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Abstract: High levels of atmospheric concentration of PM2.5 (particulate matters less than 2.5 µm
in size) are one of the most urgent societal issues over the East Asian countries. Air quality models
have been used as an essential tool to predict spatial and temporal distribution of the PM2.5 and
to support relevant policy making. This study aims to investigate the performance of high-fidelity
air quality models in simulating surface PM2.5 chemical composition over the East Asia region in
terms of a prediction consistency, which is a prerequisite for accurate air quality forecasts and reliable
policy decision. The WRF-Chem (Weather Research and Forecasting-Chemistry) and WRF/CMAQ
(Weather Research and Forecasting/Community Multiscale Air Quality modeling system) models
were selected and uniquely configured for a one-month simulation by controlling surface emissions
and meteorological processes (model options) to investigate the prediction consistency focusing
the analyses on the effects of meteorological and chemical processes. The results showed that the
surface PM2.5 chemical components simulated by both the models had significant inconsistencies
over East Asia ranging fractional differences of 53% ± 30% despite the differences in emissions
and meteorological fields were minimal. The models’ large inconsistencies in the surface PM2.5

concentration were attributed to the significant differences in each model’s chemical responses to
the meteorological variables, which were identified from the multiple linear regression analyses.
Our findings suggest that the significant models’ prediction inconsistencies should be considered
with a great caution in the PM2.5 forecasts and policy support over the East Asian region.
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1. Introduction

Public concerns have been explosively increased over the East Asian countries since atmospheric
particulate matters with an aerodynamic diameter less than 2.5 µm (PM2.5) had been classified as
a first-grade carcinogen risk by the World Health Organization (WHO) in 2013 [1]. Many studies
have reported adverse impacts of PM2.5 on human health (e.g., [2–8]). For example, Laden et al. [9]
showed that the PM2.5 enhancement of 10 µg m−3 from motor vehicle exhaust increased the daily
mortality rate by 3.4% in six cities of the United States (U.S.). Ostro et al. [2] demonstrated statistical
associations between PM2.5 and daily mortality in nine California counties in U.S. Many studies based
on a time-series analysis suggested that specific PM2.5 chemical components have higher correlations
with daily mortality than the total PM2.5 mass concentration, showing the statistical relations between
the PM2.5 chemical components of sulfates, element carbon, and organic carbon with cardiovascular
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deaths (e.g., [3,4]). Besides, the atmospheric PM2.5 have been known to have significant influences on
ecosystems, visibility, and meteorological and climatological changes (e.g., [10]).

Air quality models (AQMs) predict spatial and temporal variations of the PM2.5 chemical
composition over the area of interest, which have been developed as an essential tool for air quality
forecasts, health and environmental impact assessments, and policy support [11–13]. The Community
Multiple Air Quality (CMAQ) model [14,15] and the Weather Research and Forecast-Chemistry
(WRF-Chem) model [16] have been frequently used to study local/regional scale air quality problems
(e.g., [17–21]). Appel et al. [22] applied the CMAQ model to simulate the PM2.5 concentration over
the U.S. and the Europe, and found that the simulated PM2.5 concentration was underestimated by
45–65% against measurements. Zhang et al. [23] conducted a 7-year long-term simulation for the
eastern U.S. using the CMAQ model and showed a significant underestimation of organic carbon
(OC) but a reasonable performance in nitrates (NO3

−) and sulfates (SO4
2−). Lang et al. [24] used

the CMAQ model to simulate the PM2.5 chemical composition in Beijing, China and suggested to
reduce secondary inorganic aerosols (SIA) for improvement of the air quality due to their high fraction
of more than 50% in the PM2.5 concentration. Qin et al. [25] studied characteristics of the PM2.5

chemical composition in the Pearl River Delta region, China using the CMAQ model and showed the
model tended to underestimate total PM2.5 and OC concentrations by 21–28% and approximately 59%
against measurements, respectively. Song et al. [26] evaluated the performance of the CMAQ model in
simulating the PM2.5 chemical components over East Asia and showed the underestimation in sulfates
but the overestimation in nitrates for most of the simulation domain, being attributed to inaccurate
SO2 aqueous chemical reaction. Zhou et al. [27] evaluated the performance of the WRF-Chem model
in PM2.5 forecasts over the eastern China and found that the daily average PM2.5 concentration was
underestimated by approximately 13% on average. In general, the AQMs underestimated SO4

2−

and OC but overestimated NO3
−, overall resulting in underestimation of total PM2.5 concentration.

In most previous studies, a single AQM was used and the model’s performance was evaluated against
measurements at different time and space before their applications.

Some studies have compared the performance between the two models in simulating the PM2.5

chemical composition [28–33]. Matsui et al. [28] examined the spatial and temporal variations of PM2.5

around Beijing in summer 2006 using the WRF/CMAQ model. In the study, the performance of the
WRF-Chem model was also compared against intensive field measurements with the WRF/CMAQ
model. The results showed that the WRF-Chem model simulated primary aerosol species (e.g., EC)
higher by approximately 20% than the WRF/CMAQ in Beijing, attributing to the lower vertical mixing
in the WRF-Chem model. The model discrepancy was reduced by less than 10–20% in secondary
inorganic components (e.g., SO4

2−, NO3
−, NH4

+) due to chemical production within the atmospheric
boundary layer. Zhang et al. [32] compared the performances of the WRF-Chem model and the
MM5/CMAQ model for the East Asian domain against meteorological and chemical measurements for
one year of 2006. The MM5/CMAQ model performed better than the WRF-Chem model in simulating
the meteorological variables of 2-m temperature and 10-m wind speed in South Korea and Japan,
while both the models underestimated the PM2.5 concentration ranging from approximately −25% to
−74% against surface measurements in Taiwan. Though the models’ performances in simulating PM2.5

chemical components at different geographic locations and times have been statistically evaluated
through comparison with available chemical measurements, overall, characteristic differences between
the models have not been carefully considered.

The purpose of this study is to investigate the performance of high-fidelity AQMs of WRF-Chem
and WRF/CMAQ in simulating surface PM2.5 chemical components over the East Asian region focusing
on the models’ prediction consistency. The surface PM2.5 chemical components were analyzed because
that plays a key role in air quality forecasts and policy making. A better understanding of the models’
relative consistency between the models is prerequisite for more accurate forecasts and reliable policy
decision supports. In this study, large model-model inconsistencies in mass concentrations of the PM2.5

chemical components over East Asia were identified, and the causes of the inconsistencies had been
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investigated in association with meteorological influences on the chemical processes of the models.
The remainder of the manuscript is structured as follows: Section 2 describes the selected air quality
models and an experimental design to identify the models’ prediction inconsistency and possible
causes to explain the relative inconsistencies. Section 3 compares first the PM2.5 chemical components
over East Asia simulated by the WRF-Chem and WRF/CMAQ models along with validation of the
simulated meteorological fields against measurements. Then, the meteorological influences on the
models’ inconsistencies in the simulated PM2.5 chemical components are examined. Summary and
conclusions follow in Section 4.

