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Abstract: In geoscientific studies, conventional bilinear interpolation has been widely used for
remapping between logically rectangular grids on the surface of a sphere. Recently, various spherical
grid systems including geodesic grids have been suggested to tackle the singularity problem caused by
the traditional latitude–longitude grid. We suggest an alternative to pre-existing bilinear interpolation
methods for remapping between any spherical grids, even for randomly distributed points on a
sphere. This method supports any geometrical configuration of four source points neighboring
a target point for interpolation, and provides remapping accuracy equivalent to the conventional
bilinear method. In addition, for efficient search of neighboring source points, we use the linked-cell
mapping method with a cubed-sphere as a reference frame. As a result, the computational cost is
proportional to NlogN instead of N2 (N being the number of grid points), even for the remapping of
randomly distributed points on a sphere.

Keywords: bilinear interpolation; remapping; regridding; spherical grids

1. Introduction

Various spherical grid systems such as cubed-sphere [1] and icosahedral [2] have been suggested
to tackle the singularity problem of the traditional latitude–longitude grid. Remapping or regridding
between spherical grids is essentially required for earth-system modeling [3]. There are diverse
remapping methods to interpolate between the spherical grids such as bilinear [4], bicubic [4],
conservative [5,6], and patch recovery [7] methods. The Earth System Modeling Framework (ESMF)
Regridding Package and SCRIP (Spherical Coordinate Remapping and Interpolation Package) are
well-known remapping toolkits and support these diverse remapping methods.

Bilinear interpolation has been widely used for logically rectangular grids because it is easy to
implement and its computational cost is low. Although both of the ESMF and SCRIP remapping
toolkits support the bilinear interpolation, they have some limitations. The bilinear remapping tool
in SCRIP is applicable for logically rectangular grids only [8], while the one in the ESMF package
supports both logically rectangular grids and unstructured meshes composed of polygons, but it does
not support self-intersecting cells; for example, a cell twisted into a bow-tie shape [9].

In this study, we suggest an alternative bilinear interpolation method which can be used for any
spherical grid, even including randomly distributed points, retains its simplicity for implementation,
and has a low computational cost. Especially, we suggest an efficient search algorithm to find
neighboring grid points using a linked-cell mapping method and the cubed-sphere as a reference
frame. Since the cubed-sphere is one of the spherical grids where elements are equally distributed over
the sphere, it can provide a reasonable size of mesh for the search. More details on the methodology
are available in Section 3.
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We verified the newly suggested bilinear interpolation method by testing the remapping of a
spherical harmonic function originally with a latitude–longitude system, a cubed-sphere, a Fibonacci
sphere, and randomly distributed points. The results from the test show that the accuracy of the
method is equivalent to or slightly better than the pre-existing bilinear interpolation approach. In
addition, we found that the computational cost is proportional to NlogN instead of N2, where N is the
number of grid points. A detailed explanation of this bilinear interpolation method is presented in
the following section. The search algorithm based on the linked-cell mapping method is introduced
in Section 3. We describe test sets for the verification of the newly suggested bilinear interpolation
method and compare its accuracy to the pre-existing method on the latitude–longitude system, the
cubed-sphere, the Fibonacci sphere, and randomly distributed points in Section 4. In the final section,
we summarize the feasibility of the new interpolation method and the search algorithm.

2. An Alternative Bilinear Interpolation Method

Figure 1 shows the configuration of a target point on which conventional bilinear interpolation
proceeds using the four rectangular points surrounding the target point. The procedure is simply linear
interpolations, first along the x-axis and then along the y-axis. Centering the target point, weighting
for the interpolation is given by the area ratio of the four rectangles to their area sum. This way of
weighting is identical to the conventional bilinear interpolation method [4].

f (x, y) = w1 f1 + w2 f2 + w3 f3 + w4 f4,

where
w1 = (x2−x)(y2−y)

(x2−x1)(y2−y1)
,

w2 = (x−x1)(y2−y)
(x2−x1)(y2−y1)

,

w3 = (x2−x)(y−y1)
(x2−x1)(y2−y1)

,

w4 = (x−x1)(y−y1)
(x2−x1)(y2−y1)

.

Figure 1. An example of bilinear interpolation for function f on position (x, y) in a rectangular
constellation formed by four grid points (x1, y1), (x2, y2), (x3, y3), and (x4, y4) using their
corresponding functions f1, f2, f3, and f4.

