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Abstract: This paper is devoted to the quantification of changes in ventilation of a real neighborhood
located in Pamplona, Spain, due to the presence of street trees Pollutant dispersion in this urban zone
was previously studied by means of computational fluid dynamic (CFD) simulations. In the present
work, that research is extended to analyze the ventilation in the whole neighborhood and in a tree-free
street. Several scenarios are investigated including new trees in the tree-free street, and different leaf
area density (LAD) in the whole neighborhood. Changes between the scenarios are evaluated through
changes in average concentration, wind speed, flow rates and total pollutant fluxes. Additionally,
wind flow patterns and the vertical profiles of flow properties (e.g., wind velocity, turbulent kinetic
energy) and concentration, horizontally-averaged over one particular street, are analyzed. The
approach-flow direction is almost perpendicular to the street under study (prevailing wind direction
is only deviated 4º from the perpendicular direction). For these conditions, as LAD increases, average
concentration in the whole neighborhood increases due to the decrease of wind speed. On the other
hand, the inclusion of trees in the street produces an increase of averaged pollutant concentration only
within this street, in particular for the scenario with the highest LAD value. In fact, the new trees in
the street analyzed with the highest LAD value notably change the ventilation producing an increase
of total pollutant fluxes inward the street. Additionally, pollutant dispersion within the street is also
influenced by the reduction of the wind velocity along the street axis and the decrease of turbulent
kinetic energy within the vegetation canopy caused by the new trees. Therefore, the inclusion of new
trees in a tree-free street should be done by considering ventilation changes and traffic emissions
should be consequently controlled in order to keep pollutant concentration within healthy levels.

Keywords: CFD modeling; street ventilation; trees; urban air quality

1. Introduction

Besides ecosystem services such as micro-climate regulation, carbon sequestration, rainwater
drainage, noise reduction, psychological and recreational values [1–6], trees and green infrastructures,
in general, are often used in the urban environment as a pollution mitigation strategy [2,7]. In urban
areas, the wind environment, and thus, the final levels of pollutant concentration is determined by
the atmospheric processes inside the urban canopy layer (UCL). Within the UCL, the interaction
between the atmospheric flow and urban obstacles (e.g., buildings, trees, etc.) induces complex wind
flow patterns which, in general, reduce the city ventilation and increase the pollutant concentration.
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In recent years, urban ventilation indices have received more and more attention to evaluate the
ventilation efficiency [8,9]. With the help of computational fluid dynamics (CFD), field and wind-tunnel
experiments, ventilation indices have been extensively developed and applied to assess the ventilation,
and thus, the distribution of pollutants around buildings (see the recent special issue on urban
ventilation by Buccolieri and Hang [9]). Street ventilation and pollutant dispersion are influenced by
urban obstacles, and in particular, by urban vegetation. Two main effects are induced by vegetation:

- Aerodynamic effects, i.e., trees modify the wind flow around them changing the distribution
of pollutants.

- Deposition effects, i.e., a fraction of pollutant is removed from the air by means of pollutant
deposition on tree leaves and absorption through stomata.

These effects depend on the type of vegetation (leaf area density (LAD), height, shape, etc.) and
their location within the city [10,11]. Vegetation barriers composed by hedges and/or trees located
close to a main road were found effective to reduce pollutant concentration behind them [10,12,13].
Reductions in concentration between 15% and 60% were reported by the majority of studies [10].
However, the impact of street trees on pollutant dispersion is more complex and the reduction or
increase of pollutant concentration depend on the urban configuration and meteorological conditions.
Vos et al. [14] and Gromke and Blocken [15] modeled idealized buildings configurations and found an
increase of concentration at pedestrian levels caused by trees. Santiago et al. [16] reported concentration
variations at pedestrian level depending on LAD and height of trees within idealized streets. An
increase or decrease of concentration in respect to the tree free street case for taller or smaller trees was
found, respectively. In general, many modeling studies reported that the increase of concentration due
to the aerodynamic effects is more important than the concentration mitigation due to deposition [17–20].
However, very localized changes in concentration (a decrease or increase higher than 50%) can be
induced by trees [15,20]. These concentration variations are mainly caused by changes in the wind
flow patterns and thus in the street ventilation. Therefore, it is important to investigate and quantify
the impact of street trees on street ventilation and pollutant dispersion. This is particularly important
in real neighborhoods where the literature is scarce [19]. The main objective of the present study is to
contribute to filling this gap.