2. Methods

2.1. Air Quality Models: WRF-Chem and WRF/CMAQ

The regional scale AQMs of WRF-Chem [16] and WRF/CMAQ [15] were used to simulate
and compare the surface PM2.5 chemical components over East Asia. First, the WRF model is a
three-dimensional Eulerian meteorological model that solves a set of prognostic conservation equations
for mass, momentum, energy, and moisture and associated atmospheric physical processes such as short-
and long-wave radiative transfer, atmospheric boundary layer turbulent mixing, surface-atmosphere
interactions, and precipitation [34]. The WRF-Chem model is an ‘on-line’ 3-dimensional Eulerian air
quality model that calculates anthropogenic and biogenic emissions processes, chemical transport and
transformation processes, dry and wet depositions of gaseous and aerosol species on an interactive
mode with the WRF model. Since the model integrates the meteorological and chemical processes
simultaneously at a model’s integration time step, it is capable of realistically representing complex
physical and chemical interactions occurred in the atmosphere. Meanwhile, the CMAQ model is
another 3-dimensional Eulerian air quality model that has been developed primarily for regional air
quality forecasts by the U.S. Environmental Protection Agency (EPA). It calculates the meteorological
and chemical processes for atmospheric evolution of the gaseous and aerosol species. However,
meteorological fields are independently prepared first by the WRF model, and then they are fed to the
CMAQ model through a Meteorology-Chemistry Interface Processor (MCIP) package to calculate the
chemical processes (‘WRF/CMAQ’). Unlike the WRF-Chem model, the WRF/CMAQ model is an ‘offline’
air quality model that computes the meteorological and chemical fields sequentially [31]. Both the air
quality models have been widely applied in air quality forecasts (e.g., [27,35]), top-down emission
verification (e.g., [36,37]), regulatory suggestion (e.g., [24]), and scientific problems (e.g., [38–43]).

2.2. Experimental Setup

The WRF-Chem and WRF/CMAQ models were uniquely configured to simulate the PM2.5

chemical components over the East Asia region and to examine characteristic features in terms of
the models’ prediction consistency. Both the meteorological options and the anthropogenic/biogenic
emissions were assigned identically except for cumulus parameterization, while the chemical processes
(e.g., gaseous and aerosols chemistry, dry and wet depositions) were used their own options. These
model configurations can reduce the diversity of the models’ performance from direct meteorological
effects (e.g., transport, turbulent mixing) as well as emission processes. The meteorological influences
on the simulations of PM2.5 chemical components may be largely attributed to the physical integration
mode, that is, ‘on-line’ and ‘off-line’.

2.2.1. Model Configuration

The spatial domains of the WRF-Chem (ver. 3.6) and WRF/CMAQ (ver. 3.4.1/ver. 4.7.1) models
cover identically a large East Asian region including China, Korea, and Japan (Figure 1). The horizontal
grid resolution was set by 30 km (190 × 135 mesh) and the vertical grid was irregularly configured
stretching from ~15 m above ground level at the lowest grid to ~20 km (50 hPa) at the domain top.
The 18 lower vertical layers are below 2000 m to better represent the physical chemical processes
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within the planetary boundary layer (PBL). The WRF-Chem model simulated the meteorological
fields and the chemical concentration fields at the same 43 sigma levels, while the CMAQ model
calculated the chemical concentration fields at 23 reduced sigma levels, for which the MCIP produced
the meteorological fields compatible to the CMAQ grid from the WRF-predicted meteorological fields
at 43 sigma levels. The use of reduced vertical grid resolution in the WRF/CMAQ model was frequently
selected for a computational efficiency (e.g., [44])
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Figure 1. Simulation domain of the Weather Research and Forecasting-Chemistry (WRF-Chem) and
Weather Research Forecasting/Community Multiscale Air Quality modeling system (WRF/CMAQ)
models. Six subdivisions are defined for performance comparison. R1: Northern China, R2: Central
China, R3: Southern China, R4: North Korea, R5: South Korea, R6: Japan.

The meteorological physics options were configured identically for both the models except for
cumulus parametrization: the Dudhia scheme [45] and RRTMG [46] for shortwave and longwave
radiation, the YSU scheme [47] for PBL turbulence mixing, the NoahLSM [48] for surface-atmosphere
interactions, and the WSM3 scheme [49] for grid-scale microphysics. For cumulus parameterization,
the WRF-Chem and WRF/CMAQ models used the Grell-Freitas scheme [50] and the Kain-Fritsch
scheme [51], respectively. Since none of them were available for both the models, the sub-grid cloud
physics were set differently in the models. Meanwhile, chemical gaseous and aerosol mechanisms were
configured with their own mechanisms. The WRF-Chem used the Regional Atmospheric Chemistry
Mechanism (RACM) [52] and the Modal Aerosol Dynamics model for Europe/Secondary ORGanic
Aerosol Model (MADE/SORGAM) [53,54] for gaseous and aerosol chemistry, respectively. Meanwhile,
the WRF/CMAQ used the Statewide Air Pollution Research Center, version 99 (SAPRC-99) [55] and
the aerosol module version 5 (AERO5) [56]. The SAPRC-99 includes 93 chemical species and 213
reactions and the AERO5 module represents sizable aerosols by three functional distributions of
Aitken (less than 0.1 µm), accumulation (0.1–2 µm), and coarse (2 µm or larger) modes. Aerosol
dynamics of nucleation, condensational growth, and coagulation are considered with the gas-phase
and heterogeneous aqueous chemistry. The gaseous and heterogeneous chemistry mechanisms used
in both the models treat elemental carbon (EC), primary organic aerosols (POA), secondary organic
aerosols (SOA), and secondary inorganic aerosols (SIA) along with coarse particulate matters of soil
dust, sea salt, and other non-reactive anthropogenic particulate matters. The SOA are primarily
formed by homogeneous reaction between ozone (O3), hydroxyl radicals (OH), oxygenated NOx (NO3)
and organic compounds, and the POA are assumed to be non-volatile and inert primary emission
components such as EC [57]. Overall, the meteorological and chemical options used for conducting the
models are given in Table 1.
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Table 1. Configuration of the Weather Research and Forecasting-Chemistry (WRF-Chem) and Weather
Research and Forecasting/Community Multiscale Air Quality modeling system (WRF/CMAQ) models.