Meanwhile, Figure 2 exhibits examples of the bilinear interpolation on a target using four points
which do not form a rectangle, and shows that the bilinear interpolation method as suggested in this
study is applicable to any geometrical configuration of source points near a target point. Now, we
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explain this assumption and the idea behind the bilinear interpolation proposed in this study. The
function for the interpolation is given by

f (x, y) = a + bx + cy + dxy.

Figure 2. Examples of the alternative bilinear interpolation for function f on position (x, y): (a)
quadrangular and (b) irregular constellations of four grid points (x1, y1), (x2, y2), (x3, y3), and (x4, y4)

using their corresponding functions f1, f2, f3, and f4.

The choice for the function is made on the basis that it is as simple as possible and is identical
to conventional bilinear interpolation if the four source points form a rectangle. The coordinates of
those four source points are denoted by (x1, y1), (x2, y2), (x3, y3), and (x4, y4), and their corresponding
function values are f1, f2, f3, and f4, respectively. A system of equations can be formed and expressed
as the multiplication of a matrix and a vector:

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4




a
b
c
d

 =


f1

f2

f3

f4

.

Once the system of equations has been solved, the coefficients a, b, c, and d of the corresponding
function can be obtained, and the bilinear interpolation of the function f(x, y) on the position of
any arbitrary point near those four points can proceed. In particular, the following two key points
should be examined to ensure that the accuracy of the interpolation is acceptably equivalent to that of
conventional bilinear interpolation.

(1) We need to seek a 4 × 4 matrix whose determinant becomes maximum by rotating the x–y
axes of the four source points to obtain relevant coordinates to the interpolation. In other words,
the accuracy of this bilinear interpolation process depends upon the coordinates of the chosen four
neighboring points. According to Cramer’s rule (Apostol, 1969) for a system of equations, coefficients
can be given by the ratios of determinants D1, D2, D3, and D4 and to the determinant D, where they
are defined as follows:

D =

∣∣∣∣∣∣∣∣∣
1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

∣∣∣∣∣∣∣∣∣,
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D1 =

∣∣∣∣∣∣∣∣∣
f1 x1 y1 x1y1

f2 x2 y2 x2y2

f3 x3 y3 x3y3

f4 x4 y4 x4y4

∣∣∣∣∣∣∣∣∣, D2 =

∣∣∣∣∣∣∣∣∣
1 f1 y1 x1y1

1 f2 y2 x2y2

1 f3 y3 x3y3

1 f4 y4 x4y4

∣∣∣∣∣∣∣∣∣,

D3 =

∣∣∣∣∣∣∣∣∣
1 x1 f1 x1y1

1 x2 f2 x2y2

1 x3 f3 x3y3

1 x4 f4 x4y4

∣∣∣∣∣∣∣∣∣, D4 =

∣∣∣∣∣∣∣∣∣
1 x1 y1 f1

1 x2 y2 f2

1 x3 y3 f3

1 x4 y4 f4

∣∣∣∣∣∣∣∣∣.
Subsequently, the coefficients in the system of equations can be given as:

a =
D1

D
, b =

D2

D
, c =

D3

D
, d =

D4

D
.

For example, let us consider a rotation matrix transformed with respect to the origin and with
the angle θ from the original matrix given the target point and the four aforementioned neighboring
points. After this, the determinants D and D4 become

D = A cos 2θ + B sin 2θ = A′ cos(2θ − φ), where cos φ =
B

A2 + B2 ,

A = −(x1x2 + x3x4)(y1 − y2)(y3 − y4)

+(x1x3 + x2x4)(y1 − y3)(y2 − y4)

−(x1x4 + x2x3)(y1 − y4)(y2 − y3)

2B = −(x1x2 + y3y4)(x1 − x2)(y3 − y4) + (x1x3 + y2y4)(x1 − x3)(y2 − y4)

−(x1x4 + y2y3)(x1 − x4)(y2 − y3)− (x2x3 + y1y4)(x2 − x3)(y1 − y4)

+(x2x4 + y1y3)(x2 − x4)(y1 − y3)− (x3x4 + y1y2)(x3 − x4)(y1 − y2)

D4 = −( f1x2 − f2x1)(y3 − y4) + ( f1x3 − f3x1)(y2 − y4)− ( f1x4 − f4x1)(y2 − y3)

−( f2x3 + f3x2)(y1 − y4) + ( f2x4 − f4x2)(y1 − y3)− ( f3x4 − f4x3)(y1 − y2)

Here, D4 is independent of the coordinates' change of the four source points so that the coefficient
becomes minimal when we rotate the axes of source points in such a way that the determinant becomes
maximal. The accuracy of the interpolation is mainly affected by the coefficient d in that the accuracy
is highest when d is minimum, i.e., when D is maximum. Geometrically, the function appears as flat
when d is minimum.

