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Abstract: The assimilation impact of wind data from aircraft measurements (AMDAR), surface
synoptic observations (SYNOP) and 3D numerical weather prediction (NWP) mesoscale model,
on short-range numerical weather forecasting (up to 12 h) and on the assimilation system,
using the one-dimensional fog forecasting model COBEL-ISBA (Code de Brouillard à l’Échelle
Locale-Interactions Soil Biosphere Atmosphere), is studied in the present work. The wind data
are extracted at Nouasseur airport, Casablanca, Morocco, over a winter period from the national
meteorological database. It is the first time that wind profiles (up to 1300 m) are assimilated in the
framework of a single-column model. The impact is assessed by performing NWP experiments
with data denial tests, configured to be close to the operational settings. The assimilation system
estimates the flow-dependent background covariances for each run of the model and takes the
cross-correlations between temperature, humidity and wind components into account. When
assimilated into COBEL-ISBA with an hourly update cycle, the wind field has a positive impact
on temperature and specific humidity analysis and forecasts accuracy. Thus, a superior fit of the
analysis background fields to observations is found when assimilating AMDAR without NWP wind
data. The latter has shown a detrimental impact in all experiments. Besides, wind assimilation
gave a clear improvement to short-range forecasts of near-surface thermodynamical parameters.
Although, assimilation of SYNOP and AMDAR wind measurements slightly improves the probability
of detection of fog but also increases the false alarms ratio by a lower magnitude.
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1. Introduction

Assimilation of wind observations plays an important role in numerical weather prediction (NWP)
models to specify the atmospheric dynamics, particularly at the mesoscale. Thus, the initialisation
of such models through the assimilation of all available observations is found to be relevant for
nowcasting and short-range forecasting of, among others, severe weather events such as fog and heavy
rainfall (Strajnar et al., 2015 [1]; De Haan and Stoffelen, 2012 [2]). Bergot and Lestringant (2019) [3]
showed that wind at the top of the nocturnal boundary layer plays a significant role during
the bifurcation from formation to mature phases of fog layer development. In fact, the authors
demonstrate that by modifying the mixing between the nocturnal boundary layer and the residual
layer, modestly stronger wind can alter the development of the fog layer and keep fog in a shallow
patchy state. As a result of an impact study on fog forecasting, Philip et al. (2016) [4] found that high
vertical resolution in a kilometric-scale 3D NWP model leads to stronger nocturnal jet and turbulence
at the top of the nocturnal boundary layer. Thus, an improvement of the initial wind field will result
in a better forecast of both wind and other meteorological parameters (e.g., temperature and humidity).
This will be beneficial for aviation, which highly depends on meteorological information for safety.
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However, upper air profile observations are notably lacking (WMO, 2001 [5], 2005 [6]). In fact,
radiosonde and aircraft measurements are the main sources of upper air wind (WMO (2016) [7]).
The radiosonde are generally launched a few times per day, and do not directly measure wind
speed and direction. Through Aircraft Meteorological Data Relay (AMDAR), aircraft-based
measurements sample an atmospheric profile in the vicinity of airports and are an excellent
means of supplementing upper-air observations obtained by conventional systems, such as
radiosondes. However, some companies did not equip their aircraft with AMDAR or they did not
activate the system. It should be noted that this information is beneficial for NWP when these
observations have been sufficiently quality controlled. Today, the observations from the WMO AMDAR
observing system are the output from 12 operational AMDAR national and regional programs in
cooperation with some 40 national and international participating airlines. Thus, AMDAR-derived
meteorological information supports international air navigation and air traffic management and also
supports meteorological applications (e.g., forecasting for aviation, more details are available on the
WMO website). Moninger et al. (2003) [8] showed that weather forecasts at both short- and long-term
ranges have been improved when AMDAR data are used. In the literature, the AMDAR information
has been extensively used in the 3D NWP framework (e.g., Cardinali et al., 2003 [9]; de Haan, 2011 [10];
de Haan and Stoffelen, 2012 [2]) but less in the 1D framework.

Because airport traffic is highly influenced by reduced visibility conditions, a need exists for
accurate and updated fog and low-cloud forecasts. For this purpose, single-column models are
often used in airports located in flat terrain because they are suitable for the nowcasting of fog
events, particularly the radiation fogs (e.g., Bergot and Guédalia 1994 [11], Clark 2002 [12], 2006 [13];
Herzegh et al. 2003 [14]). The National weather service of Morocco (DMN) has implemented
a site-specific fog forecasting system at Nouasseur international airport for operational use since
2014. It consists of coupling the one-dimensional model COBEL-ISBA (Code de Brouillard à l’Échelle
Locale-Interactions Soil Biosphere Atmosphere, Bergot et al., 2005 [15]) with the high-resolution
3D meso-scale model AROME (Applications de la Recherche à l’Opérationnel à Méso-Echelle,
Seity et al., 2011 [16]). Following experiences of other institutes on fog forecasting, local observations
have been integrated during the model run. Therefore, additional instruments have been installed
close to runways to provide an observational dataset for both model initialization and model
diagnostics. This local observation system provides some details on the surface boundary layer
state, as well as that of the fog and low-cloud layers. Using the 1D-Var method, the COBEL-ISBA
model assimilates the information from this local observation system to produce initial profiles of
temperature and specific humidity. In fact, initial conditions have a great impact on the skill of
the forecast (Roquelaure and Bergot 2007 [17]; Rémy and Bergot 2009 [18]). It is the first time that wind
profiles are assimilated in the framework of a single-column model, particularly into a fog/low clouds
forecasting system.

