first month 44 

(e.g. summer 2020 includes June 2020, July 2020 and August 2020, whilst winter 2000 includes 45 

December 2000, January 2001 and February 2001). Note that for Lamb’s catalogue, DJF for the 1980s 46 

https://esgf-node.llnl.gov/search/cmip5/
https://crudata.uea.ac.uk/cru/data/lwt/
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has December and January for winter 1996, because the dataset ends in early February 1997. All the 47 

complete LWTs datasets used in the analyses are provided in the csv files accompanying this study. 48 

 49 

1.2 Statistical methods and analyses 50 

1.2.1 2-day persistence 51 

Two-day persistence of LWTs [1,2] was derived from Markov-chain matrices of transitions between 52 

the eight main weather types defined above [9,10]. Persistence was defined as the probability that a 53 

given LWT on day(t) is followed by the same LWT on day(t+1). LWTs persistence is calculated for 54 

each AOGCM and MME mean (MMEM) for historical 1980s and 2020s, 2050s, 2080s under RCP8.5 55 

and RCP4.5. Uncertainty in persistence estimates for the CMIP5 MME 1980s was calculated by boot-56 

strapping (n=1,000) 30-year simulations to obtain 95% confidence intervals for significance testing. 57 

Persistence for the 2020s, 2050s and 2080s was calculated from the transition matrices. Persistence 58 

analysis was performed using the functions markovchainFit and createSequenceMatrix, from the R 59 

package ‘markovchain’ [11], respectively for historical boot-strapping and the three future periods 60 

(https://cran.r-project.org/web/packages/markovchain/markovchain.pdf). To evaluate the 61 

performance of the CMIP5 MME, the 20CR [6], NCEP [7], and Lamb’s subjective classification [1,8] 62 

were also used to calculate LWT persistence during the 1980s period. We also computed the CMIP5 63 

MME historical persistence for 1971-1996 (not shown here) to test the slightly shorter period covered 64 

by Lamb’s subjective catalogue. After performing a Mann-Whitney-Wilcoxon two-tailed test [12] 65 

(null hypothesis of no difference in mean persistence), between the MME 1971-1996 and MME 1980s, 66 

for A, C, W, and S LWTs within respectively summer (JJA), autumn (SON), winter (DJF) and spring 67 

(MAM), we found no statistical significance between the two periods. Therefore, we conclude that 68 

Lamb’s catalogue is equivalent to the 1980s, despite being 5 years shorter. 69 

 70 

https://cran.r-project.org/web/packages/markovchain/markovchain.pdf
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The seasonal persistence for each LWT, AOGCM, MMEM, 20CR, NCEP and Lamb’s subjective 71 

catalogue during the 1980s and (for AOGCMs only) 2020s, 2050s and 2080s under RCP8.5 and 72 

RCP4.5 are provided in the spreadsheets accompanying this study. 73 

 74 

The statistical significance of changes in persistence for each LWT was assessed by testing: (i) 75 

differences in the persistence of the MME between the 1980s and the 2020s, 2050s and 2080s; and ii) 76 

differences in the persistence for individual climate models in the MME. In the first case (i) we applied 77 

the Mann-Whitney-Wilcoxon two-tailed test [12] under the assumption that data are not normally 78 

distributed, with the null hypothesis of no difference in mean persistence (Tables S1-S2). The second 79 

test (ii) was performed individually for each model by checking whether persistence in the 2020s, 80 

2050s and 2080s falls outside the boot-strapped 95% confidence intervals of the 1980s (Figures 4 and 81 

S2). 82 

 83 

1.2.2 Seasonal trends 84 

Trend analysis was performed using annual series of LWT frequencies from 2006-2100 to detect both 85 

linear and non-linear changes in LWT frequencies within our CMIP5 [3] MMEM under RCP8.5 and 86 

RCP4.5 scenarios. For the sake of brevity, we only show trends for anticyclonic (A, summer JJA), 87 

cyclonic (C, autumn SON) and westerly (W, winter DJF) as indicators of impactful weather in the BI 88 

and for southerly (S, spring MAM) as this is the LWT showing most significant changes in persistence 89 

with the Mann-Whitney-Wilcoxon two-tailed test [12] (Tables S1-S2). A modified Mann-Kendall test 90 

[13], which takes into account possible autocorrelation within the time series, was applied to both 91 

RCP8.5 and RCP4.5 seasonal MMEM LWTs frequencies.  92 

 93 

Results from the trend analysis are presented in Figures 5, S3 and Table S3 in terms of time series and 94 