(2) Another key point for accuracy is to ensure that more than three out of the four source points
neighboring the target point for the interpolation should not be in a line because if this is the case, the
determinant D of the matrix becomes zero, which cannot be used for the interpolation. In practice, if
three out of the four points are in a line, this configuration leads to low interpolation accuracy even
though the determinant is not zero. We discovered this from our experience with various interpolation
experiments; in any case, we note that the bilinear polynomial can actually degenerate into a linear one
in such situations, even if the interpolation data come from a quadratic (or higher degree) polynomial.
This bilinear interpolation method employs two-dimensional space to execute the interpolation of
quantities over any spherical grid, thus there is a requirement that spherical points should be projected
on a two-dimensional plane. In this study, we use the gnomonic projection as we think that the
interpolation accuracy is not sensitive to the choice of projection. Figure 3 shows the gnomonic
projection of points on a sphere on a 2-dimensional plane. In this situation, the length between the
points and the area surrounding them become more distorted as the target point is moved further
away from the center. To minimize such distortion through conventional gnomonic projection, we
employ the latter in such way that the target point is always centered.
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Figure 3. A gnomonic projection showing the increase of distortion as the target of the projection is
further from the center.

3. The Search Algorithm

One of the core processes for the proposed bilinear interpolation method is to find the four nearest
source points to the target point. To apply this even for randomly distributed points on a sphere,
we designed the method to require only the latitude–longitude coordinates of those points as input
information. The distances between the target and source points need to be computed, and in general,
this demands a computational cost proportional to N2, and so we applied a linked-cell mapping
method for the search, which reduces it proportional to NlogN.

The linked-cell or cell linked list method [10] is frequently used in the studies of molecular
dynamics and has been applied to the search for interacting particles depending on their distances
from the target particle. It is an efficient tool that enables searching by storing particles in rectangular
cells uniformly divided in space and considering particles only in the same cell where the target point
is located. This method leads to a reduction in the computational cost for simulations of molecular
dynamics overall by calculating interactions only within a cell. In general, a variable array is used as a
linked list for the method, but we use a fixed array for the search list in this study similar to the method
introduced in [11]. This provides a fixed size of the array for the list, which is another computational
advantage for the search.

To enable the linked-cell mapping method to function effectively on a sphere, we use the
cubed-sphere grid as a reference frame, since sizes of the elements on the cubed-sphere do not
vary by much and it is easy to find neighboring elements [12]. Figure 4 shows the distribution of
elements on the cubed-sphere as a reference frame for the search of source points using the linked-cell
mapping method. We show an example of a search using 50 × 25 latitude–longitude grid points
and a cubed-sphere with 10 × 10 elements in each panel. Now, we explain the concept of linked-cell
mapping by taking the area colored red in Figure 4 into account. The procedure is as follows:

1. Information in two index arrays is required: cube_links (ne,ne,6) providing the information of
indices of the elements on the cubed-sphere and grid_links (grid_size) containing the indices of
the latitude–longitude grid points linked to the specific elements in cube_links (ne,ne,6).

2. The coordinates of the latitude–longitude grid points (λ, θ) are then transformed into the
coordinates of (α, β, panel) on the cubed-sphere, and the index of each element containing the
transformed coordinates (corresponding to ei = 8, ej = 7, and panel = 6 in Figure 4) is identified.

3. Among the indices of the three transformed grid points, the smallest index is 1067, thus we assign
cube_links (8,7,6) = 1067 and grid_links (1067) = −1.

4. The second index on the mapping list is 1068, and we replace cube_links (8,7,6) = 1068 with
grid_links (1067) = −1 while grid_links (1068) = 1067.