The objective of this study is to assess the impact of wind assimilation on the forecast and
data assimilation systems into the single-column model, COBEL-ISBA. Three sources of wind data
are used: SYNOP, AMDAR, and 3D mesoscale NWP data. The next section gives a description of
the single-column model COBEL-ISBA and its assimilation system, followed by a description of
wind data used in the assimilation experiments in Section 3. The experimental design is detailed
in Section 4. Then, Section 5 is devoted to the results of the experiments and a discussion of the impacts
on temperature and specific humidity analysis and also on the forecasting of these parameters
in the upper levels and of the near-surface thermodynamical parameters. The impact on fog forecasting
is also discussed in this section. The final section is devoted to the conclusion and recommendations.
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2. Data Assimilation and Fog Forecast Systems in COBEL-ISBA

2.1. The COBEL-ISBA Fog Forecast System

COBEL-ISBA is a high-resolution single column numerical model originally designed to simulate
the evolution of the stable atmospheric boundary layer vertical structure at the local scale. It was
developed at the Laboratoire d’Aérologie, Paul Sabatier University in collaboration with Meteo-France
and Quebec University at Montreal, Canada. The high-resolution vertical grid of the model is
logarithmic and consists of 30 levels (0.5, 1.6, 3.0, 4.7, 6.8, 9.2, 12.2, 15.9, 20.2, 25.5, 31.9, 39.6, 49.0,
60.3, 74.0, 90.5, 110.5, 134.7, 164.0, 199.4, 242.2, 293.9, 356.5, 432.3, 523.8, 634.6, 768.6, 930.6, 1126.5,
1363.5 m) between 0.5 and 1360 m, with 20 levels below 200 m. It is coupled with the multilayer
surface-vegetation-atmosphere transfer scheme ISBA-DF (Boone et al. 1999 [19], 2000 [20]). The latter
runs with seven soil levels, from 1 mm to 1.7 m below the surface.

The COBEL-ISBA model also integrates external mesoscale forcings from 3D mesoscale NWP
models (e.g., AROME at DMN; WRF in Greece, Stolaki et al. (2012) [21]) to take into account
the influence of possible horizontal heterogeneities on the local forecast scale. These forcings
include horizontal advection of potential temperature and moisture, geostrophic wind, local pressure
tendencies, and cloud cover. The forcings computation requires the following NWP data at 15 levels
(20, 50, 100, 250, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000 and 6000 m heights
above ground): temperature, specific humidity, potential temperature, the two horizontal wind
components, and pressure, as well as downward short-wave and long-wave radiative fluxes
under clear skies at the ground. This model incorporates more sophisticated parametrizations
including a detailed radiation transfer scheme (Vehil et al., 1989 [22] for the longwave part;
Fouquart and Bonnel (1980) [23] for the shortwave part), a parametrization of the boundary layer
turbulent mixing under stable (Estournel and Guedalia, 1987 [24]), neutral (Delage, 1974 [25])
and unstable (Bougeault and Lacarrère, 1989 [26]) conditions, and a microphysical parametrization
adapted to fog and low clouds (For more details, see Bergot et al. (2005) [15]). Note, that fog from
COBEL-ISBA is defined based on visibility at the second level (1.65 m) when it is below 1 km. Besides,
horizontal visibility is diagnosed using only liquid water content (LWC) following Kunkel (1984) [27].

2.2. The COBEL-ISBA Data Assimilation System

The COBEL-ISBA data assimilation system is presented in detail in Bergot et al. (2005) [15].
It generates the initial conditions by a two-step assimilation scheme. First, this system generates a best
linear unbiased estimator (BLUE) xa for initial conditions using information from a dedicated local
observation system yo, a first guess xb (i.e., a previous 1-h COBEL-ISBA forecast) and profiles from
the mesoscale AROME NWP model:

xa = xb + K(yo − Hxb) (1)

where
K = BHT(HBHT + R)−1 (2)

B and R are the error variance and covariance matrices of the background and the observations,
and H is the forward operator that interpolates information from the model grid to the observation
grid. K is the Kalman gain that accomplishes the observations weighting. The local observation
system gives information about the state of the atmosphere below 20 m and the maximum height of
the COBEL-ISBA domain is 1360 m, it is necessary to have additional data. Thus, AROME data are
taken as pseudo-observations for the upper levels of the model domain, so a part of R corresponds to
the error variances and covariances of the AROME profiles.

