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Abstract: We analyse and quantify the recurrences of European temperature extremes using
32 historical simulations (1900–1999) of the fifth Coupled Model Intercomparison Project (CMIP5)
and 8 historical simulations (1971–2005) from the EUROCORDEX experiment. We compare the
former simulations to the 20th Century Reanalysis (20CRv2c) dataset to compute recurrence spectra
of temperature in Europe. We find that, (1) the spectra obtained by the model ensemble mean are
generally consistent with those of 20CR; (2) spectra biases have a strong regional dependence; (3) the
resolution does not change the order of magnitude of spectral biases between models and reanalysis,
(4) the spread in recurrence biases is larger for cold extremes. Our analysis of biases provides a
new way of selecting a subset of the CMIP5 ensemble to obtain an optimal estimate of temperature
recurrences for a range of time-scales.
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1. Introduction

Climate events linked to extremes of temperature (heatwaves/cold spells) [1–3] have severe
impacts on human health and natural ecosystems [4–6]. Heatwave events have increased in Europe
within the last decades in frequency or intensity, while cold spells have decreased in frequency and
intensity since 1950 [7–11]. An important question to evaluate the future evolution of such events is
whether climate models are able to reproduce temperature distributions and their extremes.

Several studies already have focused on this issue [12–18]. Most of them show substantial
inconsistencies between observed and modeled temperature distributions. Morak et al. [16] uses
the Hadley Centre Global Environmental Model, version 1 (HadGEM1) with both anthropogenic
and natural forcings to demonstrate that although the model shows a tendency to significantly
overestimated changes in warm extremes, changes in temperature extremes are generally well captured
by the model. In the latest version, HadGEM3-A [19], models overestimated warm extremes especially
in central/northern Europe while cold extremes appear well simulated. Thus, one of the most striking
findings in [19] is the ability of the model to capture and reproduce the main observed North-Atlantic
atmospheric weather regimes responsible for temperature and precipitation extreme events.

Regarding Coupled Model Intercomparison Project (CMIP) models, Sillmann et al. [18] shows
that the spread amongst CMIP5 models for several temperature indices (including extremes) is reduced
compared to CMIP3 models demonstrating, as well, that the median model climatology outperforms

Atmosphere 2019, 10, 166; doi:10.3390/atmos10040166 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-9958-010X
https://orcid.org/0000-0001-8534-5355
http://www.mdpi.com/2073-4433/10/4/166?type=check_update&version=1
http://dx.doi.org/10.3390/atmos10040166
http://www.mdpi.com/journal/atmosphere


Atmosphere 2019, 10, 166 2 of 16

individual models for all indices. In Krueger et al. [15] a comparison of weather patterns from CMIP5
models with patterns derived from ERA interim indicates that climate models simulate mechanisms
associated with temperature extremes reasonably well, in particular circulation-based mechanisms. More
recently, Li et al. [20] find that climate models forced with natural and anthropogenic historical forcings
underestimate changes in temperature extremes. Conversely, other studies e.g., Kharin et al. [21] have
found that climate models provide a good estimation for warm temperature extremes but poor
estimations of cold extremes, especially in sea ice covered areas.

Most of those analyses focus on extremely low or high temperature values, and model those
extremes with Generalized Extreme Value (GEV) distributions [22–24]. Studies focusing on climate
variability have investigated the Fourier spectra of temperature from observations and climate model
simulations. Such studies have emphasized the role of periodic or quasi-periodic features of the climate
system [25].

The present paper combines the paradigms of Fourier spectra and extreme events, by focusing on
the range of return levels associated with return period for rare temperature events. Thus we want
to assess the whole spectrum of probabilities of events linked to temperature, and investigate how
climate models simulate rare temperature events. In this approach, we estimate the recurrences for
points of the phase space of the underlying dynamical system, by computing probabilities of events.
Those probabilities have known GEV asymptotic distributions [26,27] that can be used to check the
reliability and robustness of estimated return levels. The recent study of Faranda et al. [28] shows that
the recurrence method can be adapted to the study of atmospheric variables even when the underlying
exact dynamics of the system (in terms of dynamical systems) is unknown. In [28] rare recurrences are
computed using different approaches (Recurrences and Block maxima) and comparing the IPSL-CM5
historical model within the CMIP5 historical experiment with two long-terms reanalyses (ERA20C and
20CR). Their results show that with respect to the traditional approaches, the recurrence technique is
sensitive to the change in the size of the selection window of extremes due to the conditions imposed
by the dynamics.