The starting point of the present paper is the CFD modeling study carried out in a Pamplona
neighborhood indicating that the aerodynamic effects of street trees on pollutant concentration are
stronger than deposition [20]. In the present work, we extend the analysis by quantifying the variation
of street ventilation in several scenarios, without trees and considering trees with different leaf area
density (LAD). The impact of tree foliage on urban air quality is thus analyzed, which could provide
useful information to urban planners for the selection of suitable vegetation. Wind speed, flow rate
and total pollutant fluxes across lateral sides and tops of the street are computed to evaluate changes
between the different scenarios. Some of these variables were previously published in the literature
to evaluate city ventilation [19,21,22]. These are relevant in order to establish simple relationships
between the presence of vegetation, ventilation variation and pollutant concentration change.

2. Methodology

2.1. The Study Area

The study area is a portion of 1.3 km × 1.3 km of the II Ensanche neighborhood in Pamplona,
Spain (Figure 1a). Building heights range from 11 m to 50 m, even if most of the buildings have the
same height with a mean value of 20 m. The plan area density of the whole neighborhood is 0.42,
however in the center of the neighborhood (around the tree-free street) it reaches up to 0.67. In this
zone, the aspect ratio between building height and width of street ranges from 1.3 and 1. The value
corresponding to the street analyzed is 1. An air quality monitoring station (AQMS) managed by the
Regional Government of Navarra is located in a square in the center of the neighborhood (Figure 1a).
This station, called Plaza de la Cruz (PC), is the only monitor station in the city and it is classified as
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traffic station. Small parks and trees within most of streets are present in this zone covering 13.8%
of the plan area (i.e., the extent of vegetation projected in a horizontal plane respect to the total plan
area of the streets and squares). The mean height of trees ranges from 5 m to 12 m as estimated with
satellite images from Google Earth®. In this neighborhood, there is a tree-free street (Tafalla Street)
where the possible impact of trees on ventilation is simulated and evaluated by including new trees
(Figure 1), see Section 2.3.
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Figure 1. (a) Modeled area of the Pamplona neighborhood, with indication of the traffic air quality
monitoring station called Plaza de la Cruz (PC) and the study tree-free street (Tafalla Street) where the
ventilation is evaluated. (b) A sketch of the area of interest including emissions (red) and trees (green).

2.2. Summary of the Previous Analysis

The role of trees on airborne pollutant dispersion in the study area of the present work was
previously investigated by Santiago et al. [20]. The previous study was focused on determining
the influence of aerodynamic and deposition effects of vegetation on NOx concentration in a real
neighborhood. Vegetation scenarios with two LAD values (0.1 and 0.5 m2 m−3) were simulated by
means of CFD modeling. The increase of tree-foliage induces not only a greater deposition, but also
a greater change in street ventilation. For LAD = 0.1 m2 m−3, the reduction of the spatial-averaged
concentration at 3 m height due to deposition was small, less than 2% for a very high deposition
velocity (0.03 m s−1). For LAD = 0.5 m2 m−3, this reduction was slightly higher (6.9% for the same
deposition velocity). However, the increase of concentration due to aerodynamic effects was greater
than the decreasing of concentration due to deposition. Comparing scenarios with both LAD values,
spatial-averaged concentration was always higher for the highest LAD values regardless deposition
velocity. In addition, the tree-free street (Tafalla Street in Figure 1) was modeled with and without trees.
The inclusion of the trees in the middle of that street modified the wind flow and the distribution of
pollutant, not only in that street, but also changed significantly the pollutant concentration in nearby
locations. In some zones, the concentration increased with the new trees but decreased in others. This
finding suggested that planting trees with this configuration in a street with traffic as an air pollution
reduction strategy was not appropriate in general, highlighting the necessity of ad hoc studies for each
particular case to select the suitable location of new vegetation.

2.3. Extension of the Analysis to Flow, Turbulence and Ventilation

In this paper, the work was extended by assessing the effects of trees within the study street on
average concentration, mean flow, turbulence and street ventilation. Four scenarios, two locations
of vegetation and two LAD values for each location, were investigated by means of CFD modeling
(Table 1). The current location of vegetation did not include trees in the Tafalla Street, while trees were
present in other streets of the neighborhood. On the other hand, the scenarios with new trees consisted
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in the current location of vegetation where new trees were located in the center of the Tafalla Street.
The crowns of these trees were placed at the same height as those in the parallel street (from 4 m to 10
m tall). For each location of vegetation, two LAD values for all trees in the study area (0.1 m2 m−3 for
deciduous trees and 0.5 m2 m−3 for evergreen trees, respectively) were considered. The deposition was
neglected since the goal was to investigate the aerodynamic effects of the new trees.