5. This is repeated for the third index of the mapping: cube_links (8,7,6) = 1069 and then grid_links
(1067) = −1, grid_links (1068) = 1067, and grid_links (1069) = 1068.
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6. Subsequently, the search of points corresponding to element (8,7,6) starts with the saved
information cube_links (8,7,6) = 1069 and checks the values of grid_links (1069) = 1068 until −1 is
returned for “grid_links” as follows:
cube_links (8,7,6) = 1069→ grid_links (1069) = 1068→ grid_links (1068) = 1067→ grid_links
(1067) = −1

Figure 4. Linked-cell mapping with the cubed-sphere elements: latitude–longitude grid points
(50 × 25 resolution) are mapped to the cubed-sphere elements (ne10 resolution).

Now, we explain the search procedure of neighboring points for the proposed bilinear
interpolation using the cubed-sphere as a reference frame (Figure 4). We assume that the
latitude–longitude grid points are transformed on the cubed-sphere and the two index arrays of
the linked-cell mapping are prepared as described in the previous paragraph.

1. Next, we identify the element that contains the given target point, which is denoted by the x-mark
(the yellow-colored element in Figure 4). Using the linked-cell mapping method, we search the
source points mapped in that element.

2. If the number of source points is less than 4, as in the yellow-colored element in Figure 4, source
points mapped in the seven elements surrounding that element are included in the search (the
cyan-colored elements in Figure 4).

3. The search proceeds in the expanded area unless enough source points are sought (the
green-colored elements in Figure 4).

4. If more than four source points are available, then they are classified according to their distances
from the target point.

5. From the four closest points, we examine whether they satisfy the following conditions. A set of
four source points that passes those conditions is then selected.

- The determinant, D 6= 0 (If D = 0, then the source points can be duplicated).
- For accuracy, three of the four points should not be in a line.

6. Finally, using the selected set of four source points, we conduct the bilinear interpolation.
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4. Experiments

Figure 5 shows the four chosen grid systems on the sphere for the verification of our bilinear
interpolation method. We chose a latitude–longitude grid, a cubed-sphere, a Fibonacci sphere, and
randomly distributed points scattered on a sphere, and the accuracy of the bilinear interpolation of
a given test function was used for the comparison. Figure 6 shows the given test function for the
experiment consisting of spherical harmonics Ym

l , where l = 8 and m = 6.

Figure 5. The spherical grid systems investigated in this study: (a) latitude–longitude, (b) cubed-sphere,
(c) Fibonacci sphere, and (d) random points.
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Figure 6. The test function used in this study: spherical harmonics Y6
8 .

The set of metrics for the comparison includes relative error norms L1, L2, and L∞:

L1 =
∑i| fremap− fre f |i

∑i| fre f |i
L2 =

√
∑i ( fremap− fre f )

2
i√

∑i ( fre f )
2
i

L∞ =
max(| fremap− fre f |i)

max(| fre f |i)

There were two groups of experiments: the conventional bilinear interpolation test and the
proposed bilinear interpolation test.

In the first group, there were again two sets of remapping tests: (1) we remapped from the
latitude–longitude grid system to the other grid systems using equirectangular projection and
rectangular bilinear interpolation, and (2) we remapped from the cubed-sphere to the other grid
systems using fixed gnomonic projection and rectangular bilinear interpolation.

In the second test group, we experimented with our alternative bilinear interpolation method
using variable gnomonic projection and interpolation including non-logically rectangular points on
the sphere: (1) from the latitude–longitude grids to the other grid systems, (2) from the cubed-sphere
to the other grid systems, (3) from the Fibonacci sphere to the other grid systems, and (4) from the
randomly distributed points to the other grid systems.

Table 1 contains a list of the relative error norms (L1, L2, and L∞) for each test. This shows that
there were only minor differences in interpolation accuracy between the remapping in the control and
test groups. For the remapping from the cubed-sphere to the other grid systems, the accuracy was
slightly improved by using variable gnomonic projection and the alternative bilinear interpolation
method. This might have resulted from the fact that the latter is free from the constraint of rectangular
source points surrounding a target point, thus we could use source points located closer to the target
point. A similar accuracy was obtained in the proposed bilinear interpolation of the Fibonacci sphere
and the random points of the other grid systems.
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Table 1. Relative error norms from the remapping experiments between the different spherical grid
point systems.