In this paper we investigate the recurrence properties of temperature values in ensembles of
climate model simulations, using the technique developed in Faranda and Vaienti [29]. This allows
quantifying the properties of rare values of the system, by accounting for its chaotic nature.To perform
our analysis, we use the multi-model ensemble of coupled ocean-atmosphere General Circulation
Models (GCMs) provided by the Coupled Model Intercomparison Project Phase 5 (CMIP5) [30].
The main goal of our analysis is to evaluate how CMIP5 model simulations covering 1900–1999
can represent the recurrences in extremes events using a dynamical system technique developed by
Faranda et al. [28] and to further investigate the existence of biases among models and observations.
In order to assess the dependence of the results on the horizontal resolution, we also use the bias
Corrected EURO-CORDEX Climate Projections for the period 1971–2005.

This paper is organized as follows: first, we present the data sets (models and observations), the
region of our study and we describe our analysis method, then, we compute and analyze temperature
return levels and compare them to the 20th Century Reanalysis 20CRv2c dataset. Finally we discuss
and summarize the main results.

2. Data

We base our analysis on daily 2-m temperature (t2m) from the historical experiment (1900–1999)
of the Coupled Model Intercomparison Project Phase 5 (CMIP5) [30]. CMIP5 daily model output is
available for 32 models for the historical experiment. The rationale of the CMIP5 ensemble is that it
samples a large fraction of the possible climate states that are compatible with observed natural and
anthropogenic forcings, rather than one trajectory (i.e., the observations). In order to compute the
return levels, we compare those 32 models (Table 1) with the 20th Century Reanalysis data version 2c
(20CRv2c, [31]). We have selected 20CRv2c in this study because it is the latest version of 20CR and
has bias correction applied to the sea-ice distribution by assimilating new SST and sea-ice cover (SIC)
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data [32]. However, we have found similar results (not shown here), with slight differences for some
models, when we have tested other reanalysis (ERA20C and former 20CR, results for IPSL in [28]).
We consider the ensemble mean of the 56 realizations of 20CR, as is usually done in the literature.
Alvarez-Castro et al. [7] analyzed the whole ensemble members for European heatwaves and argued
that the ensemble mean provides robust features of the dynamical properties. The analysis is focused
on the European region, between 35◦ N–62◦ N and 12◦ W–32◦ E. The horizontal resolution of 20CR
is 2◦ × 2◦ and for a better comparison, all the datasets have been bilinearly re-interpolated onto the
20CRv2c grid. Models are sorted in tables and figures by decreasing resolution.

Table 1. List of CMIP5 Models Analysed. The order is decreasing in resolution.