Table 1. Scenarios investigated by computational fluid dynamic (CFD) simulations.

Scenario Trees Leaf Area Density (LAD, m2 m−3) Location of Vegetation

LAD01 0.1 (deciduous)
Current location of vegetation

LAD05 0.5 (evergreen)

LAD01_NewTrees 0.1(deciduous) Current location of vegetation
+ new trees in the study streetLAD05_NewTrees 0.5 (evergreen)

The study was focused on the worst case in terms of air quality, i.e., meteorological and emission
conditions corresponding to 8 a.m. of an average winter day. Data from PC AQMS indicated that
concentration during winter at this hour, which corresponded to the highest traffic emissions, were
higher than in other seasons. For an average day of winter, the concentration at this hour was around
100 µg m−3, while in summer it was around 40 µg m−3 [23]. March 2016 was also selected because
LAD was found to be low (0.1 m2 m−3), and nitrogen oxides (NOx) levels were still high. Typical
meteorological conditions (i.e., in terms of prevailing wind direction, from Northwest, and average
wind speed) at this hour were computed from meteorological data recorded at the closest station to the
study area. The meteorological station (Pamplona-GN) from the Regional Government of Navarra
network was located within less than 1 km of distance.

To analyze the ventilation in the Tafalla street, a prism composed by 4 lateral planes was selected
(Planes 1–2 were parallel to the street and 3–4 were perpendicular to the street) and a plane in the
top (Plane 5) (Figure 2). Specifically, Plane 1 was the upwind plane of the study street, Plane 2 was
the downwind one, Planes 3 and 4 were the lateral planes and Plane 5 was the street-roof plane.
Note that the buildings had different heights and Plane 5 was located 1 m above the tallest building
(z = 28 m). Northwest was the prevalent wind direction, which was almost perpendicular to the street
axis (Figure 2), and then it was expected that most part of the air flow entered into the street through
Plane 1.

At each plane of the street, the average of the velocity perpendicular to each plane (Vn) and the
average flow rate (q) were computed as follows [21]:

Vn =

∫
Plane VndS∫

Plane dS
=

∫
Plane

→

V·
→
n dS∫

Plane dS
(m s−1) (1)

q =

∫
Plane

VndS (m3 s−1) (2)

where S is the area of the plane,
→

V is the wind velocity and
→
n is the unit vector perpendicular to each

plane. In this paper, q is discussed in percentage, i.e., q at each plane divided by the total q entering
the street.

In addition, at these planes pollutant mass fluxes due to mean flow (Fm) and to turbulent
fluctuations (Ft) were calculated as follows [19,22]:

Fm = VnC(x, y, z) (kg m−2 s−1) (3)

Ft = −Kc
∂C(x, y, z)

∂n
(kg m−2 s−1) (4)
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where C(x,y,z) is the pollutant concentration at coordinates (x,y,z) corresponding to the grid cell at the
planes previously defined, Kc is the turbulent diffusivity of pollutant and n is the normal to each plane.
The total pollutant mass flow rates at each plane due to mean flow (TFm) and to turbulent fluctuations
(TFt) were computed as:

TFm =

∫
PLANE

FmdS (kg s−1) (5)

TFt =

∫
PLANE

FtdS (kg s−1) (6)
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Negative values indicate air flow leaving the street and positive values air entering the street. The
same criteria were adopted for pollutant mass flow rates.

Finally, to analyze the tree effects within the street canyon, vertical profiles of spatially-averaged
concentration, wind velocity components and turbulent kinetic energy (TKE) inside the street canyon
were computed for all the studied scenarios.