WRF-Chem WRF/CMAQ

Horizontal grid 190 × 135 (∆X = 30 km) 190 × 135 (∆X = 30 km)
Vertical layer 43 43/23

Shortwave radiation Dudhia [45] Dudhia
Longwave radiation RRTMG [46] RRTMG

Turbulence YSU [47] YSU
Land-surface Noah LSM [48] Noah LSM
Microphysics WSM3 [49] WSM3

Cumulus parameterization Grell-Freitas [50] Kain-Fritsch [51]
Gas phase chemistry RACM [52] SAPRC−99 [55]
Aerosol mechanism MADE/SORGAM [53,54] AERO5 [56]

The simulations were conducted over the East Asian domain for a month period of April 2010,
which is a base year of the anthropogenic emission inventories used in this study. The meteorological
initial and boundary conditions were obtained from the National Centers for Environmental
Prediction-Final Analysis (NCEP-FNL) that is a global reanalysis data with a spatial resolution of 1◦

× 1◦ and a temporal resolution of 6 hrs. The meteorological fields of 3-dimensional air temperature,
specific humidity, and horizontal wind vector simulated by the WRF model were nudged to the
corresponding large-scale meteorological fields using the 4-dimensional data assimilation (4DDA)
technique during the whole simulation period [58]. Lee et al. [42] suggested to use approximately
56-days chemical spin-up time from the WRF-Chem simulation of a similar size East Asian domain.
Thus, the analyses were primarily conducted with the simulation results of 24 days, discarding initial 6
days results for the models’ spin-up. The six sub-regions of the northern China (R1), central China (R2),
southern China (R3), North Korea (R4), South Korea (R5), and Japan (R6) were defined to characterize
the models’ relative performance at different geographical locations (Figure 1).

2.2.2. Anthropogenic and Biogenic Emissions

The anthropogenic emissions inventory that was developed for the Model Inter-Comparison
Study for Asia 2010 (MICS-Asia 2010) [59,60] was used to process for gridded anthropogenic emissions.
The inventory combined 29 Asian countries’ emission inventories primarily including the Regional
Emission Inventory in Asia (REAS) [61], the Multi-resolution Emission Inventory China (MEIC)
(http://www.meicmodel.org), the Japan Auto-Oil Program emission inventory (JATOP), and the Korean
Clear Air Policy Support System (CAPSS) [62]. The emission chemical species in the MICS-Asia
2010 include black carbon (BC), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx),
ammonia (NH3), non-methane volatile organic compounds (VOCs), organic carbon (OC), and primary
particulate matters of PM2.5 and PM10. The primary anthropogenic emission species were gridded
compatible to the model using the Sparse Matrix Operator Kernel for Emissions (SMOKE) module [63].
The non-methane VOCs emissions were decomposed into the SAPRC−99 chemical species for the
WRF/CMAQ model, which were then converted into the RACM chemical species for the WRF-Chem
model using a chemical conversion table followed by Lee et al. [42]. The spatial distributions of the
gridded anthropogenic emissions processed for the simulation in this study are presented in Figure 2.
Strong continental emissions were clearly identified especially in the central and southern China
(R2 and R3).

The biogenic VOCs emitted from the Earth’s terrestrial biosphere include hydrocarbons such as
isoprene, monoterpenes, and sesquiterpenes as well as oxygenated organic compounds. The chemical
species are highly reactive in the troposphere, leading to formation of CO, OH, and O3 (e.g., [64]) as well
as biogenic SOA (e.g., [65,66]). The emission fluxes of the biogenic VOCs change with meteorological
and environmental conditions (e.g., temperature, radiation, ozone, carbon dioxide) [67–69] as well
as vegetation species. This study used the Model of Emissions of Gases and Aerosols from Nature,

http://www.meicmodel.org
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version 2.04 (MEGAN-2) [70], which calculates 134 chemical species including isoprene, monoterpenes,
sesquiterpenes, and other oxygenated VOCs by considering various vegetation species and time-varying
environmental conditions. The biogenic emissions were calculated over the East Asian domain for the
simulation period in an offline mode using the global land-cover dataset (1 km2 resolution) and the
meteorological conditions simulated by the WRF model. It is worthy to note that the WRF-Chem model
has a capability to calculate the biogenic emissions at every time step during the model integration
(‘online’). Here, the pre-calculated biogenic emissions were applied identically in both the models to
control the emissions in the simulations.
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Figure 2. Spatial distributions of anthropogenic emissions over the East Asian domain. (a) sulfur
dioxide, (b) nitrogen oxides, (c) ammonia, (d) carbon monoxide, (e) non-methane volatile organic
compounds, (f) primary organic carbons, (g) particulate matters less than 2.5 (PM2.5).

2.3. Measurements

2.3.1. Meteorological Measurements

The five meteorological variables of 2-m temperature, 10-m wind speed, relative humidity,
precipitation, and PBL height are generally considered as important meteorological controlling factors
that can modulate the atmospheric concentrations (e.g., [71–73]). The three surface meteorological
variables (2-m temperature, 10-m wind speed, relative humidity) simulated by the WRF-Chem and
WRF/CMAQ models were compared each other and also validated against the measurements obtained
from the Meteorological Assimilation Data Ingest System (MADIS). The MADIS is a meteorological
measurement database operated by the National Oceanic and Atmospheric Administration (NOAA)
(https://madis.ncep.noaa.gov/), which archives global surface and upper meteorological measurements
obtained from various observational platforms such as in-situ surface meteorological station, radiosonde,
wind profiler, aircraft, and satellites. All the measurements are quality-controlled during data
processing before archived, thus it can give reliable confidence for the purpose of model validation.
For precipitation, the satellite-estimated precipitation data from the Tropical Rainfall Measuring
Mission (TRMM) were used to validate the simulated precipitations over the East Asian domain
(https://pmm.nasa.gov/trmm) [74]. The data have a temporal resolution of 3 hrs and a spatial resolution

https://madis.ncep.noaa.gov/
https://pmm.nasa.gov/trmm
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of 0.25◦ × 0.25◦, which have been widely used for model validations such as tropical cyclones and
regional climates (e.g., [75,76]). The PBL heights were only compared between the two simulations
due to absence of available measurements.

2.3.2. Surface PM2.5 Chemical Measurements

The daily-averaged surface PM2.5 concentration and chemical composition measured at Seoul,
South Korea (http://env.seoul.go.kr/) were used to evaluate the models’ performance in simulating
the surface PM2.5 chemical components at a site within the Seoul metropolitan area. The PM2.5 mass
concentrations were obtained based on a beta ray absorption method which measures atmospheric
particulates based on the absorption amount of beta radiation by the atmospheric particulates, and
which is a standard PM2.5 monitoring method of the Korean Ministry of Environment [77].