No. 1 Model Institution/ID Country Resolution 2

1 CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 0.75 × 0.75
2 CCSM4 National Center for Atmospheric Research, NCAR USA 1.25 × 0.94
3 CESM1-BGC Community Earth System Model Contributors, NCAR USA 1.25 × 0.94
4 CESM1-FASTCHEM Community Earth System Model Contributors, NCAR USA 1.25 × 0.94
5 EC-EARTH Danish Meteorological Institute, DMI Denmark 1.125 × 1.125
6 MRI-CGCM3 Meteorological Research Institute, MRI Japan 1.125 × 1.125
7 BCC-CSM1-M Beijing Climate Center China 1.125 × 1.125
8 MRI-ESM1 Meteorological Research Institute, MRI Japan 1.125 × 1.125
9 CNRM-CM5 CNRM-CERFACS 3 France 1.40 × 1.40
10 MIROC5 MIROC 4 Japan 1.40 × 1.40
11 ACCESS 1-0 CSIRO-BOM 5 Australia 1.87 × 1.25
12 ACCESS1-3 CSIRO-BOM 5 Australia 1.87 × 1.25
13 HadGEM2-CC MetOffice-Hadley Centre UK 1.87 × 1.25
14 HadGEM2-ES MetOffice-Hadley Centre UK 1.87 × 1.25
15 HadGEM2-AO MetOffice-Hadley Centre UK 1.87 × 1.25
16 INM-CM4 Institute for Numerical Mathematics, INM Russia 2 × 1.5
17 IPSL-CM5A-MR Institute Pierre Simon Laplace, IPSL France 2.5 × 1.26
18 MPI-ESM-MR Max Planck Institute for Meteorology, MPI Germany 1.87 × 1.87
19 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 1.87 × 1.87
20 CSIRO-MK3-6-0 CSIRO-BOM 5 Australia 1.87 × 1.87
21 MPI-ESM-LR Max Planck Institute for Meteorology, MPI Germany 1.87 × 1.87
22 MPI-ESM-P Max Planck Institute for Meteorology, MPI Germany 1.87 × 1.87
23 FGOALS-2 Institute of Atmospheric Physics, Chinese Academy of Sciences China 2.81 × 2.81
24 NorESM1-M Norwegian Climate Center Norway 2.5 × 1.89
25 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, NOAA USA 2.5 × 2.02
26 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, NOAA USA 2.5 × 2.02
27 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, NOAA USA 2.5 × 2.02
28 IPSL-CM5B-LR Institute Pierre Simon Laplace, IPSL France 3.75 × 1.89
29 BCC-CSM1-1 Beijing Climate Center China 2.81 × 2.79
30 MIROC-ESM MIROC 4 Japan 2.81 × 2.79
31 MIROC-ESM-CHEM MIROC 4 Japan 2.81 × 2.79
32 CMCC-CESM Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 3.75 × 3.75

1 Order by horizontal resolution (Decreasing); 2 Longitude × Latitude (◦); 3 Centre National de Recherches
Meteorologiques - Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique;
4 Atmosphere and Ocean Research Institute (University of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology; 5 Commonwealth Scientific and
Industrial Research Organisation(CSIRO), Bureau of Meteorology(BOM).

We compute then the Ensemble Model Mean (EMM) and the standard deviation of the model
ensemble (SDM), since these are synthetic useful indicators to evaluate the models spread. Then, we
confront the EMM to the ensemble mean of 20CRv2c (ensemble composed of 56 members). To complete
our study, we analyse the outputs of 8 post-processed (Table 2) regional models simulations from the
bias Corrected EURO-CORDEX Climate Projections for the period 1971–2005. The EURO-CORDEX
initiative is a part of the global Coordinated Regional Downscaling Experiment (CORDEX,
http://wcrp-cordex.ipsl.jussieu.fr/) to improve regional climate scenarios for the land-regions
worldwide. It provides regional climate projections for Europe at 50 km and 12.5 km resolution,
which downscale the CMIP5 global climate projections and the RCP scenarios (See [33,34] for further
information). The bias correction methodology uses the general Cumulative Distribution Function
transform method (CDFt) of [35]. It assumes a reference period over which observation-based data is

http://wcrp-cordex.ipsl.jussieu.fr/
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available: 1971–2005. The reference dataset is the 0.22-rotated E-OBS version 10 data set [36] that can
be downloaded from http://eca.knmi.nl.

Table 2. List of EURO-CORDEX bias corrected with EOBS10 used in this work. The experiment used
was the control historical simulation (r1i1p1 ensemble member at 0.11◦ of resolution).

No. Model/Institution Global Regional RCP Scenario

1 CNRM 3-CERFACS 5 CNRM-CM5 CCLM4 45
2 CNRM 3-CERFACS 5 CNRM-CM5 CCLM4 85
3 ICHEC 6-KNMI 7 EC-EARTH RACMO22E 45
4 ICHEC 6-KNMI 7 EC-EARTH RACMO22E 85
5 IPSL 8-INERIS 9 IPSL-CM5A-MR WRF331F 45
6 IPSL 8-INERIS 9 IPSL-CM5A-MR WRF331F 85
7 MPI 10-CSC 11 ESM-LR-MPI REMO2009 45
8 MPI 10-CSC 11 ESM-LR-MPI REMO2009 85

3 Centre National de Recherches Meteorologiques; 5Centre Europeen de Recherche et de Formation Avancée
en Calcul Scientifique (France); 6 Ireland’s High-Performance Computing Centre (Ireland); 7 The Royal
Netherlands Meteorological Institute (Netherlands); 8 Institut Pierre Simon Laplace (France); 9 Institut
national de l’environnement industriel et des risques (France); 10 Max Planck Institute for Meteorology
(Netherlands); 11 Climate Service Center (Germany).

