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Abstract: The problem of the propagation of acoustic wave disturbance initiated by a boundary
condition is used to simulate a disturbance of atmospheric gas caused by a rise of water masses.
The boundary condition is a function of a dynamic variable that is defined on the border of the
problem domain. In this work, it is chosen in such a way that its parameters and form correspond to
disturbances in the gas layer produced by a tsunami wave at the air–water interface. The atmosphere
is approximately described as a 1D multilayer gas media with an exponential structure of density
in each layer. The boundary conditions are set at the interface between water–air and gas layers.
These determine the direction of propagation and the ratio of dynamic variables characterizing
an acoustic wave. The relationship between such variables (pressure, density, and velocity) is
derived by means of projection operators on the subspaces of the z-evolution operator for each layer.
The universal formulas for the perturbation of atmospheric variables in an arbitrary layer are obtained
in frequency and time domains. As a result, explicit expressions are derived that determine the
spectral composition and vertical velocity, by the stationary phase method, of the acoustic disturbance
of the atmosphere at an arbitrary height, including the heights of the ionosphere. In return, this can
be used to calculate the ionospheric effect. The effect is described by the explicit formula for electron
density evolution, which is the solution of the diffusion equation. This forms a quick algorithm for
early diagnostics of tsunami waves.

Keywords: acoustics; atmosphere; multilayer model; tsunami; boundary regime problem

1. Introduction

The detection and prediction of tsunami waves is an urgent task of modern geophysics [1,2].
Among the various approaches to the problem, a set of investigations aimed at studying the
ocean–atmosphere–ionosphere connection is being distinguished. Such an approach allows monitoring
this formidable phenomenon using satellite communication systems that provide tomographic images
of the distribution of the total electron concentration in the region of the dangerous activity of
underwater earthquakes and, accordingly, tsunamis [3].

In [4], convincing arguments were presented in favor of the fact that phenomena occurring in the
oceans are an important source of waves in the thermosphere. The transmitting link of the disturbance
from surface ocean waves is the atmosphere. The tsunami wave disturbs in the atmosphere acoustic
and internal gravitational waves [5], the propagation of which at the heights of the thermosphere is
accompanied by the transport of plasma along the lines of force. This in turn affects the total electron
concentration [6–9]. Thereby, the solution of the problem of the propagation of the waves initiated by
water–air interface boundary conditions proves to be important both in the diagnostics of atmospheric
effects and for the detection of tsunami waves at the initial stage [10]. The solution of the problem of
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propagating such exited acoustic waves is important since observations show that “the first arrival of
a transient signal of tsunami-induced waves occurs at a 100-km altitude just 5 min after the tsunami
is generated” [11]. In this paper [11], the authors presented two 2D models. The first one is the
inelastic fluid model, the analytical-numerical model in which the background state of the atmosphere
is modeled as two-layers with the matching conditions at the interface. These conditions lead to the
appearance of a reflected wave. The second one is the compressible fluid model for acoustic-gravity
waves, which the authors solved numerically.

In [12], the authors simulated numerically the propagation of 2D-dimensional, linear AGW in an
atmosphere including vertically-varying stratification and horizontal background winds. The work [9]
considered the tsunami–atmosphere–ionosphere coupling mechanism and numerically solved for
atmospheric and ionospheric effects. The authors in [13] simulated the ionospheric responses to
infrasonic-acoustic waves, using the compressible atmospheric dynamics model. The paper [14]
described the propagation of gravity waves with dissipation. In [8], the summation of the extended
seismic normal modes was used to retrieve the tsunami signature in the ocean, atmosphere,
and ionosphere. Such, mainly numerical, investigations present different important aspects of the
phenomenon in much detail [15].

The problem of the propagation of long acoustic waves in the atmosphere has a significant
history [5,10,16]. Since the wavelength is much less than the main parameter of the inhomogeneity
of the unperturbed gas, the so-called atmospheric scale height (H) [17] can be employed. Such an
approximate description enables the use of the concepts of a homogeneous propagation medium,
considering H as a parameter. On the other hand, taking into account weak heterogeneity, methods
similar to the semiclassical approximation of quantum mechanics [18] can be adopted. If the spectrum
of wavelengths significantly overlaps with values of order H, it is necessary to resort to splitting the
atmosphere into horizontal layers. In this case, the stratification is to be considered exponential [19].