In the operational setup, the assimilation scheme is multivariate where background error
statistics are flow-dependent and they are computed using the ensemble Monte Carlo method. In fact,
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an ensemble of N members (in this study N = 12) is used to estimate B in a flow-dependent way by
taking covariance statistics of the differences between each member xb and the ensemble mean 〈xb〉:

B ≈ 〈(xb − 〈xb〉)(xb − 〈xb〉)T〉 (3)

where the members represent previous COBE-ISBA forecasts xb valid at the same time t0 and issued
from runs at t0 − 1h, t0 − 2h, t0 − 3h, . . . , t0 − 12h. The ensemble mean 〈xb〉 is computed based
on the N members at t0 for an estimate of the instantaneous B matrix.

At the initialization time of COBEL-ISBA, the local observations system allows the fog and
low cloud detection due to visibility and ceiling measurements. When this occurs, an additional
step in the assimilation scheme is performed to modify the generated initial profiles from the
first step. However, the thickness of the cloud layer is not measured directly. To overcome
this deficiency, Bergot et al. (2005) [15] developed a minimization algorithm using radiative flux
observations at 2 and 20 m to estimate this thickness. The best estimate of the initial fog thickness is the
one that minimizes the error between modeled and observed radiative fluxes. The relative humidity
profile is then modified within the saturated layer. The soil temperature and water content profiles
used to initialize ISBA are obtained directly by interpolation of soil measurements.

2.3. Observation Screening and Thinning

As described by Andersson and Jarvinen (1999) [28], background quality control is performed
for all data that are intended to be used during the assimilation process. Thus, data are considered
as suspect if the departure from the background d = yo − Hxb exceeds a multiple β of its expected
error. In fact, the variance of the departure background can be estimated by σ2

b + σ2
o , assuming

that observation (σo) and background (σb) errors are uncorrelated. Therefore, rejection occurs

if d > β
√

σ2
b + σ2

o (Andersson et al. 2000 [29]). For aircraft wind data, the value of β is set to 5, as
in Cardinali et al. (2003) [9].

Aircraft data are checked for redundancy. If two reports have the same metadata (time, latitude,
longitude, and flight level) and the measured values are identical, then the measurements are
considered redundant and only one is used. Besides, a certain thinning distance is applied during
observation screening. In our study, thinning is performed by selecting one report per flight within
a distance of 30 km around the airport. In addition, aircraft data are checked for the vertical consistency
and the duplicated levels are removed.

Next, aircraft-based wind data are scanned for whitelisting. This approach is applied
in the assimilation experiments and consists of aircraft selection with reliable observations. This is
beneficial for real-time applications because it prevents a new or reregistered aircraft with unknown
error characteristics to enter the data assimilation process without a priori check. Note, that no special
procedure for bias correction has been done during this preliminary study.

3. Observations

3.1. Surface and Mast Observations

The local observation system used at Nouasseur airport is designed to provide up-to-date
information on the lower layers of the atmosphere. In fact, for radiation fog, the layers of the atmosphere
in contact with the ground those are the most important for the prediction of this fog type.
At Nouasseur airport, the local observation system consists of the following:

• A measurement mast that provides observations of temperature and humidity at 1, 5, 10 and
20 m, as well as short- and long-wave radiative fluxes at 2 and 20 m.

• A weather synoptic station that provides 2 m temperature and humidity, as well as visibility, 10 m
wind speed and direction, pressure and ceiling.

• Soil temperature and water content in the ground at −5, −10, −20, −50 and −100 cm.
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3.2. Aircraft Observations

Wind data are derived from aircraft measurements (speed of the aircraft and its position).
In addition, aircraft sensors also measure ambient temperature and pressure. Then, an atmospheric
profile can be generated when measurements are taken during takeoff and landing
(see WMO (2003) [30] and de Haan (2011) [10] for more details). According to Benjamin et al. 1991 [31]
and WMO 1996 [5], the aircraft provide automated reports of wind measurements with an accuracy of
1–2 m·s−1 for vector wind.

Taking into account the high spatial and temporal variability of the wind, in particular,
in the atmospheric boundary layer, the wind profiles are extracted from AMDAR’s messages within
a radius of 30 km around the Nouasseur airport for heights not exceeding 1360 m above ground
level (top of the model COBEL-ISBA) and in a window of 20 min [HH − 10 min, HH + 10 min].
Regarding the temporal distribution of vertical wind profiles during the day, we presented in Figure 1a
the hourly frequency of AMDARs retained after quality control and thinning over the winter period
(December 2015–February 2016). It is seen clearly that high frequencies are observed at 14 UTC,
08 UTC, and 18 UTC, respectively. In fact, there are very few or no observations during the night
during the study winter period, particularly between midnight and 06 UTC. On the other hand,
statistics of measurements availability between two successive levels of the COBEL-ISBA model are
plotted in Figure 1b, which highlights the high frequency of the wind components for the upper levels
of the COBEL-ISBA model with a clear absence of measurements at the lower levels of the atmospheric
boundary layer (especially below 60 m).
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Figure 1. Statistics of wind AMDAR frequency within a radius of 30 km around Nouasseur
international airport and below 1360 m (top of the COBEL-ISBA model) over the winter period
(December 2015–February 2016): (a) Hourly frequency, and (b) Vertical frequency as function of
COBEL-ISBA levels.