3. CFD Simulation Setup

The CFD model used was based on Reynolds-averaged Navier–Stokes (RANS) equations with
realizable k-ε turbulence model. The aerodynamic effects of vegetation were modeled by means of a
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sink of momentum (Sui ) and sinks/sources of turbulent kinetic energy (STKE) and turbulent dissipation
rate (Sε) equations as follows [16]:

Sui = −ρLADCdUui (Pa m−1) (7)

STKE = ρLADCd(βpU3
−βdUk) (kg m−1 s−3) (8)

Sε = ρLADCd(Cε4βp
ε
k

U3
−Cε5βdUε) (kg m−1 s−4) (9)

where ρ is the air density, ui is the appropriate wind velocity component, U is the wind speed and Cd is
the sectional drag for vegetation (dimensionless). βp is the fraction of mean kinetic energy converted
into turbulent kinetic energy by means of drag and takes the value of 1. βd is the dimensionless
coefficient for the short-circuiting of the turbulence cascade and Cε4 and Cε5 are model constants.
Their values were computed based on analytical formulation of [24] as follows:

βd = C0.5
µ (

2
α
)

2
3
βp +

3
σk

(10)

Cε4(= Cε5) = σk

 2
σε
−

C0.5
µ

6

( 2
α

) 2
3
(Cε2 −Cε1)

 (11)

where α, Cµ, σk, σε, Cε1 and Cε2 values are 0.09, 1, 1.3, 1.44, and 1.92, respectively.
In this study the thermal effects of trees were neglected.
Dispersion of NOx was performed by means of a transport equation. Traffic emissions were

distributed along each street considering road widths (number of lanes) and an emission height of 1 m
in order to take the initial dispersion into account. Emissions were considered proportional to annual
average daily traffic throughout each street.

The computational domain was built following the COST (European Cooperation in Science &
Technology) Action 732 best practice guidelines [25,26]. The distance between buildings and outlet
and inlet boundaries was larger than 8 times the building heights and the top of domain was located
7 times the height of the tallest building (50 m). Based on grid sensitivity tests, the domain was
discretized using 7.4 × 106 cells. In the study area, the grid resolution was 2.7 m approximately, with
ad hoc refinements in the narrowest streets and close to the walls (cell sizes of about 1 m). A sketch of
numerical domain and mesh is shown in Figure 3. Buildings and ground were modeled as walls and
symmetry conditions (zero normal velocity and zero normal gradients of all variables) were imposed
at the top of domain. Neutral inlet profiles of velocity, turbulent kinetic energy and its dissipation
were used:

u(z) =
u∗
κ

ln (
z + z0

z0
) (m s−1) (12)

TKE =
u2
∗√

Cµ
(m2 s−2) (13)

ε =
u3
∗

κ(z + z0)
(m2 s−3) (14)

where u∗ is the friction velocity and κ is von Karman’s constant (=0.4). These profiles were widely
used as inlet profiles in CFD simulations over real urban environments [27–30]. Further details can be
found in Santiago et al. [20].
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Evaluation of the Modeling Approach Used in the Present Study

The objective of this section was to demonstrate that the modeling approach used in the present
study was appropriate. The model performance to reproduce wind flow and pollutant dispersion was
previously evaluated by Krayenhoff et al. [31], Santiago et al. [16] and Santiago et al. [20].

To evaluate the vegetation parameterization implemented in the CFD model, the wind flow
at continuous “forest” (measurements taken far downstream of the forest to avoid edge effects)
and forest-clearing configurations were simulated and compared with wind-tunnel data [32,33].
In particular, vertical profiles of mean wind speed and TKE at different locations were used in the
comparison. The model reproduced qualitatively the observed trends in all locations with better
agreement for wind speed than for TKE. In addition, these results of our model were also compared
with results from another RANS model [34] and a large eddy simulation (LES) [35]. Similar performance
was obtained by all models and it was found that the results, especially TKE, were sensitive to the value
of Cε5 and its optimal value depended on the case. Therefore, it was concluded that our expressions to
represent vegetation in the CFD model (Equations (7)–(11)) were appropriate. For further details the
readers are referred to [31].

In addition, the performance of the current model was evaluated in urban environments with
vegetation by using the CODASC wind-tunnel dataset (Concentration Data of Street Canyons,
http://www.windforschung.de/CODASC.htm) [36,37]. Pollutant dispersion within an isolated street
canyon with and without vegetation was studied for airflow perpendicular to the axis of the street. The
street canyon was composed of two buildings with the same height (H). The ratio between building
height and width of the street (W) was 1 and between length of the street (L) and width of the street
was 10. Pollutant was emitted by a line source at ground that protruded from the street canyon 10%
approximately on each side. Two different vegetation porosities were simulated with pressure loss
coefficient (λ) values of 80 and 200 m−1 at wind-tunnel scale (0.53 and 1.33 m−1 at full scale). These λ