Important results were obtained for the exponential atmosphere within the linear theory [5] and
for the non-linear generalization in various orders of magnitude of non-linearity [20,21]. For instance,
the dispersion relations were derived, which provided the basis for the developed concepts and
practical recommendations for geophysics. Here, the Cauchy problem was considered, with the
appropriate set of initial conditions.

In our work, we study the formulation and analytical solution of the problem of purely acoustic
perturbations and their ionospheric effect. Such a problem is the propagation of a plane atmospheric
wave, which, obviously, does not contain internal gravitational waves, being 2D phenomenon
by definition.

Thus, the problem of the propagation of the waves exited by time-dependent boundary condition
is considered in this work, where the generating mode is specified at the water–air interface.
The atmosphere is traditionally divided into layers with constant H similar to [19]. This type of
problem may be interesting for modeling the high-altitude effect of surface waves in the ocean. This is
especially important for waves such as tsunamis with a large amplitude and space scale [4]. Based on
the large horizontal scale of the surface waves under consideration, the one-dimensional model of the
atmosphere is adopted and combined along with projecting the general solution of the problem of the
propagation of the boundary condition impact perturbation to the subspace of unidirectional waves.

The Fourier method is employed to solve the basic equations and deliver the transformation
from the time domain to the frequency domain. The solution of the resulting ordinary differential
equations transforms to the time domain by inverse Fourier transform to obtain the final integral
form. The corresponding integral contains a rapidly-oscillating function, which paves the way for
further analysis.

As a natural path to the approximate evaluation of the resulting integral, the method of the
stationary phase is adopted and defines the group velocity and amplitude functions. An explicit
formula for the fluid velocity field enables the transformation to the electron density evolution equation.
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As the final step of the proposed method, an effective analytical representation for ionosphere
electron density is used [6,7]. It is an explicit solution of the diffusion equation with the coefficient
representing the acoustic wave. The set of the explicit resulting formulas forms the base for a fast
algorithm for a tsunami diagnostic model.

2. Results

2.1. Basic Equations

The paper [20] considered the problem of the generation and propagation of both
three-dimensional and one-dimensional acoustic waves in an exponentially-stratified atmosphere.
The proper decomposition of the perturbation into acoustic and entropy modes in a one-dimensional
flow, which is proposed in this work, is used as the basis for each layer in our multi-layered model.

The equations based on the conservation of momentum, energy, and mass determine the behavior
of a fluid, as non-dissipative medium [20]. These nonlinear equations model the dynamics of all
possible types of motion that can take place in a gas medium.

We start with linearized conservation equations in terms of pressure and density variations, p′

and ρ′ as deviations from hydro-dynamically-stable stationary functions p, ρ, which are no longer
constants for gas in the gravity field. Consider the problem of the propagation of acoustic waves in an
exponentially-stratified atmosphere layer. The pressure and density of the unperturbed atmosphere
are described by the law:

p(z) = p0 exp(−z/H) = ρ0gH exp(−z/H); ρ(z) = ρ0 exp(−z/H). (1)

Here, p is the pressure of the unperturbed atmosphere, p0 is the pressure at the water–air interface, ρ is
the density of the unperturbed atmosphere, ρ0 is the air density at the water–air interface, H is the
atmospheric scale height, and z is the current height value.

For the readers’ convenience, we reproduce the conventional system of equations of 3D
hydro-thermodynamics:

∂V
∂t

= −∇p′

ρ
+ g

ρ′

ρ
, (2)

∂p′

∂t
= −V · (∇p)− γp(~∇ ·V), (3)

∂ρ′

∂t
= −V · (∇ρ)− ρ(∇ ·V). (4)

where V is the velocity vector of the gas flow; γ = Cp, Cv; Cp, Cv are molar heat capacities at constant
pressure and volume correspondingly; g is the gravity acceleration field vector, whose components,
in the case of vertical gravitational field, are gx = 0, gy = 0, and gz = g.