4. Experiments Design

As in operational use, COBEL-ISBA is run at 1 h intervals and provides up to 12 h of fog
forecasts. Then, an hourly rapid updating cycle (RUC) will be applied to assimilate the AMDAR
wind observations, along with SYNOP and NWP wind data. Although all experiments are performed
off-line, all the settings are kept as close as possible to operational practice to have an assessment of
the impact of these observations representative for operational practice.

Concerning the initialization of the wind profile in the current operational configuration of
COBEL-ISBA, the 10 m wind from SYNOP messages, issued from the synoptic weather station,
is the only available measurement. Thus, to reconstruct the wind profile, the geostrophic wind
profile from the NWP model is used following Stull (1988) [32]. This method has been successfully
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used in previous studies (for more detail see Bergot (1993) [33], Guedalia and Bergot (1994) [11],
or Roquelaure (2004) [34]).

At the initialization time of the model COBEL-ISBA, wind data can be extracted from the SYNOP
(observation at 10 m), AMDAR or NWP model forecasts (AROME model is this study with 2.5 km as
horizontal resolution and 90 vertical levels) considered as pseudo-observation to fill the absence of
observations beyond 10 m. It should be noted that for the AROME levels, only those below 1360 m
(top of the COBEL-ISBA model) are retained. Indeed, NWP data were extracted at the following
levels: 20, 50, 100, 250, 500, 750, 1000, 1250 m. The assessment of the wind impact on the multi-variate
assimilation system of COBEL-ISBA is carried out through data denial tests, which were conducted
for a winter period (December 2015–February 2016) and are summarized in Table 1. A data denial
test compares results from a control simulation analysis and forecasts using all data sources with
simulations (i.e., reruns) in which different sources of data were removed individually. Differences
in forecast errors between the control run and various tests are then used as a measure of the impact of
each data source. In the tests discussed here, only AMDAR and NWP wind observations were denied.
The control simulation (DA-Wind) is carried out with assimilation of all available sources of wind
observations. To assess the overall impact of wind assimilation, a second experiment (DA-NoWind)
is performed without assimilation of the wind, as is used currently in operation. To highlight the
contribution of the assimilation of the wind data from NWP model and AMDAR, two other experiments
(DA-Wind-NoNWP and DA-Wind-NoAMDAR) are carried out without assimilation of each type of
data separately.

Table 1. Data assimilation experiments.

Experiment Details

DA-NoWind No wind assimilation, only 3D NWP geostrophic wind is used in initial conditions
DA-Wind Assimilation of all sources of wind information (3D NWP, AMDAR and SYNOP)

DA-Wind-NoNWP 3D NWP wind data are not assimilated
DA-Wind-NoAMDAR AMDAR wind data are not assimilated

5. Results

5.1. Background Errors Diagnosis

Based on statistical estimation theory, data assimilation uses the available observations and
an initial guess or background (i.e., a short-term forecast from the previous assimilation-forecast
cycle) to find the best possible initial state of the atmosphere, called analysis. From this initial state,
a forecast can be computed through integration in time. Both sources of information are prone to
errors (model error and observations inaccuracies). Thus, the data assimilation system accounts for
this through the observation and background error covariance statistics (R and B matrix).

In the framework of the multivariate mode, the assimilation system into COBEL-ISBA estimates
the flow-dependent background covariances for each run of the model and takes the cross-correlations
between temperature, humidity and wind components into account. Thus, to highlight the main
differences between the B matrix for the experiments with wind assimilation and those that will
be used later, we will focus on the background error standard deviation of the control parameters:
temperature, specific humidity, zonal and meridional components of wind. The vertical distributions
of the standard deviation for these parameters, averaged over the winter period, are plotted
in Figure 2. In fact, the B-matrix spreads out information in the vertical direction and allows
background information to be weighted against observational information according to their
respective uncertainties. It should be noted that a B-matrix with smaller standard deviation for a given
parameter implies that the background will be highly weighted during the assimilation process. Thus,
the background will be more trusted in this case.
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Figure 2. Background error standard deviation for (a) temperature (◦C), (b) specific humidity (g·kg−1),
and (c) zonal wind (m·s−1) for DA-Wind, DA-WindNoNWP and DA-WindNoAMDAR experiments.

For temperature (Figure 2a), we notice that the B-matrix associated with DA-Wind experiment
(all wind observations are assimilated) has the smaller standard deviation in the lower levels of
the atmosphere, while the DA-Wind-NoAMDAR configuration shows the higher values of standard
deviation. In the upper levels, when NWP wind data are not assimilated, the smaller values of standard
deviation are associated with the DA-Wind-NoNWP experiment.

For specific humidity (Figure 2b), it is seen clearly that the background has similar weights for
the three configurations, with a slight difference in the upper levels where the B-matrix associated to
the DA-Wind-NoNWP Experiment (SYNOP and AMDAR wind data are assimilated) has a smaller
standard deviation.