2.4. Statistical Evaluation Metrics

Various statistical evaluation metrics may be available to compare the observed and simulated
meteorological and chemical fields. This study used the fractional difference (FD) and the Pearson’s
correlation coefficient (R) to compare the models’ performance and to identify the model’s prediction
consistencies in the simulations of the PM2.5 chemical components as follows:

FD =
1
n

n∑
i = 0

(
pi − p j

)(
pi + p j

)
/2

, (1)

R =

∑n
i = 1(pi − pi)

(
p j − p j

)
√∑n

i = 1(pi − pi)
2 ∑n

i = 1

(
p j − p j

)2
, (2)

here, pi and p j are the predicted values by the WRF-Chem and WRF/CMAQ models, respectively, n is
the number of data. The surface meteorological variables were also evaluated against the measurements
using a statistical evaluation measure of the mean bias error (MBE).

3. Results

3.1. Evaluation of the Simulated Meteorological Fields

Figure 3 compares the spatial distributions of the simulated 10-m wind speed, 2-m temperature, and
relative humidity by the WRF-Chem and WRF/CMAQ models against the measurements, which was
used to interpret the surface PM2.5 chemical components simulated by both the models. The simulated
and measured spatial distributions were presented by the 24-days temporal mean values and the MBE
values were calculated at the surface measurement sites from hourly simulated and measured data.
In the East Asian domain area, the surface wind speeds were relatively higher in most maritime areas
than continental areas. The central and southern China regions had relatively weak wind speeds
compared to the northern China (Figure 3a,b). The simulated wind speeds in Korea and Japan ranged
2–5 m s−1. The models overestimated the wind speeds at most surface sites with the MBE values
ranging from −2 m s−1 up to 5 m s−1 (Figure 3c). The model discrepancy in surface wind speed may
be attributed to inaccurate surface drag parameterization (e.g., [32,78]). The surface air temperatures
were relatively high in low latitude areas. The Tibetan areas in the central China had relatively low
temperatures less than 0 ◦C due to high altitude (Figure 3d,e). The MBE values of the models similarly
ranged from −5 ◦C to 3 ◦C, showing frequent underestimation at many surface measurement sites in
Korea and Japan (Figure 3d−f). The relative humidity were relatively high in the southern China and
most maritime areas due to high moisture availability, which were also high in the northern boundary
areas of the simulation domain due to relatively low air temperature (Figure 3g,h). The MBE values of
the models ranged from −10% to 30%, showing slight overestimation at most surface measurement

http://env.seoul.go.kr/
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sites in Korea and Japan, but slight underestimation at many surface measurement sites in China
(Figure 3g–i).
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Figure 3. Comparison of the meteorological fields of (a–c) 10-m wind speed, (d–f) 2-m temperature,
and (g–i) relative humidity simulated by the WRF-Chem (left panels) and the WRF/CMAQ (middle
panels). The measured data were overlaid by color-coded circles and the mean bias errors (MBE) were
compared between the models (right panels).

Figure 4 compares the spatial distributions of the monthly mean precipitation and PBL height
simulated by the WRF-Chem and WRF/CMAQ models. A prominent precipitation band that is
stretching from the southern China, crossing the southern sea of the Korean peninsula to Japan
was clearly identified in the TRMM precipitation, which is a characteristic seasonal feature found
in the mid-latitude East Asian region [79–81]. Meanwhile, most continental areas over the East
Asian region had relatively low precipitation amount less than 30 mm mon−1 (Figure 4a). Both the
models reasonably captured the characteristic spatial feature found in TRMM. However, the models’
discrepancies were also founded in that the simulated precipitation band was rather narrower than
TRMM and the large precipitation simulated near the southern boundary of the simulation domain
was not detected in TRMM (Figure 4b,c). Oh et al. [80] had reported similar model discrepancies in
their regional climate simulation over the East Asian domain with attributing partly to inaccurate
cumulus parameterization. Despite the discrepancies, both the models captured successfully high
precipitation in the southern China and Japan and relatively low precipitation in the central and
northern China and Korea. The WRF-Chem simulated slightly less precipitation than the WRF/CMAQ
model, especially in the precipitation band, which resulted largely from the use of different cumulus
parameterizations in the models. Meanwhile, the PBL height was simulated by 800–1000 m in the
northern China and 300–800 m in the southern China, Korea, and Japan. The PBL height was relatively
high in the continental region where the surface was dry. In addition, it was relatively high over
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the Kuroshio warm current region where convective marine boundary layer was steadily developed
(Figure 4d,e). Overall, the surface meteorological fields simulated by the models compared reasonably
well with the measurements and among each other. Though the WRF-Chem model showed slight
better agreement with the measurements than the WRF/CMAQ model (Figure 3c,f,i), the models’
performances were very similar with spatial correlations of R = 0.98 in 10-m wind speed, R = 1.00 in
2-m temperature, R = 0.97 in 2-m relative humidity, R = 0.92 in precipitation, and R = 0.97 in PBL height.
The meteorological similarities between the two models were expected because the meteorological
physics options were assigned identically.
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Figure 4. The spatial distributions of monthly precipitation in April 2010 estimated by (a) Tropical
Rainfall Measuring Mission (TRMM) and simulated by (b) WRF-Chem and (c) WRF/CMAQ. The spatial
distributions of the monthly mean planetary boundary layer (PBL) height simulated by (d) WRF-Chem
and (e) WRF/CMAQ.

The simulated meteorological differences between the two models were quantified before analyzing
meteorological influences on the simulated PM2.5 chemical components. Figure 5 presents the spatial
distributions of relative differences of the simulated meteorological variables between the models along
with the mean and FD values at six subdivisions. The red color-coded areas indicate the WRF-Chem
model has the higher values than the WRF/CMAQ model and the blue color-coded areas indicate the
WRF/CMAQ model has the higher values. The statistical significances of the mean meteorological
differences between the two models were tested using a two-sided T-test. The results showed that the
WRF-Chem model simulated the higher surface wind speeds, on average, by 0.2 m s−1