Further, in the context of entropy mode introduction, we enter a new variable ϕ′:

ϕ′ = p′ − γ
p
ρ

ρ′. (5)

Next, we go to the conventional set of variables:

P = p′ · exp(z/2H), Φ = ϕ′ · exp(z/2H), Uz = Vz · exp(−z/2H), (6)

where P, Φ, Uz are the new quantities defined in this way and Vz is the vertical velocity of the flow.
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Our main intention to simplify the model relates to the plane waves’ case. Therefore, we consider
the one-dimensional boundary problem for each layer of our model. For such a case, the system of
hydro-thermodynamics takes the form:

∂Uz

∂t
=

1
ρ0

(
γ− 2
2γH

− ∂

∂z

)
P +

Φ
γHρ0

, (7)

∂P
∂t

= −γgHρ0

(
∂Uz

∂z

)
− gρ0

γ− 2
2

Uz, (8)

∂Φ
∂t

= − (γ− 1) ρ0gUz. (9)

2.2. Problem of the Acoustic Wave Propagation, Excited by the Boundary Condition

In the problem of the propagation of a wave excited by the boundary condition, the evolutionary
variable is the spatial one, z ∈ [0, ∞) in our case. To pose such a mathematical problem, it is necessary
to rebuild the system of original equations, giving preference to the derivatives with respect to
the spatial variable. Note that such derivatives are absent in Equation (9). Therefore, using (9),
we will exclude Uz, and the equation itself will be considered as the link equation between Uz and
Φ. Such a transformation automatically lowers the order of the dispersion relation and excludes the
entropy mode [20]. Therefore, we consider the following system as the basis for modeling the vertical
propagation of a plane acoustic wave.

∂P
∂z

=
1

(γ− 1) g
∂2Φ
∂t2 +

γ− 2
2γH

P +
Φ

γH
, (10)

∂Φ
∂z

=
γ− 1
γH

P− γ− 2
2γH

Φ. (11)

The system (10) and (11) in matrix form reads as the z-evolution equation:

∂

∂z
Ψ(z, t) = L

(
∂

∂t

)
Ψ(z, t), (12)

where:

Ψ(z, t) =

(
P(z, t)
Φ(z, t)

)
. (13)

Next, we use the inverse Fourier transform for the basic quantities of the system of Equations (10)
and (11):

P(z, t) =
1√
2π

∫ ∞

−∞
eiωt p(z, ω)dω, (14)

Φ(z, t) =
1√
2π

∫ ∞

−∞
eiωtφ(z, ω)dω. (15)

To do this, we prolongate the functions on the whole axis t anti-symmetrically. We substitute (14)
and (15) into Equations (10) and (11):

∂p(z, ω)

∂z
= − ω2

(γ− 1) g
φ(z, ω) +

γ− 2
2γH

p(z, ω) +
φ(z, ω)

γH
, (16)

∂φ(z, ω)

∂z
=

γ− 1
γH

p(z, ω)− γ− 2
2γH

φ(z, ω). (17)
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We also find the equation of the relationship between uz and φ in ω-space:

Uz(z, t) =
1√
2π

∫ ∞

−∞
eiωtuz(z, ω)dω; (18)

uz(z, ω) = − iω
(γ− 1)ρ0g

φ(z, ω). (19)

The system of Equations (16) and (17) is a linear homogeneous system of ordinary differential
equations with constant coefficients that depend on the parameter ω. The general solution of a linear
homogeneous system of ordinary differential equations with constant coefficients depending on the
parameter exists in the form:

p(z, ω) = C1(ω)eik(ω)z + C2(ω)e−ik(ω)z, (20)

φ(z, ω) = C3(ω)eik(ω)z + C4(ω)e−ik(ω)z (21)

where:

k(ω) =

√
ω2

γgH
− 1

4H2 . (22)

Henceforth, we will assume that only the upward wave propagates from the ocean surface, so the
solution will be:

p(z, ω) = B(ω)e−ik(ω)z, (23)

φ(z, ω) = D(ω)e−ik(ω)z. (24)

Consider the solution for z = 0:

p(0, ω) = B(ω) =
1√
2π

∫ ∞

−∞
e−iωtP(0, t)dt, (25)

φ(0, ω) = D(ω) =
1√
2π

∫ ∞

−∞
e−iωtΦ(0, t)dt. (26)

Using (19):