For the wind components (Figure 2c for zonal wind and Figure S1 in the supplement for
meridional wind), it is found that standard deviation increases as the information is spread out
in the vertical direction for all configurations. Although, the configuration where SYNOP and AMDAR
data are assimilated shows the lowest values of the standard deviation in the middle and upper levels.

Figure 3 illustrates the cross-correlations between zonal wind component (U) with temperature
T (Figure 3a) and specific humidity Q (Figure 3b), averaged over the December 2015–February 2016
period and issued from DA-Wind experiment. It is seen clearly from this figure that the B-matrix
spreads information to other variables and imposes balance by permitting multivariate error covariance.
Thus, we notice that cross-correlations are stronger in the upper levels for zonal wind and lower levels
for temperature. The same finding is noticed for specific humidity with lower correlations. Similar
results have been found for the cross-correlation of these parameters (T and Q) with the meridional
wind component (V).
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Figure 3. Correlations of zonal wind component U with: (a) temperature T, and (b) specific humidity
Q averaged over the winter period (December 2015–February 2016).
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Overall, this analysis showed that the background is highly weighted in the upper levels of
the COBEL-ISBA model when AMDAR data are assimilated without NWP data. Although, previous
research has shown that many factors influence the background error covariance, such as the studied
geographical area, and the used model resolution (Brousseau et al., 2011 [35]), the period used for
B matrix computation (Monteiro and Berre, 2010 [36]; Berre et al., 2013 [37]), and also, weather regimes
(Brousseau et al., 2012 [38]). These aspects have not been studied in the present preliminary study.
In the following section, the impact of wind assimilation on the vertical profiles of temperature and
specific humidity background is assessed.

5.2. Impacts on Temperature and Specific Humidity Background

In the framework of multivariate data assimilation, the cross-correlations of the two components
of wind, temperature and specific humidity in the background were taken into account. To assess
the impact of these cross-correlations on the quality of initial conditions, the vertical profiles of
Observation minus Background (OmG) statistics (Bias and root-mean square error—RMSE), averaged
for all the runs over the winter period, for temperature are plotted in Figure 4 (for specific humidity
see Figure S2 in the Supplementary Materials) for the four experiments (See Table 1). Improvement is
indicated by proximity to the dashed zero line. The Bias or mean error is given by

Bias =
1
n

n

∑
i=1

( fi −Oi) (4)

where fi is the forecasted value, Oi the observed value and n is the total number of observations.
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on the right. The shaded areas represent the confidence intervals at 95%.

The RMSE is given by

RMSE =

√
1
n

n

∑
i=1

( fi −Oi)2 (5)

The observed state for temperature and specific humidity contains the 2 m observations from the
synoptic station, as well as measurements issued from the mast (at 1, 5, 10 and 20 m). To fill the gap of
observations in the upper levels, the observed state also contains NWP data at 20, 50, 100, 250, 500, 750,
1000, and 1250 m.

For both statistics, confidence intervals are plotted in order to determine whether the impacts are
statistically significant or not. Indeed, confidence intervals give information about how much variability
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there is, and allow the reader to compare the magnitude of a difference between experiments. Thus,
a wider confidence interval has considerable variability. In addition, when comparing the same statistic
between two different experiments, if confidence intervals overlap by quite a lot, they definitely are
not statistically different.

The first finding from Figure 4 and Figure S2 is that assimilating all sources of wind data
(NWP, SYNOP, and AMDAR) has a negative impact on OmG Bias and RMSE for the temperature at
all levels and on OmG RMSE for the specific humidity at the upper levels by comparing DA-Wind
and DA-NoWind experiments. To identify which wind data source is responsible for that, NWP
and AMDAR data were removed individually. Therefore, it is found that when AMDAR is removed,
the negative impact remains (DA-Wind and DA-Wind-NoAMDAR are very similar), indicating that
NWP data has a detrimental impact. Indeed, the statistics are better when NWP wind data are removed
(DA-Wind-NoNWP).

Compared to DA-NoWind, the behavior of DA-Wind-NoNWP statistics is similar with a clear
improvement in temperature Bias and specific humidity RMS error at all levels, while a slightly
positive impact is observed in the upper levels for temperature RMS error and specific humidity Bias.
As stated before in the methodology section, all experiments have been designed to be similar to
operational practice. Then, when AMDAR data are missing for a given run, wind assimilation is not
performed. To emphasize the benefit from assimilating AMDAR with SYNOP, statistics of OmG for
temperature and specific humidity issued from DA-Wind-NoNWP, only for runs when AMDAR data
are available (Figure 1), were computed and called DA-Wind-AMDARavl (Figure 4). It is found that
DA-Wind-AMDARavl for temperature has the best RMSE, with a slight degradation between 100 m
and 250 m, and the best bias above 20 m. For specific humidity, DA-Wind-AMDARavl has good Bias
and RMSE in lower levels of the atmosphere below 100 m. Overall, the superior fit of observations
to the background fields, at analysis time, when assimilating AMDAR without NWP wind data,
provides further evidence of the importance and quality of the AMDAR data. The beneficial impact
on the background fields is propagated in forecasts. This will be assessed in the following section.