http://www.windforschung.de/CODASC.htm
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values corresponded to LAD values of 2.6 and 6.6 m2 m−3 assuming 0.2 as the drag coefficient value.
Vegetation was located along the street with the tree top at the roof level and with a dimension of 0.5 H
× 0.66 H × 10 H (streamwise × vertical × lateral). Observed and modeled pollutant concentration
were compared at different locations close to both walls of the street canyon. Model evaluation was
quantified by computing the following statistical metrics: fraction of predictions within a factor of two
of observations (FAC2), the fractional bias (FB), the root-normalized mean-square error (RNMSE) and
the correlation coefficient (R). For the three scenarios (one without vegetation and two with vegetation
with different porosities), the statistical metric values (0 > FB > −0.06, RNMSE < 0.41, R > 0.89 and
FAC2 > 0.91) indicated a good agreement with experimental data with a slight overestimation of
concentration. Similar model performance was obtained for other RANS [38–40] and LES [41] studies.
These results showed our model was able to reproduce concentration patterns within a street canyon
with and without vegetation. Therefore, Equations 7–11 were appropriate for modeling aerodynamic
effects of vegetation within urban environments. For further details the readers are referred to [16].

Finally, NOx concentration within the Pamplona neighborhood studied in the current work was
evaluated by using data from PC AQMS. The limitation of that evaluation was that measurements
was only available at only one point (PC). Hourly NOx concentration during two weeks in March
2015 (from 1st to 14th) was modeled and compared with concentration recorded at PC AQMS. The
LAD value of 0.1m2 m−3 was considered for all trees. Unsteady CFD simulations of two weeks was
not affordable due to large computational cost. For this reason, the methodology WA CFD-RANS
(weighted average CFD-RANS simulations) [20,30,42] was employed. It used CFD simulations for
several meteorological conditions and assumed the concentration was inversely proportional to wind
speed. Depending on the wind speed and direction measured by the meteorological station close to
the neighborhood, at each hour the corresponding CFD simulation was selected and the concentration
was computed. A good correlation (R = 0.71) between observed and modeled concentration time series
was found. In addition, the statistical metric values (NMSE = 0.27; FAC2 = 0.73) indicated a good
agreement between monitored and modeled concentration. Therefore, the modeling approach used
was able to reproduce pollutant dispersion within the investigated area. For further details the readers
are referred to [20].

4. Results

4.1. Spatially-Averaged Concentration over the Whole Neighborhood

To better explain the concentration changes due to the presence of trees, the scenarios described in
Table 1 (without deposition) were analyzed. Table 2 shows the spatially-averaged concentration at
3 m height calculated over the whole neighborhood and over the study street. Considering the whole
neighborhood, the inclusion of new trees produced changes in the spatially-averaged concentration
less than 0.09% and 0.18% for LAD = 0.1 m2 m−3 and 0.5 m2 m−3, respectively. However, the average
concentration depended on LAD and, in particular, it increased from 105 µg m−3 to 113 µg m−3 (an
increase of about 7.6%) as LAD rose from 0.1 m2 m−3 to 0.5 m2 m−3. Therefore, the inclusion of new
trees in the study street had a slight impact on the average concentration over the whole neighborhood,
suggesting that the effect of new trees was local and related to the street ventilation as discussed in
the next subsection. Additionally, it should be also taken into account that new trees were only 7%
of the total plan area covered by vegetation in the whole neighborhood. However, the increase of
LAD from 0.1 m2 m−3 to 0.5 m2 m−3 implied five times more tree leaves throughout the neighborhood.
Consequently, it gave rise to a greater impact on the average concentration because drag forces and
sinks/sources of turbulence, which were responsible for the changes of the wind flow and pollutant
dispersion, were five times stronger since they were proportional to LAD (Equations (7)–(9)).
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Table 2. Spatially-averaged concentration at 3 m.