φ(0, ω) = − (γ− 1)ρ0g
iω

uz(0, ω), (27)

where:
uz(0, ω) =

1√
2π

∫ ∞

−∞
e−iωtUz(0, t)dt. (28)

Starting from (12), we arrive at the matrix evolution equation in the ω-space:

∂

∂z
ψ(z, ω) = Lωψ(z, ω), (29)

where:

ψ(z, ω) =

(
p(z, ω)

φ(z, ω)

)
(30)

and according to the system (10) and (11):

Lω =

(
γ−2
2γH

−ω2

g(γ−1) +
1

γH
γ−1
γH − γ−2

2γH

)
. (31)
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The matrix boundary conditions is written as:

ψ(0, ω) = χ(ω). (32)

Generally, the matrix n× n eigenvalue problem, which introduces n subspaces, yields the matrix
of solutions ψ [22]:

Lωψ = ψΛ (33)

with the diagonal n× n matrix:
Λ = diag{λ1, ..., λn}. (34)

Next:
Lω = ψΛψ−1, (35)

or, in components, it gives the spectral decomposition of the matrix:

Lij = ψikΛklψ
−1
l j = ∑

s
λs(Ps)ij, (36)

where:
(Ps)ij = ψisψ−1

sj (37)

are projecting operators [23].
The relationship between p and φ will be found with the help of projecting operators. Since we do

not consider a wave running down, having acted by the projecting “down” operator (later, P1 = P↓)
on the state vector, we get zero.

P↓ψ
↑ = 0, (38)

where:

ψ↑ =

(
p(z, ω)

φ(z, ω)

)
. (39)

Having solved (38) with using (27), we obtain the coupling equation for p and uz:

p(z, ω) =
2i(Hγω2 − gγ + g)ρ0

ω
√

γ2 − 4Hγω2/g + γ− 2)
uz(z, ω). (40)

For z = 0:

p(0, ω) =
2i(Hγω2 − gγ + g)ρ0

ω
√

γ2 − 4Hγω2/g + γ− 2)
uz(0, ω) =

= − 2i(Hγω2 − gγ + g)ρ0

ω(
√

γ2 − 4Hγω2/g + γ− 2)
1√
2π

A
iω− λ

. (41)

2.3. Boundary Conditions

The phenomenon of the propagation of an acoustic disturbance caused by surface waves is due to
the transfer of energy and momentum from moving water masses to atmospheric gas. The period of
tsunami waves ranges from 5 min–60 min [24]. The amplitude of the tsunami in the nucleation zone is
about 50–60 centimeters. One boundary condition is necessary and sufficient to determine uniquely
the solution of the system [25]. Based on the physical meaning, we set the boundary conditions for the
gas velocity:

Uz(0, t) = Ae−λt. (42)

where λ characterizes the width or duration of the pulse and the factor A is the velocity amplitude.
For the 0.5-m surface shift and a period 5 min, it gives the estimation A = 0.05 m/s.
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In ω-space the condition (42) is reformulated as:

uz(0, ω) =
1√
2π

∫ ∞

−∞
e−iωt Ae−λtdt = − 1√

2π

A
iω + λ

. (43)

Therefore, the boundary condition for the variable φ reads:

φ(0, ω) =
A√
2π

(γ− 1)gρ0

iω(iω + λ)
. (44)

3. Solution

The coefficients in the relations (25) and (26) are:

B(ω) = − A√
2π

2i(Hγω2 − gγ + g)ρ0

ω(iω + λ)(
√

γ2 − 4Hγω2/g + γ− 2)
, (45)

D(ω) =
A√
2π

(γ− 1)gρ0

iω(iω + λ)
. (46)

Having the expressions (23) and (24), we can write the solution of the system (16) and (17):

p(z, ω) = − A√
2π

2i(Hγω2 − gγ + g)ρ0

ω(iω + λ)(
√

γ2 − 4Hγω2/g + γ− 2)
exp

[
−iz

√
ω2

γgH
− 1

4H2

]
, (47)

φ(z, ω) =
A√
2π

(γ− 1)gρ0

iω(iω + λ)
exp

[
−iz

√
ω2

γgH
− 1

4H2

]
. (48)

that satisfies the boundary condition (44).