5.3. Impacts on Forecast

One goal of this research is to assess the impact of wind data assimilation, particularly issued
from AMDARs, on forecasts with a focus on future operational applications. Thus, the operational
quality forecast from an hourly rapid update cycle will be compared to many NWP configurations
with wind observations. First, comparing DA-NoWind (current operational configuration) and
DA-Wind (configuration when all wind sources are assimilated) experiments will highlight
the added value of wind assimilation and its impact on the forecasting system. Besides, comparing
DA-Wind, DA-Wind-NoNWP and DA-Wind-NoAMDAR experiments will point out the influence and
the contribution of AMDAR and NWP wind data separately to the overall impact of wind assimilation.
In the following sections, this impact will be assessed on the forecasting of temperature and specific
humidity at the upper levels of the COBEL-ISBA fog forecasting system, and also on the forecasting
of the conventional near-surface meteorological parameters (2 m temperature, 2 m relative humidity,
and 10 m wind speed). In addition, the impact on the fog forecasting will be evaluated.

5.3.1. Impacts on Forecasted Upper-Level Temperature and Specific Humidity

To assess the quality of the forecast for continuous parameters such as temperature
and specific humidity, we use the mean error (Bias) and the root-mean-square error (RMSE).
In Figure 5, the statistics (Bias and RMSE) of the model forecasts for the four experiments
(DA-NoWind, DA-Wind, DA-Wind-NoNWP and DA-Wind-NoAMDAR) are shown at different
vertical levels (50 m, 500 m and 1000 m) for temperature (Figure 5a,b) and specific humidity
(see Figure S3 in the Supplementary Materials).
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Figure 5. Time series of statistics as function of forecast hours (up to 12 h) for temperature at the
following vertical levels: 50 m, 500 m and 1000 m: (a) Bias (left), and (b) RMSE (right). The error bars
represent the confidence intervals at 95%.

For temperature, the first observation from this figure is that the Bias and RMSE during
the forecasts for the levels shown are reduced when SYNOP and AMDAR data are used
(DA-Wind-NoNWP experiment). It is also seen clearly that DA-Wind and DA-Wind-NoAMDAR
experiments fit well at all levels for Bias, indicating the high impact of NWP wind data when
all wind observations are assimilated. This is mainly due to the high availability in time of these
data in comparison with that of AMDAR’s data. The latter is only available in the upper levels
(especially above 500 m) and for some specific hours during the day (Figure 1).

At upper levels, a positive impact of assimilating AMDAR and SYNOP wind data, without NWP
data is observed; however, this impact disappears after a certain forecast length, and its duration differs
for the shown levels. Regarding the benefit in RMS error for temperature, it is found that it is lost during
the first forecast hours, especially at 50 m when comparing DA-NoWind and DA-Wind-NoAMDAR
and DA-Wind (Figure 4b vs. Figure 5b). This would mean that observation weights are reasonable,
but the spread of information is erroneous. This could be due to the structure of the background
error covariance, which is instantaneous and constructed based on the 12 previous forecasts. Another
possible explanation is the fact that not all observation data used in the comparison are usually
assimilated in the hourly runs due to their rejection during the quality control. However, more
investigation is needed to clarify this discrepancy further.

On the other hand, it is found that the statistics distribution (Bias and RMSE), issued from
the limited AMDAR interval (few hours during the day), depends on the runs. In fact, Figure S4
(in the Supplementary Materials) represents the time series of bias and RMSE for temperature for runs
where AMDAR data are available, as a function of forecast hours (up to 12 h) at the following vertical
levels: 50 m, 500 m and 1000 m. It is seen clearly that the daily cycle of temperature, for example, is
observed in the evolution of the statistics, particularly in the lower levels of the atmosphere.

For specific humidity, a slight degradation is found in Bias with a mixed impact on the vertical
levels (Figure S3b). Indeed, it is found that DA-Wind outperforms the other configurations in the middle
and upper levels, while DA-NoWind has a better Bias in the lower levels of the atmospheric boundary
layer. Besides, we notice an improvement in RMS error at all levels, over the whole forecast range,
when all wind data are assimilated (DA-Wind). From Figure S3b, the benefit of assimilating AMDAR
data is most visible and its impact is clear in reducing the RMS error for specific humidity at all levels.
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5.3.2. Impacts on Forecasted Near-Surface Thermodynamical Parameters

We present here the results obtained by the different experiments in forecasting the near-surface
thermodynamical parameters at Nouasseur airport using COBEL-ISBA. The current operational
configuration (DA-NoWind) is considered as a baseline for comparison, thus we compare the results
in terms of forecast accuracy scores (root-mean-square error (RMSE) and mean absolute error (MAE)),
for which a skill score is defined as

SSscore = 1−
scoreexp

scorectl
(6)

where score can be MAE or RMSE, scoreexp is the score for the configuration exp and scorectl
its equivalent for the reference configuration. Note that the closer SSscore is to zero, the more
similar the experiment is to the reference. On the other hand, positive values of SSscore imply that
the experiment outperforms the reference, whereas negative values of SSscore imply the reference is
a better configuration for prediction than the experiment.