Scenario
Spatially-Averaged Concentration (µg m−3)

Whole Neighborhood Study Street

LAD01 105.3 141.9

LAD05 112.9 143.7

LAD01_NewTrees 105.4 144.4

LAD05_NewTrees 113.1 161.0

4.2. Spatially-Averaged Concentration in the Tafalla Street

To investigate the concentration within Tafalla Street and its relation with the ventilation, it should
be taken into account that the concentration within this street was not only due to local emissions, but
also to pollutants released in other streets and transported to this street. Further, the vegetation had an
impact on both contributions. Focusing on the current scenarios (tree-free street), the spatially-averaged
concentration within this street at 3 m height (pedestrian level) increased up to 1.3% as LAD increased
(Table 2). New trees in the study street induced local changes in this street and its surroundings,
however Table 2 shows that only planting new trees with LAD = 0.5 m2 m−3 significantly modified
the average concentration over this street. Specifically, for LAD = 0.1 m2 m−3 the spatially-averaged
concentration within this street at 3 m height increased up to 1.8% when new trees were considered,
while for LAD = 0.5 m2 m−3 this concentration variation reached up to 12%. Therefore, only the new
trees with LAD = 0.5 m2 m−3 modified the street ventilation significantly. For the lowest LAD values,
the change of street ventilation due to new trees was smaller. In addition, the change of tree foliage of
vegetation outside of Tafalla Street induced slight changes on the pollutants transported to that street.

In order to extend this analysis to the whole vegetation canopy depth, the street morphology
(Figure 4) and the vertical profiles of spatially-averaged concentration over this street (Figure 5) were
investigated. Regarding the street morphology, the width of the street was 16 m and most of buildings
were 18 m height approximately. However, the street height (Figure 2a) was considered up to the tallest
building height (27 m). In addition, Figure 5b shows the vertical profiles of normalized concentration.
Normalized concentration was computed as Cnorm = CUre f Aemis/Q, where C is the concentration,
Ure f is the reference wind speed, taken as inlet wind speed at 10 m height (Equation (12)), Aemis is the
area of emissions and Q is the constant emission rate. From 1.5 m height up to about 18 m, notably
higher concentration was found for LAD05_NewTrees scenario. Then, the concentration vertical
profiles were divided into three zones: (a) bottom part (up to 12 m approximately) located below trees
(vegetation canopy); (b) from 12 m up to mean building height (18 m approximately), where pollutant
dispersion is notably affected by buildings (building canopy); and (c) from mean building height up
to the maximum building height (27 m), where the influence of buildings on pollutant dispersion
was smaller and it was considered to be almost outside of the urban canopy. Comparing the LAD05
and LAD05_NewTrees scenarios, the differences of spatially-averaged concentration at each height
decreased as height increases. Below the vegetation canopy (below 10 m), these differences in average
concentration were almost vertically constant, between 17.3 and 14.9 µg m−3 (between 12–13.4%).
Above the top of the trees up to the mean building height, these differences decreased and ranged
from 12.7 µg m−3 at 12 m to 6.3 µg m−3 at 18 m (from 12.7% to 9.2%). However, the zone where these
differences decreased sharply was above the mean building height. Above 24 m, the spatially-averaged
concentration profiles were similar (concentration differences below 1µg m−3). Therefore, the decrease
of pollutant dispersion induced by the new trees with LAD = 0.5 m2 m−3 was mainly located below
the tree top. It is noteworthy to remember, that in these cases, pollutant deposition was neglected.
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4.3. Wind Flow Patterns and Ventilation in Tafalla Street

The impact of trees on pollutant dispersion and final concentration in the study street (Tafalla
Street) is here explained by analyzing the wind flow patterns and the ventilation. Figures 6–13 show
the wind flow for the four scenarios at 3 m and 9 m height, respectively. In these figures, the vector
color indicates the normalized wind speed (Unorm), which is computed as U/Ure f , where U is the
wind speed and Ure f is the inlet wind speed at 10 m height. Wind flow patterns were similar for all
cases, however for LAD = 0.5 m2 m−3 wind speed of the fifth street perpendicular to the study street
slightly decreased at both heights (Figures 6–13). The channeling throughout this street was higher
than that through the other perpendicular streets, then for LAD05 and LAD05_NewTrees the flow
rate through Plane 1 (Figures 6–13) tended to decrease. Additionally, in these cases, the part of the
flow which entered the street through Plane 4 (Figures 6–13) increased. The main wind flow changed
due to the new trees found in the fourth street perpendicular to the study street. In all cases, flow
departed the street through Plane 1 (Figures 6 and 7), however wind speed decreased within this
street in the new-trees scenarios, in particular when LAD = 0.5 m2 m−3. In addition, for this scenario
(LAD05_NewTrees), it was also observed that the wind speed along the study street was slightly lower
in comparison with other scenarios.
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The street ventilation was thus assessed in order to relate the changes in concentration with
changes of the street ventilation. Table 3 shows the average of the velocity perpendicular to each
plane and the average flow rates q. The average flow rates are presented in percentage in respect to
the total average flow rate that enters the street in each case. In general, with the prevailing wind
direction (Northwest) being almost perpendicular to the street, most of the flow entered through
Plane 1, as shown from the positive values of the flow rates which were equal or close to 100%. As LAD
increased, the average perpendicular velocity at the upwind plane decreased (from 1.49 to 1.47 m s−1