± 0.4 m s−1

over the whole simulation domain than the WRF/CMAQ model. The FD values were less than 10% in
the six subdivisions (Figure 5a). The 2-m temperatures by the WRF-Chem model were the lower in
the central and southern China than the WRF/CMAQ model, while the differences were opposite in
northern parts of the continental region. The differences ranged 0.3 ◦C ± 0.9 ◦C with the FD values
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less than 10% in the six subdivisions (Figure 5b). The differences in relative humidity were negatively
correlated with the simulated 2-m temperatures, which ranged −1.8% ± 4.7% with the FD values less
than 5% in all the six subdivisions (Figure 5c). As discussed, the WRF-Chem model simulated slightly
the lower precipitation in the prominent rain band than the WRF/CMAQ model. The largest differences
were found in the southern China and South Korea regions with the FD values of 40–50%. The large
FD values were primarily attributed to the use of different cumulus parameterization, which were
also found in the regions with low precipitation (Figure 5d). The differences in PBL height ranged
52.1 m ± 84.7 m over the simulation domain with the FD values less than 10% in the subdivisions.
The PBL height differences were positively related with the 2-m temperature and negatively related
with the relative humidity (Figure 5e). The relatively low 2-m temperature and PBL height and the
high relative humidity in WRF-Chem were clearly identified over the central and southern China
regions where the PM2.5 concentrations were relatively high, which resulted primarily from the
aerosol-radiation interaction in the online WRF-Chem simulation. The statistical significance test
indicated that the models’ meteorological differences were not significant in all the variables for most
of the simulation domain within a 95% significance level. This also implies that the meteorological
fields predicted by the two models are very similar each other as planned in the experimental design.
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Figure 5. The meteorological differences simulated by the WRF-Chem and WRF/CMAQ models in (a)
10-m wind speed, (b) 2-m temperature, (c) relative humidity, (d) precipitation, and (e) PBL height. The
meteorological differences were calculated by MWRF-Chem–MWRF/CMAQ.

3.2. Characteristics of the Simulated Surface PM2.5 Chemical Components over East Asia

The surface PM2.5 chemical components over the East Asian domain simulated by the WRF-Chem
and WRF/CMAQ models were compared to identify characteristic features of the PM2.5 chemical
composition and to investigate relative differences between the two models. The PM2.5 concentration
was calculated by the summation of the simulated sulfate (SO4

2−), nitrate (NO3
−), ammonium (NH4

+),
organic aerosols (OA), elemental carbon (EC), and other non-reactive PM2.5 components. The primary
natural sources of soil dust and sea salt directly emitted to the atmosphere were calculated at both the
models as a function of meteorological and surface conditions. However, those natural contributions
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to the PM2.5 concentration were not included in order to investigate the models’ performance and
prediction consistency under the emissions controlled identically. Figure 6 presents the spatial
distributions of the surface PM2.5 concentrations simulated by the WRF-Chem and WRF/CMAQ
models. At both simulations, the high levels of the PM2.5 concentration were clearly identified in the
central China (R2) where the anthropogenic emissions were high, and followed by the northern and
southern China (R1 and R3) and North Korea (R4). The elevated PM2.5 concentrations in the North and
South Korea (R4 and R5) were found more closely associated with the continental polluted areas than
Japan (R6) due to the geographical locations (Figure 6a,b). The WRF-Chem model simulated the higher
PM2.5 concentrations than the WRF/CMAQ model for most of the domain, and the concentration
differences between the two models were found by 10–50 µg m−3 in the central and southern China
(Figure 6c). As will be discussed in Figure 7, the large differences at both the regions were contributed
by different PM2.5 chemical components. The temporal variation in the simulated surface PM2.5

concentration generally increased with the concentration levels at both the models (Figure 6d,e). It was
also clearly identified that the WRF-Chem model had the higher temporal and spatial variabilities
than the WRF/CMAQ model, which may be attributed largely to online interactions between the
meteorological and chemical processes in the WRF-Chem model.
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Figure 6. Spatial distributions of the surface PM2.5 concentrations simulated by the (a) WRF-Chem
and (b) WRF/CMAQ models and (c) their concentration difference. The spatial distributions of
temporal standard deviations estimated from the (d) WRF-Chem and (e) WRF/CMAQ models and
(f) their fractional difference. The PM2.5 was calculated by the sum of sulfate (SO4

2−), nitrate (NO3
−),

ammonium (NH4
+), organic aerosols (OA), elemental carbon (EC), and other non-reactive PM2.5

components (Others).

Figure 7 presents the spatial distributions of the surface PM2.5 chemical components simulated by
the WRF-Chem and WRF/CMAQ models to further investigate the models’ inconsistency in simulating
the PM2.5 chemical components. As was explained in the total PM2.5 concentrations (Figure 6), both
the models simulated high concentration levels of the PM2.5 chemical components in the central China
(R2) as a consequence of high anthropogenic emissions. The downwind influences of the continental
polluted areas were more clearly identified from the elevated surface concentrations in the North and
South Korea (R4 and R5) than Japan (R6), especially in the nitrate (NO3

−) and ammonium (NH4
+).

The long-range influences are because the SIA components formed in the atmosphere during the
downwind transport. In contrast, the relatively high concentrations of the organic matters (OA and
EC) over the continental polluted areas remained around local emission areas because those chemical
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components were quickly diluted downwind the continental region. Meanwhile, the relative differences
between the WRF-Chem and WRF/CMAQ models were also clearly identified in the atmospheric
concentrations as well as the spatial distributions of the simulated PM2.5 chemical components. In the
SIA components, the WRF-Chem model tended to simulate the higher NO3

− and NH4
+ concentrations

but the lower SO4
2− concentrations than the WRF/CMAQ model. The relative differences varied

at different geographical locations showing that the WRF-Chem model simulated relatively high
concentrations in the central and southern China but low concentrations in the northern China.
The downwind influences of the continental pollution were more clearly identified in the WRF-Chem
simulation, especially in NO3

−, than the WRF/CMAQ model. For the other three components, the
WRF-Chem model simulated the higher concentrations for most source areas than the WRF/CMAQ
model. The large model-model concentration differences were found around strong source regions,
which were partly attributed to the weaker vertical mixing in the WRF-Chem model (e.g., [28]). Overall,
the model-model prediction differences in the simulated surface PM2.5 chemical components were
clear with changing by the geographical locations despite the emissions and meteorological conditions
were experimentally controlled.
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The concentration differences were calculated by CWRF-Chem–CWRF/CMAQ.
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The analyses were more focused on the model-model differences in the simulated surface PM2.5

chemical components. Figure 8 compares the surface PM2.5 chemical components averaged over the
East Asian domain simulated by the WRF-Chem and WRF/CMAQ models. The WRF-Chem model
simulated the higher concentrations in the PM2.5 chemical components except for SO4

2− than the
WRF/CMAQ model (Figure 8a), while the mass fraction of chemical components at each model was
similar to each other (Figure 8b). Tuccella et al. [40] attributed the underestimated sulfate by a factor
of 2 to inaccurate representation of aqueous phase oxidation processes of SO2 by hydrogen peroxide
(H2O2) and O3 in the WRF-Chem simulation over Europe. Here, a more prominent result was that the
FD values changed significantly ranging from −32% in SO4