We first consider the importance of assimilating wind and its impact on the COBEL-ISBA
forecasting system near the surface, by comparing the configurations with and without wind
assimilation. In Figure 6, we have plotted the skill scores of MAE and RMSE for the 2 m temperature,
2 m relative humidity and 10 m wind speed issued from DA-Wind, DA-Wind-NoNWP and
DA-Wind-NoAMDAR compared to DA-NoWind. Regarding the DA-Wind experiment, this figure
points out that wind assimilation improves the two scores (MAE and RMSE), except for in the first
forecast hour. To identify which source of data positively impact the performance of the model when
NWP and AMDAR data are assimilated separately, we compare the skill scores of DA-Wind-NoNWP
and DA-Wind-NoAMDAR. In all cases, we observe that DA-Wind-NoNWP (SYNOP and AMDAR
data are assimilated) outperforms the two other configurations and improves the MAE and RMSE for
all thermodynamical parameters over the whole forecast range.
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Figure 6. Evolution of skill scores of : (a) MAE (left) and (b) RMSE (right), as function of forecast hours,
for near-surface (at 2 m) temperature and relative humidity, and 10 m wind speed.

5.3.3. Impacts on Fog Forecasting

To assess the impact of wind assimilation on the fog forecast system into the one-dimensional
COBEL-ISBA model, the verification scores for categorical forecasts, such as the probability of detection
(POD) and the false alarm ratio (FAR) for accuracy are used in this study. POD is the fraction of
observed events that were correctly predicted to exist, and FAR is the fraction of predicted events that
are not observed:

POD =
a

a + c
(7)
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FAR =
b

a + b
(8)

where a is the number of observed and forecasted fog events, b is the number of not observed and
forecasted fog events, and c is the number of observed and not forecasted fog events.

These scores were computed for the four experiments detailed in Table 1 as a function of forecast
time. During the result’s analysis, we will focus on the skill score, which measures the forecast
accuracy with respect to the accuracy of the operational forecast (DA-NoWind configuration in this
study) as a benchmark. This will assess the impact of each configuration. Thus, the skill score is defined
as the difference between the score for a given configuration (scoreexp) and the operational one’s score
(scorectl), normalized by the score obtained for a perfect forecast (scoreper f ) minus the operational
forecast score (for perfect forecasts POD = 1 and FAR = 0).

SSscore =
scoreexp − scorectl

scoreper f − scorectl
(9)

It should be noted that positive values for skill score of POD and FAR imply that the experiment
outperforms the reference, while both of them are similar when the skill score is closer to zero.
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Figure 7. Evolution of skill scores of POD and FAR as a function of forecast hours.

To compare the various forecasts, the evolution of the skill scores of POD and FAR are plotted,
in Figure 7, as a function of the forecast time for forecasts issued from the configurations with wind
assimilation against DA-NoWind as a benchmark. Regarding the POD, this figure shows that the
COBEL-ISBA forecast issued from DA-Wind-NoNWP is slightly better than the DA-NoWind forecast
(current operational configuration) at all forecast times (SSPOD varies between 0.05 and 0.2), which
is associated with a slight degradation of FAR (SSFAR ranges between −0.04 and −0.08). On the
other hand, when NWP wind data are assimilated, both DA-Wind and DA-Wind-NoAMDAR have
similar skills in comparison with the benchmark. In fact, these configurations are similar to the current
operational configuration during the first forecast hours and then, POD is improved associated with
the same magnitude of FAR. These results demonstrate that assimilation of SYNOP and AMDAR
wind measurements slightly improves the probability of detection of fog but also increases the false
alarms ratio with lower magnitude. In fact, even with dedicated observations, uncertainties remain in
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both initial conditions and mesoscale forcings under the hypothesis of a perfect model. This, in turn,
impacts the fog forecasting system in COBEL-ISBA (Roquelaure and Bergot, 2007 [17]).

6. Conclusions and Discussion

As poor visibility conditions have a considerable influence on airport traffic, a need exists
for accurate and updated fog and low cloud forecasts. For this purpose, the COBEL-ISBA local
numerical forecast system has been implemented at Nouasseur international airport, Casablanca,
Morocco. This fog/low-clouds forecast system assimilates (using the 1D-Var method) the information
from a local observation system designed to provide details on the state of the surface boundary
layer, as well as that of the fog and low-cloud layers, to produce initial profiles of temperature
and specific humidity. At the initialization time of the model COBEL-ISBA, wind observations
can be extracted from the SYNOP (observation at 10 m), AMDAR or a 3D NWP AROME forecasts
considered as pseudo-observations to fill the absence of observations beyond 10 m. The impact of
wind on the assimilation and forecast systems in COBEL-ISBA is assessed in this preliminary study.