for the current scenarios and from 1.50 to 1.48 m s−1 for the new trees scenarios). Then, the flow
rate through Plane 1 was lower for LAD = 0.5 m2 m−3 scenarios, as expected from the wind flow
patterns previously discussed. Additionally, the inclusion of new trees slightly increased (<0.7%) the
perpendicular velocity through Plane 1. This was related with the reduction of wind speed of the flow
leaving the study street through the fourth perpendicular street by Plane 1, previously discussed for
new trees scenarios, and thus less air flow leaving the street by Plane 1 and in general, it was higher. In
addition, the flow through the lateral planes (Planes 3 and 4) of the street was influenced by changes in
vegetation. Through Plane 4, the flow entered the street only for both LAD = 0.5 m2 m−3 scenarios and
for the new-trees scenario with LAD = 0.1 m2 m−3. However, the flow rate was four times higher for
the highest LAD scenarios. Through Plane 3, the flow leaving the street decreased when new trees
were in the street. In particular, it decreased up to 40% and 20% approximately for LAD = 0.5 m2 m−3

and 0.1 m2 m−3, respectively. At Plane 5 (roof), the flow departed the street with similar wind speed in
all cases.

Table 3. Average perpendicular velocity Vn and percentages of the total flow rates at each plane.

Scenario Plane 1
Upw.

Plane 2
Downw.

Plane 3
Lat.

Plane 4
Lat.

Plane 5
Roof

Plane 1
Upw.

Plane 2
Downw.

Plane 3
Lat.

Plane 4
Lat.

Plane 5
Roof

Perpendicular Velocity Vn (m s−1) Flow Rate q (%)

LAD01 1.49 −1.63 −0.33 −0.08 −0.04 100 −95.2 −1.1 −0.3 −3.4

LAD05 1.47 −1.62 −0.40 0.24 −0.04 99.2 −95.1 −1.3 0.8 −3.6

LAD01_NewTrees 1.50 −1.65 −0.26 0.06 −0.04 99.8 −95.2 −0.9 0.2 −3.9

LAD05_NewTrees 1.48 −1.62 −0.23 0.25 −0.05 99.2 −95.0 −0.8 0.8 −4.2

In general, it can be noted that the wind flow variations due to vegetation induced changes in
pollutant fluxes entering and leaving the street. However, the changes of pollutant fluxes were not
proportional to the changes of flow rate in some zones. For example, the flow rate through Plane 1
was higher for the current scenario with LAD = 0.1 m2 m−3 than for the new-trees scenario with
LAD = 0.5 m2 m−3, however, this behavior was opposite for the total pollutant fluxes through this plane.
This was due to the traffic emission heterogeneities in the real cases, as assumed in the present work.
For example, the fifth perpendicular street perpendicular to the study street was a pedestrian street and
without traffic emissions. Table 4 shows that pollutant mass flow rates due to mean flows were higher
than those due to turbulent fluctuations. The addition of both contributions was used to analyze the
transport of pollutants entering or leaving the study street. Through Plane 1, similar to the flow rates,
the total pollutant mass flow rates (TF) were higher with LAD = 0.1 m2 m−3 and they increased in the
new trees scenarios. However, this increase was notably higher for LAD = 0.5 m2 m−3 (3.4%) than for
LAD = 0.1 m2 m−3 (2%). Additionally, it should be taken into account that the pollutants transported
inward to the street through Plane 4 where this contribution was higher for LAD = 0.5 m2 m−3. Table 5
shows the total pollutant mass flow rate entering the street for each scenario. The total pollutant flux
entering the street was higher for the new trees scenario and for LAD = 0.5 m2 m−3. This fact was
important because it implied that the new trees in a street induced changes in the total pollutant fluxes
entering the street.
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Table 4. Total pollutant fluxes at each plane due to mean flow (TFm), turbulent fluctuations (TFt) and
both contributions (TF).