2− to 69% in NO3
− (Figure 8c). The results

suggest that the large differences between the two models (that is, the models’ prediction inconsistency)
can make a significant inconsistency in predicting PM2.5 forecast and/or supporting policy for a certain
region over East Asia if any of the models is applied independently.
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Figure 8. Comparison of domain mean atmospheric concentrations of the surface PM2.5 chemical
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To better understand the models’ prediction inconsistency, the surface PM2.5 chemical components
were quantitatively investigated by a fractional difference (FD) over the East Asian domain in Figure 9.
The FD value at each grid was calculated as follows:

FD(%) =

(
CWRF−Chem −C WRF

CMAQ

)
0.5

(
CWRF−Chem + C WRF

CMAQ

) × 100, (3)

here, C is the simulated concentration of the PM2.5 chemical components. The areas where the mean
concentration of the two models is less than 1 µg m−3 were not included in the analyses. As discussed
in Figures 6 and 7, the large chemical differences were found near the source regions and their
downwind regions. The model-model differences in PM2.5 (∆PM2.5 = CWRF-Chem-CWRF/CMAQ) ranged
7.0 µg m−3

± 10.0 µg m−3 over the East Asian domain, which corresponded to 53% ± 30% in FD value.
The coastal outflow region of the southern China (R3) showed much higher FD values over 120% (max.
141%) than the continental source regions (Figure 9a). For all the six subdivisions, the WRF-Chem
model simulated the higher concentrations, on average, than the WRF/CMAQ model (Figure 9b), and
the FD values were relatively high by approximately 80% in the southern China (R3) and Japan (R6)
(Figure 9c). Unlike the model-model differences in the meteorological variables where no significant
inconsistencies were found (Figure 5), the simulated PM2.5 concentrations showed the large differences
between the two models, and the concentration differences were also statistically significant for most
regions (green dotted areas in Figure 9a).
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Figure 10 shows the spatial distributions of the differences between the two models in each
simulated surface PM2.5 chemical components. The results showed that the models prediction
inconsistencies can be characterized by each chemical component. In sulfate, the WRF-Chem
model simulated the lower concentrations by −45% ± 33% in FD value (Figure 10a). In nitrate
and ammonium components, the WRF-Chem model simulated the higher concentrations, on average,
in most subdivisions than the WRF/CMAQ model except in the northern China (R1) (Figure 10b,c).
The FD values in nitrate ranged from −59% at R1 to approximately 157% at R6. Meanwhile, the organic
aerosols simulated by the WRF-Chem model showed the higher concentrations by 28–70% in FD
value for large source regions, except for Japan (R6), than the WRF/CMAQ model (Figure 10d).
The underestimation of OA in many AQMs has been frequently reported (e.g., [82–84]). The large
distinctive differences between the two models were found by up to 50%, on average, in the continental
anthropogenic source regions, especially in the central China (Figure 10d). The EC and non-reactive
PM2.5 primary chemical components had very close spatial distributions in the model-model differences
ranging 50–80% in FD values at the subdivisions (Figure 10e,f). As both the chemical components
were treated as passive tracers in the models, the model-model differences in each component can
be attributed to the meteorological influences. Considering that the simulated surface chemical
concentrations of OA, EC and Others were very small with less than 1 µg m−3 in Japan (R6), both the
models had clear systematic inconsistencies in simulating the three chemical components over the
domain. Overall, the models’ prediction inconsistencies identified in the simulated PM2.5 chemical
components were statistically significant for most of the regions and very larger than as expected based
on the meteorological differences between the two models.
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Figure 9. (a) Spatial distribution of the concentration difference (shaded) and the fractional difference
(line contour) in the surface PM2.5 concentrations simulated by the WRF-Chem and WRF/CMAQ
models, (b) mean concentrations and (c) fractional differences at each subdivision. Green dots denote
the areas where the relative difference is statistically significant within 95%.

3.3. Meteorological Influences on the Prediction Inconsistencies in the Surface PM2.5 Chemical Components

The models’ prediction inconsistencies in the surface PM2.5 chemical components can be caused
by the differences from meteorological and chemical processes given the anthropogenic and biogenic
emissions were identical. Here, a multiple linear regression (MLR) analyses were applied to better
understand the relative influences of the five meteorological variables on the differences in the PM2.5

concentrations between the two models. The dependent variable is the relative difference of the
predicted concentrations (∆C = CWRF-Chem-CWRF/CMAQ) and the independent variables (predictors)
are the meteorological differences (∆M = MWRF-Chem-MWRF/CMAQ) in the 10-m wind speed (∆WS),
2-m temperature (∆T), relative humidity (∆RH), precipitation (∆Pr), and PBL height (∆hPBL). All the
dependent and independent variables were normalized before the regression analyses by subtracting
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each mean value and dividing with standard deviation. The use of normalized variables makes a
comparison of relative influences between the independent variables with different units. The MLR
relation can be given as:

∆̂C =
k∑

i = 1

(βi∆Mi), (4)

where ∆̂C is the regressed surface PM2.5 concentration difference between the two models, βi is the
regression coefficients, and ∆Mi indicates the difference in the meteorological variable i. The regression
analysis can give better understanding on the meteorological influences of the large prediction
inconsistencies in the simulated PM2.5 chemical components.
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Figure 10. Spatial distribution of the concentration difference (shaded) and the fractional difference
(line contour) in the surface PM2.5 chemical components simulated by the WRF-Chem and WRF/CMAQ
models. (a) sulfate, (b) nitrate, (c) ammonium, (d) organic aerosols, (e) elemental carbon, and (f)
non-reactive PM2.5 primary chemical components. The mean concentrations and fractional differences
at six subdivisions were shown on the right in each figure. Green dots denote the areas where the
relative difference is statistically significant within 95%.

Figure 11 shows the spatial distribution of the determinant coefficients (R2) estimated from
the MLR analyses and compares the regression coefficients (βi) of the meteorological factors at six
subdivisions. The R2 values in the surface PM2.5 concentration ranged 35% ± 15% at the model
grid (Figure 11a), and the determinant coefficients of each chemical component also showed similar
mean values of 34–37% and standard deviations of 16–17% (not shown). These results showed that a
considerable fraction of the variance in ∆PM2.5 was explained by the meteorological factors despite
of the small differences in each ∆Mi. Among the meteorological factors, the regression coefficients
showed the largest negative correlation in relative humidity (∆RH) followed by precipitation (∆Pr),
PBL height (∆hPBL), 10-m wind speed (∆WS), and 2-m temperature (∆T) for the whole domain. In
contrast, the precipitation difference (∆Pr) showed a relatively high positive correlation. The relative
importance of the meteorological differences changed with geographical locations at six subdivisions
(Figure 6b). For example, ∆RH had the largest negative correlation in R1-R3, which was not in the
other downwind regions. When considered at each region, the variance in ∆PM2.5 was explained by
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∆Mi was approximately 40% in the northern and central China (R1 and R2), about 55% in the southern
China (R3), and the maximum correlation was found over 80% in South Korea (R5). The Japanese
region (R6) showed a relatively low correlation of approximately 20%.
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Figure 11. (a) Spatial distribution of the determinant coefficients (R2) from multiple linear regression
analyses and (b) the regression coefficients (βi) of meteorological factors at six subdivisions.
The differences in the PM2.5 concentration and the meteorological variables were calculated by
∆C = CWRF-Chem − CWRF/CMAQ and ∆M = MWRF-Chem −MWRF/CMAQ, respectively. The meteorological
variables are 10-m wind speed (∆WS), 2-m temperature (∆T), relative humidity (∆RH), precipitation
(∆Pr), and PBL height (∆hPBL).