4. Building a Multi-Layered Model Solution

According to the multilayer model of the atmosphere shown in Figure 1, the average atmospheric
scale height will change during the transition from one layer to another, and therefore, the average
temperature and density do change. Hence, the cross-linking of the solutions at the layer boundary will
be based on the continuity of entropy [26] to keep the heat flux continuous. We rewrite the relation (6)
for the case of the n-layered model:

ϕ′n(z, t) = Φn(z, t) exp
[
− z− hn−1

2Hn

]
, (49)

Further, the indices will denote the layer number, i.e., Hn is the atmospheric scale height in the n-layer.
The cross-linking condition is such that:

ϕ′n(hn) = ϕ′n+1(hn). (50)

where hn is the height of the interface between n- and n+1-layers and n = 1, 2, .... Therefore, for the
variables, we use have:

Φn(hn, t) exp
[
−hn − hn−1

2Hn

]
= Φn+1(hn, t) exp

[
−hn − hn

2Hn+1

]
, (51)

Φn+1(hn, t) = Φn(hn, t) exp
[
−hn − hn−1

2Hn

]
, (52)

or it can be rewritten as:
Φn+1(hn, t) = µΦn(hn, t). (53)
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Figure 1. Multi-layered atmosphere model.

According to (9), we write:
Un+1(hn, t) = µUn(hn, t), (54)

or:

Un+1(hn, t) = Un(hn, t) exp
[
−hn − hn−1

2Hn

]
.. (55)

The next step involves the velocity field:

Vn(z, t) = Un(z, t) exp
[

z− hn−1

2Hn

]
, (56)

where Un(z, t) can be calculated as:

Un = − 1
(γ− 1) ρ0g

∂Φn

∂t
. (57)

The variables Φn(z, t) and Un(z, t) are related to φn(z, ω) and un(z, ω) by the inverse
Fourier transform:

Φn(z, t) =
1√
2π

∫ ∞

−∞
eiωtφn(z, ω)dω, (58)

Un(z, t) =
1√
2π

∫ ∞

−∞
eiωtun(z, ω)dω. (59)

Using (57):
un+1 = µun

φn+1 = µφn
(60)

and (52) and (55), we have:

φn+1(hn, ω) = φn(hn, ω) exp
[
−hn − hn−1

2Hn

]
, (61)
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un+1(hn, ω) = un(hn, ω) exp
[
−hn − hn−1

2Hn

]
. (62)

Furthermore, using the link (19), we arrive at:

un(z, ω) = − iω
(γ− 1)ρ0g

φn(z, ω). (63)

According to the results of the previous subsection’s solution in the first layer [0, h1], it is derived:

φ1(z, ω) =
A√
2π

(γ− 1)gρ0

iω(iω + λ)
exp

[
−iz

√
ω2

γgH1
− 1

4H2
1

]
, (64)

where H1 is the atmospheric scale height in the first layer [0, h1]; or we can rewrite it as:

φ1(z, ω) = D1(ω) exp

[
−i(z− h0)

√
ω2

γgH1
− 1

4H2
1

]
. (65)

where h0 = 0; or as the recurrent formula for the calculation:

φn(z, ω) = Dn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
. (66)

Using the last formula for (61), we obtain:

Dn+1(ω) exp
[
−i(hn − hn)

√
ω2

γgHn+1
− 1

4H2
n+1

]
= Dn(ω) exp

[
−i(hn − hn−1)

√
ω2

γgHn
− 1

4H2
n

]
exp

[
− hn−hn−1

2Hn

]
, (67)

Dn+1(ω) = Dn(ω) exp
[
−i(hn − hn−1)

√
ω2

γgHn
− 1

4H2
n

]
exp

[
− hn−hn−1

2Hn

]
(68)

where:

D1(ω) =
A√
2π

(γ− 1)gρ0

iω(iω + λ)
. (69)

Finally, the complete expression for the coefficients Dn yields:

Dn(ω) = A√
2π

(γ−1)gρ0
iω(iω+λ) ∏n

m=1 exp
[
−i(hm−1 − hm−2)

√
ω2

γgHm−1
− 1

4H2
m−1

]
exp

[
− hm−1−hm−2

2Hm−1

]
. (70)

The recurrent formulas for the calculation of solutions in the “n”-layer are found with (63):

un(z, ω) = − A√
2π

1
(iω + λ)