Latlon Rectangle Cube Rectangle General 4 Points

L1 L2 Linf L1 L2 Linf L1 L2 Linf

latlon->cube 1.47E-03 1.59E-03 2.25E-03
N/A

1.47E-03 1.59E-03 2.25E-02

latlon->fibonacci 1.46E-03 1.58E-03 2.27E-03 1.44E-03 1.56E-03 2.24E-03

latlon->random 1.41E-03 1.54E-03 2.27E-03 1.40E-03 1.54E-03 2.27E-03

cube->latlon
N/A

2.09E-03 2.29E-03 4.64E-03 1.92E-03 2.11E-03 4.61E-03

cube->fibonacci 2.08E-03 2.27E-03 4.54E-03 1.88E-03 2.09E-03 7.40E-03

cube->random 2.09E-03 2.28E-03 4.52E-03 1.92E-03 2.11E-03 4.51E-03

fibonacci->cube
N/A N/A

1.72E-03 1.76E-03 2.34E-03

fibonacci->latlon 1.72E-03 1.76E-03 2.43E-03

fibonacci->random 1.73E-03 1.77E-03 2.33E-03

random->cube
N/A N/A

4.08E-03 6.15E-03 1.31E-01

random->latlon 3.94E-03 5.85E-03 1.05E-01

random->fibonacci 4.09E-03 6.11E-03 9.68E-02

Meanwhile, the randomly distributed points became denser as the latitude increased, and overall
accuracy might have depended more on the intervals between the points at lower latitudes. Therefore, a
large L∞ error rate resulted from situations where the points lay far away from each other. Nevertheless,
the order of error norms L1 and L2 remained as O (10−3), which demonstrates that the alternative
bilinear interpolation method was useful even for randomly distributed points on a sphere.

Figure 7 shows the computational time for the alternative bilinear interpolation with an increasing
number of grid points N, which shows that the computational time is proportional to NlogN, instead
of N2. Moreover, the computational cost for the linked-cell mapping was nearly proportional to N
instead of NlogN since the search for neighboring points was able to proceed without considering all
of the grid points, only the four nearest ones instead. The number of grid points in our tests ranged
from 48,602 ~ 12,441,602. We used a single core with a single thread from an Intel Xeon CPU E5-2690
2.90 GHz; the Fortran compiler used was gfortran v4.7.1.

Figure 7. The wall clock times for the remapping experiments with increasing grid resolution.
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5. Conclusions

In this study, we suggest an alternative bilinear interpolation method for remapping between
spherical grids, even for randomly distributed points on a sphere. One of the key ideas behind this
method is that the interpolation function is derived from a system of equations for four source points
regardless of their geometrical configuration with respect to a target point. The system of equations
can be represented in a 4 × 4 matrix-vector multiplication form and elements of the matrix are chosen
in such way that the determinant is maximized through the rotation of the coordinate system for the
four source points. This is an essential property of the alternative bilinear interpolation method, which
makes the method applicable for any spherical grid system.

Another key idea is the combination of the linked-cell mapping method for an efficient search of
neighboring source points and the cubed-sphere as a reference frame for convenience when searching.
This results in a computational cost proportional to NlogN instead of N2, even for the remapping of
randomly distributed points on a sphere.

For the verification of the proposed bilinear interpolation, we compared the remapping
accuracy of a spherical harmonic function with conventional bilinear interpolation available for
logically rectangular grids. In addition, we examined the feasibility of the alternative bilinear
interpolation method for diverse grid systems on a sphere. The results show that our bilinear
interpolation method provided an equivalent remapping accuracy to the conventional bilinear
interpolation one. The computational cost measured in the test using this alternative bilinear
interpolation method was proportional to NlogN instead of N2, thus the method is applicable even for
high-resolution interpolation.

However, there are two limitations to the interpolation method proposed in this study. The first
one is the limited interpolation accuracy compared to what can be achieved by higher-order
interpolation methods like radial basis function interpolation. The second one is that the bilinear
interpolation cannot guarantee monotonicity, and so conservative remapping would be required for
quantities like fluxes and precipitation. Besides, in our study we have solved the problem of the aligned
three points in such a way as to find a new candidate point, but it can be also solved by using the
least square fitting. Another way is to identify the optimal configuration of points using an approach
such as the study of the remainder of the bilinear polynomial interpolant in a special form [13,14].
Regarding to the accuracy and efficiency of the method, we will examine also these issues in our
future studies. Nevertheless, the alternative bilinear interpolation method is still useful in diverse
geoscientific investigations due to the relatively low computational cost and the ease of implementation.
Moreover, the method suggested in this study is applicable to any spherical grid system, even if they
are not logically rectangular. This method can also achieve reasonable interpolation accuracy even
for randomly distributed points on a sphere and is feasible for high-resolution remapping due to its
relatively low computational cost.
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