In order to explain the high sensitivity of the meteorological factors on ∆PM2.5, each term in the
above MLR equation can be split into two parts with a simple assumption. The MLR relation between
PM2.5 and Mi for each model can be expressed by:

Ĉ = α0 +
k∑

i = 1

(βiMi), (5)

where Ĉ is the regressed PM2.5 concentration, α0 is the regression constant. From the difference of
the multiple regression relations of the two model ∆Ĉ

(
= ĈWRF−Chem − ĈWRF/CMAQ

)
, the ∆̂C can be

approximated as

∆̂C � ∆α0 +
k∑

i = 1

(
MWRF−Chem

i ∆βi + βWRF/CMAQ
i ∆Mi

)
, (6)

where ∆βi

(
= βWRF−Chem

i − βWRF/CMAQ
i

)
and ∆Mi

(
= MWRF−Chem

i −MWRF/CMAQ
i

)
are the differences

in βi and Mi between the WRF-Chem and WRF/CMAQ models, respectively. The regression
coefficient βi

(
= ∂C

∂Mi

)
can be interpreted as a prediction response of surface PM2.5 concentration

to each meteorological factor. From the separated regression relation, the first and second terms
in parenthesis explain the contributions of ∆PM2.5 by ∆βi (‘difference on chemical responses by
meteorology’; term A) and ∆Mi (‘meteorological difference’; term B). The MLR results showed that the
correlation coefficients between the surface PM2.5 concentrations and the meteorological factors in
each model ranged 53% ± 19% in WRF-Chem and 48% ± 15% in WRF/CMAQ. The higher R2 values in
WRF-Chem imply that the online model has the stronger coupling between the meteorological and
chemical processes than WRF/CMAQ. Figure 12 compares the relative contribution of the difference on
chemical response by meteorology (term A) and the meteorological difference (term B) within the MLR
equation. The precipitation difference between the two models had relatively large contribution in
term B by approximately 30%, but the term A were predominant compared to the term B in all the
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other meteorological variables. This result explained why the surface PM2.5 chemical components were
significantly different between the two models despite the differences in the simulated meteorological
variables were negligible. In other words, the result showed that the model-model differences in
βi were large enough to make the significant differences in the surface PM2.5 chemical components
between the two models.
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Figure 12. Relative contribution of the difference on chemical response by meteorology (term A; red)
and the meteorological difference (term B; blue) within the multiple linear regression equation. The
meteorological variables are 10-m wind speed (WS), 2-m temperature (T), relative humidity (RH),
precipitation (Pr), and PBL height (hPBL).

Figure 13 compares the βi values of the WRF-Chem and WRF/CMAQ models estimated from
the linear regression analyses at each grid of the domain. The PM2.5 concentrations in both the two
models were correlated with the meteorological variables negatively (3rd quadrant) at most regions,
and positively (1st quadrant) at some regions. The two models had the βi values with different signs
(2nd and 4th quadrants) at approximately 10–20% regions, which indicates the model’s prediction
response of surface PM2.5 concentration to the meteorological factor is opposite each other. Overall,
the WRF-Chem model had the larger values than the WRF/CMAQ model, indicating that the former is
more sensitive to the meteorological variables than the latter. The analysis result confirmed that the
large model-model differences in βi can explain the significant differences in the surface PM2.5 chemical
components between the WRF-Chem and WRF/CMAQ models.

3.4. Evaluation of the Simulated PM2.5 Chemical Components in South Korea

Finally, the simulated PM2.5 chemical components were compared against measurements at Seoul,
South Korea (R5) in Figure 14 to evaluate the models’ performances shortly. The natural soil dust and
sea salt aerosols simulated by the models were included in the total PM2.5 concentrations for comparison
with the measurements. The comparison showed that the WRF-Chem model simulated the 24-days
mean surface PM2.5 concentrations better than the WRF-Chem model (Figure 14a). The performance in
predicting the daily mean PM2.5 concentrations was also superior in the WRF-Chem model (R = 0.84)
compared to the WRF/CMAQ model (R = 0.65) (Figure 14b). The mean fractional bias (MFB) values
were 0.02 in WRF-Chem and −0.34 in WRF/CMAQ. Ghim et al. [85] reported a similar model forecast
performance of R = 0.68 and MFB = −0.36 for Seoul during the period May 2012 to December 2014
using a WRF/CMAQ forecast system. Though the WRF-Chem model performed better in simulating
the total surface PM2.5 concentration than the WRF/CMAQ model, the mass fraction of the chemical
compositions was compared differently between the two models (Figure 14c). Table 2 compares the
measured and simulated monthly mean PM2.5 chemical components in Seoul April 2010. The measured
sulfate and ammonium aerosols were underestimated by both the models, while the nitrate aerosols
were overestimated. The OA was underestimated by −78% in WRF-Chem and −118% in WRF/CMAQ.
The EC was well simulated by the WRF/CMAQ model, but overestimated by the WRF-Chem model,
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meanwhile the non-reactive PM2.5 chemical component was better simulated by the WRF-Chem
model than the WRF/CMAQ model. These results indicated that the WRF-Chem can give a better
performance than the WRF/CMAQ model in predicting the surface PM2.5 concentrations but the
model’s discrepancies in chemical composition should be further improved.

Atmosphere 2019, 10, x FOR PEER REVIEW 17 of 23 

 

and positively (1st quadrant) at some regions. The two models had the 𝛽i values with different signs 

(2nd and 4th quadrants) at approximately 10–20% regions, which indicates the model’s prediction 

response of surface PM2.5 concentration to the meteorological factor is opposite each other. Overall, 

the WRF-Chem model had the larger values than the WRF/CMAQ model, indicating that the former 

is more sensitive to the meteorological variables than the latter. The analysis result confirmed that 

the large model-model differences in 𝛽i can explain the significant differences in the surface PM2.5 

chemical components between the WRF-Chem and WRF/CMAQ models. 