Cn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
, (71)

pn(z, ω) = − A√
2π

2i(Hγω2 − gγ + g)ρ0

ω(iω + λ)(
√

γ2 − 4Hγω2/g + γ− 2)
Cn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
, (72)

φn(z, ω) =
A√
2π

(γ− 1)gρ0

iω(iω + λ)
Cn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
(73)

where:

Cn(ω) =
n

∏
m=1

exp

[
−i(hm−1 − hm−2)

√
ω2

γgHm−1
− 1

4H2
m−1

]
exp

[
−hm−1 − hm−2

2Hm−1

]
(74)

which accomplish the n-layer model of the acoustic wave in ω- representation.
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The result is illustrated by the plots in Figure 2 for the velocity field of the acoustic wave in the
ω-domain:

vn(z, ω) = un(z, ω) exp
[

z− hn−1

2Hn

]
. (75)

Figure 2. This figure is the log–log plot of velocity solution illustration. v1 is depicted at a height
of h1 = 10,000 m, the boundary between the first and the second layer. v4 is depicted at a height of
h3 = 90,000 m, the boundary between the third and the fourth layer, H1 = 7390 m, the average scale
height in the first layer, and H4 = 24,190 m, the average scale height in the fourth layer. For the
parameter λ, we take 1/300 1/s [24].

Solution and Estimations in the Time Domain

Using the inverse Fourier transform, we find recurrence formulas in the time domain:

Un(z, t) = − A
2π

∫ ∞

−∞
eiωt 1

(iω + λ)
Cn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
dω, (76)

Pn(z, t) = − A
2π

∫ ∞
−∞ eiωt 2i(Hγω2−gγ+g)ρ0

ω(iω+λ)(
√

γ2−4Hγω2/g+γ−2)
Cn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
dω, (77)

Φn(z, t) =
A

2π

∫ ∞

−∞
eiωt (γ− 1)gρ0

iω(iω + λ)
Cn(ω) exp

[
−i(z− hn−1)

√
ω2

γgHn
− 1

4H2
n

]
dω. (78)

The integrand of (76)–(78) contains rapidly-oscillating function exp
[
−iz

√
ω2

γgHn
− 1

4H2
n

]
at the

range of (ωc, ∞). It allows applying asymptotic representation for the integral by conventional
stationary phase approximation via the stationary point frequency ωdom. Generally, having the integral:

f (z, t) =
1

2π

∫
<

F(ω) exp [i(k(ω)z−ωt)] dω, (79)

the conventional asymptotic expression yields:

f (z, t) ≈ |F(ωdom)|
π

√√√√ 2π

z
∣∣∣ d2k

dω2

∣∣∣ cos
(

k(ωdom)z−ωdomt± π

4

)
. (80)

Here, the phase term k(ω)z−ωt is “stationary” when:

d
dω

(k(ω)z−ωt) ≈ 0 (81)
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The root of this equation gives the dominant frequency ωdom(z, t) for certain z and t. In the

case of (76), for n = 1, f (z, t) = U1(z, t), k(ω) =

√
ω2

γgH1
− 1

4H2
1
, F(ω) = 1

(iω+λ)
. The stationary phase

approximation (80) gives the explicit expression for the velocity U4 that is used for the calculations of
the electron density perturbation after arrival time t = ta. The solution properties were demonstrated
by the explicit formula for the integral (76) obtained in the stationary phase method asymptotic by
means of the dispersion function k(ω). It gives group velocities 1/k′(ωdom) for each layer and the
wave-trains’ amplitude envelope form via the classic expression based on k′′(ωdom). The resulting
representation for the electron concentration is derived by the explicit expression for the solution of
the diffusion equation at [7,27].

5. Analysis of the Effect at Ionospheric Heights

To analyze the neutral gas perturbation effect at the altitudes of the ionosphere, it is necessary to
return to the physical quantities and then calculate their changes with increasing altitude for each layer:

p′ = P · exp
[
− (z− hn−1)

2H

]
, ϕ′ = Φ · exp

[
− (z− hn−1)

2H

]
, Vz = Uz · exp

[
(z− hn−1)

2H

]
. (82)

The acoustic wave propagation entering the ionosphere acts on ions. The problem of the AGW
ionosphere effect description has been studied for many years [7].