Scenario Plane 1
(Upwind)

Plane 2
(Downwind)

Plane 3
(Lateral)

Plane 4
(Lateral)

Plane 5
(Roof)

LAD01

TFm
(g s−1) 0.641 −0.641 −0.027 −0.009 −0.022

TFt
(g s−1) −0.007 0 0 0.001 0

TF
(g s−1) 0.634 −0.642 −0.027 −0.007 −0.022

LAD05

TFm
(g s−1) 0.623 −0.650 −0.028 0.021 −0.024

TFt
(g s−1) −0.007 −0.001 0 0.002 0

TF
(g s−1) 0.616 −0.651 −0.027 0.023 −0.023

LAD01_NewTrees

TFm
(g s−1) 0.656 −0.669 −0.023 0.005 −0.023

TFt
(g s−1) −0.009 −0.002 0 0.002 0

TF
(g s−1) 0.647 −0.671 −0.023 0.007 −0.023

LAD05_NewTrees

TFm
(g s−1) 0.648 −0.678 −0.017 0.021 −0.022

TFt
(g s−1) −0.010 −0.002 0 0.001 0

TF
(g s−1) 0.637 −0.679 −0.017 0.022 −0.022

Table 5. Total pollutant fluxes inward on the study street.

Scenario TF (g s−1) (Inward the Street)

LAD01 0.63

LAD05 0.64

LAD01_NewTrees 0.65

LAD05_NewTrees 0.66

Finally, the pollutant dispersion within the street was analyzed through the spatially-averaged
wind flow properties within the street at different heights. Figure 14 shows the vertical profiles of the
spatially-averaged wind speed normal to the street (Vn), wind speed parallel to the street (Vp), vertical
wind speed (W) and turbulent kinetic energy (TKE). Vn, Vp and W were normalized by Ure f and TKE
was normalized by U2

re f . The new trees modified vertical and parallel wind speeds and turbulent
kinetic energy. Spatially-averaged parallel wind speed decreased for new trees scenarios, especially
within the vegetation canopy which gave rise to an impact on wind flow and on the mass exchange
between the street and outside. This fact increased the residence time of pollutants within the street
and consequently increased the concentration. Vertical wind speed was negative within and below
the vegetation canopy and its magnitude was lower for New Trees scenarios. However, above the
new trees, the vertical wind speed (upward motion) was higher than those obtained for scenarios
with the free-tree street. The new trees scenarios caused also a decrease of turbulent kinetic energy
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within the vegetation canopy, and consequently reduced pollutant dispersion. The decrease was more
pronounced for the LAD05_NewTrees scenario.Atmosphere 2019, 10, x FOR PEER REVIEW 17 of 20 
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5. Conclusions

The main objective of this study was to quantify the impact of street trees on street ventilation
and pollutant dispersion. For this goal, the ventilation and the spatially-averaged concentration at
pedestrian level computed over a neighborhood of Pamplona and in a specific street were analyzed
for different vegetation scenarios. Four scenarios, two different vegetation deployments and two
LAD values for each deployment were studied. Vegetation scenarios with and without trees in the
study street were considered. For these scenarios, the influence of the average flow properties on
spatially-averaged concentration was investigated. Only aerodynamic effects were considered in the
present work. Results showed that the influence of planting new trees was negligible on the average
pollutant concentration of the whole neighborhood. However, it induced a local increase of the average
concentration through the street analyzed, which rose up to 12% for dense trees (LAD = 0.5 m2 m−3).
This was due to:

• The increase of total pollutant mass flow rates entering the street;
• The change of the ventilation. In fact, the average wind speed parallel to the street (parallel

ventilation) and the downward vertical wind speed within the new vegetation canopy were
reduced with respect to tree-free street scenarios. This fact implied a weaker ventilation within
and below the vegetation canopy. Further, the turbulent kinetic energy decreased within and
below the new vegetation canopy, and consequently reduced the pollutant dispersion.
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The changes of wind flow depended on building layout and vegetation configuration. This study
was performed over a real neighborhood with a regular distribution of buildings and characterized by
a plan area density of 0.42. Focusing on the zone around the study street, the plan area increased up to
0.67 and the aspect ratio between building height and street width ranged from 1.3 and 1. Results could
thus be extrapolated to similar urban settings in other cities with similar morphological characteristics,
such as several European cities.

In conclusion, the paper has shown that planting new trees in a tree-free street should be done by
considering ventilation changes, and traffic emissions should be consequently controlled in order to
keep pollutant concentration within healthy levels. These results and methodology could be useful for
urban planners to build sustainable design of vegetation within streets.
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