 

Figure 13. Comparison of the regression coefficients ( 𝛽𝑖 ) estimated from the WRF-Chem and 

WRF/CMAQ models for (a) 10-m wind speed, (b) 2-m temperature, (c) relative humidity, (d) 

precipitation, and (e) PBL height. 

3.4. Evaluation of the Simulated PM2.5 Chemical Components in South Korea 

Finally, the simulated PM2.5 chemical components were compared against measurements at 

Seoul, South Korea (R5) in Figure 14 to evaluate the models’ performances shortly. The natural soil 

dust and sea salt aerosols simulated by the models were included in the total PM2.5 concentrations for 

comparison with the measurements. The comparison showed that the WRF-Chem model simulated 

the 24-days mean surface PM2.5 concentrations better than the WRF-Chem model (Figure 14a). The 

performance in predicting the daily mean PM2.5 concentrations was also superior in the WRF-Chem 

model (R = 0.84) compared to the WRF/CMAQ model (R = 0.65) (Figure 14b). The mean fractional 

bias (MFB) values were 0.02 in WRF-Chem and −0.34 in WRF/CMAQ. Ghim et al. [85] reported a 

similar model forecast performance of R = 0.68 and MFB = −0.36 for Seoul during the period May 2012 

to December 2014 using a WRF/CMAQ forecast system. Though the WRF-Chem model performed 

better in simulating the total surface PM2.5 concentration than the WRF/CMAQ model, the mass 

fraction of the chemical compositions was compared differently between the two models (Figure 14c). 

Table 2 compares the measured and simulated monthly mean PM2.5 chemical components in Seoul 

April 2010. The measured sulfate and ammonium aerosols were underestimated by both the models, 

while the nitrate aerosols were overestimated. The OA was underestimated by −78% in WRF-Chem 

and −118% in WRF/CMAQ. The EC was well simulated by the WRF/CMAQ model, but overestimated 

by the WRF-Chem model, meanwhile the non-reactive PM2.5 chemical component was better 

simulated by the WRF-Chem model than the WRF/CMAQ model. These results indicated that the 

Figure 13. Comparison of the regression coefficients (βi) estimated from the WRF-Chem and
WRF/CMAQ models for (a) 10-m wind speed, (b) 2-m temperature, (c) relative humidity, (d) precipitation,
and (e) PBL height.
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Figure 14. Comparison of the simulated and measured PM2.5 chemical components in Seoul, South
Korea for (a) 24-days mean PM2.5 concentrations, (b) daily mean PM2.5 concentrations, and (c) fraction
of chemical composition. The PM2.5 concentrations in (a,b) include soil dust and sea salt aerosols in
the comparison.
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Table 2. The measured and simulated monthly mean PM2.5 chemical components over Seoul, South
Korea in April 2010. The numbers in parentheses denote the fractional biases.

OBS WRF-Chem WRF/CMAQ

Sulfate 3.6 1.4 (−0.88) 2.9 (−0.22)
Nitrate 3.4 7.2 (0.72) 6.0 (0.55)

Ammonium 4.7 2.6 (−0.58) 2.9 (−0.47)
Elemental carbon (EC) 1.4 3.7 (0.90) 1.4 (0.0)
Organic aerosols (OA) 5.0 1 2.2 (−0.78) 1.3 (−1.18)

Others 5.2 5.1 (−0.02) 3.0 (−0.54)
Total PM2.5 23.3 22.2 (−0.05) 17.5 (−0.28)

1 The ratio of organic matters to organic carbon is applied with 1.6.

The models’ prediction inconsistencies were also identified with the FD values of 23.7% in PM2.5,
−69.8% in sulfate, 18.2% in nitrate, −10.9% in ammonium, 51.4% in OA, 90.2% in EC, and 62.1% in
non-reactive PM2.5 chemical component.

4. Summary and Conclusions

Two high-fidelity air quality models of the WRF-Chem and WRF/CMAQ models has been
compared to investigate the models’ prediction inconsistencies in simulating the surface PM2.5

chemical components over the East Asian region. The models have been frequently used for the
PM2.5 forecasts and policy support over the East Asian countries to cope with environmental issues
associated with high levels of the atmospheric PM2.5 concentrations. However, an attention of the
models’ prediction consistency, which is prerequisite for accurate forecasts and reliable policy support,
has not been paid. For the purpose, the PM2.5 chemical components over the East Asian domain was
simulated by the WRF-Chem and WRF/CMAQ models with a uniquely designed experimental setup
in meteorological, chemical, and emissions processes. From the simulation results, the significant
model-model prediction inconsistencies in the surface PM2.5 chemical components were identified
throughout the East Asian domain despite the simulated meteorological differences were minimal
with FB values less than approximately 10% and the anthropogenic and biogenic emissions were
identical. The WRF-Chem model simulated the higher surface PM2.5 concentration by 53% ± 30%
than the WRF/CMAQ model for most continental source regions in China and downwind regions
in Korea and Japan. The prediction inconsistencies were the most prominent for nitrate aerosols in
the PM2.5 chemical components, ranging from −59% at R1 to approximately 157% at R6. The MLR
analyses revealed that the models’ prediction inconsistencies between the two models were largely
attributed to the sensitivity of chemical responses to meteorology, which were significantly different
between the models in five meteorological variables, rather than the influence by the meteorological
differences. Finally, the comparison of the simulated surface PM2.5 chemical components against
surface measurements at a site in South Korea showed the WRF-Chem model (MBE = 0.02) performed
better in daily mean PM2.5 prediction than the WRF/CMAQ model (MBE = −0.34) and both the models’
discrepancies were also identified in the PM2.5 chemical composition as well as in total concentration.

Many studies used one of the air quality models for local PM2.5 forecasts (e.g., [27,35]), top-down
emissions verification (e.g., [36,37]), and environmental policy decision (e.g., [24]). The results of this
study imply that the models’ prediction inconsistencies should be considered in these applications so
as not to be biased in interpreting the model results due to the significant prediction inconsistencies in
simulating the surface PM2.5 chemical components, especially in the continental source region and
downwind region over the East Asian domain.

In this study, the ‘online’ WRF-Chem model showed a tighter coupling between the simulated
meteorology and the PM2.5 chemical components than the ‘offline’ WRF/CMAQ model, which was
identified from the higher correlation between the simulated meteorological variables and PM2.5

chemical components as well as surface measurements. In this sense, the WRF-Chem model has
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an intrinsic potential in simulating surface PM2.5 chemical components in a more realistic manner.
However, more research is needed to improve the parameterizations of natural sources (e.g., soil dust,
sea salt) and to evaluate turbulent mixing processes in the PBL against faithful measurements.
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