In [6], a simple formula for the electron concentration dynamics was derived, and its coordinate
and time dependence were calculated as the solution of the diffusion equation, parametrized by
the velocity profile as a coefficient. For more details, see [7,23]. The formula is an expansion of the
diffusion equation solution in a series by Whittaker functions with a leading term in the conditions of
the considered problem.

The ionosphere effect, a variation of electron concentration as a function of the vertical coordinate
and time, is determined by the vertical component of velocity V(z,t). The plots of the velocity and
electron density perturbation launched by the acoustic pulse are shown in Figure 3.

Figure 3. (a) Wave disturbance at a height of F2, the ionosphere layer maximum (the stars mark the
results of [13]). (b) Variation NmF2 in the ionosphere during the passage of a disturbance.

6. Discussion: Comparison

Due to the exponential growth of the amplitude with increasing altitude above sea level,
even small disturbances (for example, for speeds of the order of 25 cm/s) at sea level increase at the
altitudes of the ionosphere, which gives a gas velocity amplitude over 200 m/s, cf. [11]. This guarantees
the possibility to use the model in tsunami diagnostics and the eventual prognosis of the wave impact
at the seashore.

It is impossible to compare the results of our modeling and others’ directly because for such a
situation, both models should have close mathematical statements of the problem and similar outputs.
Some important features of the results, however, may be disclosed. Most closed problems were
considered in the paper [13], where infra-sound propagation was studied. This is also the case in
our work. The vertical profiles of the velocity for three moments of time given in Figure 11 of [13]
allow estimating the amplitude at heights of about 300 km. We put the values in Figure 3a as stars.
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It is difficult to give a more detailed comparison between our results, due to the mentioned reasons.
The order of amplitudes, at least, is the same.

Another important possibility is in comparison with the pulse arrival times (ta) at a prescribed
height, estimated by the summation of the times tn = (hn − hn−1)/vgn (vgn, the group velocity
in n-layer). This was supported by information about the measurements in the paper [11]. More
precisely, the arrival time was estimated by the condition ωdom ≈ ωc and evaluation of the time
delay via the layer group velocities ti = 1/k′(ωdom,i). For the height of 100 km, it gives the value
ta = t1 + t2 + t3 + t4 = 319 s, the sum of time delays for the first layers, which approximately
corresponds to the result of the simulations and experiments given in [11].

The third one is related to ionosphere perturbations; see again [13]. The simulations show the
variation of the electron density at the F-layer of about 8–10% (Figure 10 of [13]), which is in rather good
correspondence with our estimations shown in Figure 3b. The lesser infra-sound wave amplitudes,
shown in Figure 3a, left, produce lesser electron variations against ours, that is about 20%.

7. Conclusions

The main result of this paper is the recurrent formula that connects the exponentially-stratified
adjacent layers of a planetary atmosphere. It allows constructing an algorithm for the solution of an
acoustic wave propagation problem, starting with the appropriate time-dependent boundary condition
at the planetary surface. The crucial element of this model is the projection procedure, derived for
the z-evolution operator for the interface of layers. Such a procedure eliminates the down-directed
wave and properly establishes the transition from the “n” layer to the next one “n + 1”. The model is
applied to the problem of an acoustic wave initiated by a long ocean wave. The choice of the boundary
regime is made on the basis of empirical data analysis. A model of the acoustic wave generated by the
earthquake may be built in a similar fashion. The asymptotic expression of the resulting integrals by
the large parameter (z) gives an explicit expression for the fluid velocity field at arbitrary heights in
the frame of the proposed model. In return, it allows employing the explicit formula for the electron
concentration at ionosphere layers.

Finally, combining the analytical formulas creates the basis for the algorithm that can evaluate the
ionospheric effect very quickly. Such a model for tsunami or earthquake diagnostics may be beneficial.

An important step towards greater sophistication of the proposed 1D model would be to refine
the boundary regime more appropriately to represent the tsunami wave. For instance, in [20,28],
function (29), multiplied by a trigonometric function, was proposed. Such a modification allows
computing the Fourier image and adjusting the working formula (34). The work will continue with
the calculation of the ionospheric effect at altitudes above the second layer, given that the formalism is
transferred to the next layer almost automatically.
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