The impact is assessed by performing NWP experiments with data denial tests in the COBEL-ISBA
model, configured to be close to the settings used operationally at the Nouasseur airport.
Thus, an hourly assimilation cycle is applied and the reported impacts are representative of
the operational practice. Results reveal that assimilation of SYNOP and AMDAR wind observations
can substantially improve vertical profiles of atmospheric variables (temperature and specific humidity)
in the background, increasing their similarity to the observations, particularly in the upper levels.

The beneficial impact on analyses is propagated into the forecasts. Thus, a positive impact is
found on temperature forecasts at the upper levels when AMDAR data are assimilated without NWP
data. The latter has shown a detrimental impact in all experiments. For specific humidity, a slight
degradation is found in Bias with a mixed impact on the vertical levels associated with an improvement
in RMS error at all levels, over the whole forecast range. Near the surface, a slight but consistent
thermodynamical parameters forecast improvement is found up to the end of the 12-h forecast range.
Besides, assimilation of SYNOP and AMDAR wind measurements improves slightly the probability of
detection of fog but also increases the false alarms ratio with lower magnitude.

The studied airport is located in a fog-prone coastal area (Bari, 2015 [39]) where
advection–radiation fog events are the most common fog type. The analysis of local meteorological
and synoptic conditions over this region shows that advective processes at mesoscales associated
with sea-breeze circulation during the afternoon and followed by radiative processes early
in the night (local cooling) often lead to fog formation over this region (Bari et al. 2015 [40]). Similar
wind impact on fog formation has been found by Rayznar (1977) [41]. Other research studies
(e.g., Cuxart and Jimenez, 2012 [42]) have shown that fog could be affected by the local wind system,
particularly for slope winds over complex terrains. Indeed, Cuxart and Jimenez (2012) [42] found
that the mountain slopes induces the generation of local flow above the fog layer, which interacts
with the top of the fog layer. Prtenjak et al. (2018) [43] focused in their study on the analysis of
thermodynamic conditions associated with the formation and dissipation of fog and its relationship
with katabatic flow. The authors pointed out that local flow aloft along the slope of Medvednica
is responsible for bringing warmer air over the city and, consequently, strengthen and maintain
the temperature inversion over the city center. In this preliminary systematic study, the impact of
wind assimilation on thermodynamical parameters and also, of fog forecasting, are shown. Although,
this impact needs to be investigated further through future studies of several fog event cases. In fact,
the studied region has a complex landscape with significant variations in land surface characteristics
(urban, suburban, and rural areas), along with high levels of pollution and low mountains (height below
1000 m). All of these factors provide a wide range of influences that could potentially affect the dynamic
behavior and microphysical characteristics of fog and low clouds.

In addition, this preliminary impact study provides evidence of the importance and quality of
AMDAR wind data in a dedicated local assimilation system, even if they are irregularly distributed
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in space and time. This is a clear indication that the availability of more aircraft measurements
would further improve the analyses and forecasts. Thus, every effort should be made in equipping
inter-continental and regional aircraft with AMDAR capabilities. In addition, it is expected that the
assimilation of temperature from AMDAR will be beneficial for both assimilation and forecast systems
in COBEL-ISBA. This will be elaborated in further study. On the other hand, accurate visibility
forecasts are beneficial for air-traffic managers to optimize air-traffic control at international airports.
In this preliminary study, it is found that the fog forecast remains a challenge due to uncertainties
in initial conditions even with the dedicated local observing system. The next step is the evaluation
of the impact of all sources uncertainties for COBEL-ISBA forecasts at Nouasseur airport, within
the perspective of developing a Local Ensemble Prediction System for operational use.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/10/615/
s1, Figure S1: Background error standard deviation for meridional wind (m·s−1) for DA-Wind, DA-WindNoNWP
and DA-WindNoAMDAR experiments. Figure S2: Background departure (OmG) statistics (Bias, left; RMSE,
right) for specific humidity, averaged over the winter period (December 2015–February 2016). The number of
observations used is shown on the right. Figure S3: Time series of statistics (Bias, left; RMSE, right) as a function
of forecast hours (up to 12 h) for specific humidity at the following vertical levels : 50 m, 500 m and 1000 m. Figure
S4: Time series of statistics (Bias, left; RMSE, right), for runs where AMDAR data are available, as a function of
forecast hours (up to 12 h) for temperature at the following vertical levels : 50 m, 500 m and 1000 m. The runs of
day are in red and those of the night are in blue.
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The following abbreviations are used in this manuscript:

AMDAR Aircraft Meteorological Data Relay
NWP Numerical Weather Prediction
COBEL-ISBA Code de Brouillard à l’Échelle Locale-Interactions Soil Biosphere Atmosphere
AROME Applications de la Recherche à l’Opérationnel à Méso-Echelle
WRF Weather Research and Forecasting
SYNOP surface synoptic observations
RUC Rapid Updating Cycle
RMSE Root Mean Square Error
MAE Mean Absolute Error
POD Probability of Detection
FAR False Alarm Ratio
WMO World Meteorological Organisation
DMN Direction de la Météorologie Nationale (Moroccan Weather Departement)
CNRMSI Centre National de Recherche Météorologique et Système d’Information
SMN Service de Modélisation Numérique
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