Sen’s slope [14] with relative statistical significance (i.e. p-value of modified Mann-Kendall test [13]). 95 
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Shaded bands in Figures 5 and S3 represent the 95% confidence interval of the MMEM. Sen’s slope 96 

gives information about the gradient, with large Sen denoting rapid changes; the sign shows whether 97 

the trend is rising (+) or falling (-). Sen’s slope values and relative statistical significance are shown 98 

in Table S3. 99 

 100 

 101 

 102 
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2. Supplementary Figures 121 

 122 

 123 

Figure S1. As per Figure 3 but for RCP4.5. 124 

 125 

 126 

 127 
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 128 

Figure S2. As per Figure 4 but for RCP4.5. 129 
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 135 

Figure S3. As per Figure 5 but for RCP4.5. Trends are statistically significant at the 1% and 5% 136 

levels (p-value <0.01 and <0.05, modified Mann-Kendall test). 137 
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 143 

Figure S4. As per Figure 6 but for RCP4.5. 144 
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 152 

Figure S5. As per Figure 7 but for RCP4.5. 153 
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3. Supplementary Tables 169 

 170 

RCP8.5 
1980s 

A 

1980s 

C 

1980s 

W 

1980s 

NW 

1980s 

E 

1980s 

N 

1980s 

S 

1980s 

U 

JJA 2020s 44 60 38 47 50 38 52 62 

JJA 2050s 42 65 40 44 54 44 68 43 

JJA 2080s 30 80 51 39 74 34 80 54 

SON 2020s 48 60 48 37 53 56 76 48 

SON 2050s 54 72 39 30 53 54 75 42 

SON 2080s 55 74 33 34 50 52 78 42 

DJF 2020s 55 38 29 43 24 34 40 71 

DJF 2050s 51 43 24 47 22 48 54 72 

DJF 2080s 58 52 29 54 43 44 61 90 

MAM 2020s 36 46 62 55 68 32 57 35 

MAM 2050s 39 49 64 47 72 23 86 40 

MAM 2080s 44 66 71 49 60 19 88 49 

 171 

Table S1. Statistical significance of LWTs persistence in the MME under RCP8.5. Time periods 172 

considered are the 1980s compared to the 2020s, 2050s and 2080s under RCP8.5 during all seasons: 173 

summer JJA, autumn SON, winter DJF and spring MAM. Values shown are the W-statistic from the 174 

Mann-Whitney-Wilcoxon two-tailed test. Statistically significant values (p<0.1) are shown in bold. 175 

 176 

 177 

 178 
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RCP4.5 
1980s 

A 

1980s 

C 

1980s 

W 

1980s 

NW 

1980s 

E 

1980s 

N 

1980s 

S 

1980s 

U 

JJA 2020s 49 49 46 41 38 54 58 40 

JJA 2050s 44 64 51 45 54 47 82 52 

JJA 2080s 43 82 44 47 49 46 69 52 

SON 2020s 48 60 48 30 47 58 57 50 

SON 2050s 50 64 39 34 36 49 62 64 

SON 2080s 60 67 36 32 49 60 65 62 

DJF 2020s 53 41 33 47 49 44 47 80 

DJF 2050s 52 54 26 48 36 29 54 85 

DJF 2080s 50 43 31 52 22 34 48 75 

MAM 2020s 48 44 68 54 63 38 76 44 

MAM 2050s 36 56 57 64 54 31 80 41 

MAM 2080s 41 51 62 50 50 17 85 50 

 179 

Table S2. The same as Table S1 but for RCP4.5. 180 
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 Sen’s slopes 

Summer JJA 

(A-type) 

RCP8.5 8.04e-02** 

RCP4.5 4.71e-02** 

Autumn SON 

(C-type) 

RCP8.5 -4.17e-02** 

RCP4.5 -1.71e-02* 

Winter DJF 

(W-type) 

RCP8.5 2.32e-02** 

RCP4.5 4.17e-03 

Spring MAM 

(S-type) 

RCP8.5 -1.88e-02** 

RCP4.5 -9.93e-03* 

 190 

Table S3. Sen’s slopes of MMEM seasonal LWTs frequencies for RCP8.5 and RCP4.5. The slopes 191 

are calculated using a modified Mann-Kendall trend test over the 2006-2100 period. Four LWTs are 192 

shown: anticyclonic (A) for summer JJA; cyclonic (C) autumn SON; westerly (W) winter DJF and 193 

southerly (S) spring MAM. Statistical significance is shown as * p-value <0.05 and ** p-value <0.01. 194 

 195 
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