3. Methods

We assume that the climate variables have trajectories that wind around a chaotic attractor that
contains the underlying dynamics of the system. We fix an arbitrary temperature T∗ and we consider
the probability that the time series T(t) returns within a tolerance ε to T∗. The return period is defined
as the average time it takes for the time series to "hit" this interval. More precisely, the recurrence
technique computes the probability Pr that the variable T returns in an interval of radius ε centered in
T∗: Pr(T∗ − ε < T < T∗ + ε).

Following [29], we provide the algorithm for defining the spectrum of recurrences for temperature
time series:

1. Compute the observable g(T∗, t) = − log(|T∗ − T(t)|)
2. Divide the series g(t) into n bins each containing m data and extract the maxima Mj, with

j = 1, ..., n.
3. Distribution functions like Pr(Mn ≤ z) are modelled, for n sufficiently large, by the so-called

generalized extreme value (GEV) distribution which depend on three parameters ξ ∈ R, κ ∈ R, σ > 0
and such that: FGEV(z; κ, σ, ξ) = exp

{
−
[
1 + ξ

( z−κ
σ

)]−1/ξ
}

.

The parameter ξ is called the tail index; when its value is 0, the GEV corresponds to the Gumbel
type of distribution. Indeed this is the expected distributions of recurrences, providing that we
use the g(T∗, t) observable.

4. Perform an Anderson and Darling [37] test to assess whether the fit is compatible with a
Gumbel distribution.

If the fit is found to be compatible with a Gumbel distribution, one can repeat the procedure for
shorter bin lengths and find the smallest m such that, for the chosen T∗, the fit converges. This defines
the shortest convergent recurrence time τ and its corresponding return value `. Note that, not for all
the T∗ it is possible to find a value of m such that the fit to the Gumbel law is acceptable. The range
of values T∗ such that there is a suitable m defines the (`, m) spectrum of recurrences as illustrated
in Figure 1. Rare temperatures are located in the white area between the red lines and the blue area.
This provides an alternative definition of maximum and minimum temperatures based on the rarity
of the recurrences. In the following we will stick this definition to define temperature hot and cold
extremes. This representation of a recurrence spectrum (i.e., temperature levels as a function of return

http://eca.knmi.nl
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times) is analogous to a Fourier spectrum (i.e., temperature values as a function of frequency), but for
nonperiodic phenomena.

We consider 100 years (1900–1999) of daily temperature data for the whole year. This allows
testing return times m between 6 months up to 4 years [28]. For recurrence windows longer than
4 years, we get less than 25 years of temperature recurrences and unreliable estimates of the Gumbel
distributions. Conversely, events chosen for bin lengths shorter than 6 months cannot be considered as
rare. We are dealing with non-stationary time series. However, the values of ` in the spectra are not on
the tails of the distribution of T∗ which implied that the non-stationarity (about 0.5 ◦C/century) does
not affect the convergence to the spectrum.

The procedure as well as the parameters used in this study is the same as in Faranda et al. [28].

Figure 1. After Faranda and Vaienti [29]. Region of temperature for which the hypothesis that minima
of |T∗ − T(t)| are GEV distributed is not rejected (blue area) for different period of recurrences m in
years. Return times τ and corresponding return levels ` are represented by the projections of the green
curve on the axis. Red lines are the absolute extremes of the series, indicated as global maximum and
global minimum.

4. Results

We evaluate how CMIP5 historical simulations can represent the recurrences in extremes events
using the methodology of [28] to further illustrate the biases between CMIP5 models and a reference
(20CRv2c). Here the term bias refers to the difference between CMIP5 and 20CRv2c recurrence spectra.

4.1. Changes in European Temperature Recurrence Spectrum

We illustrate the capabilities of the method by showing the results for three specific locations over
Europe (Figure 2). Here the curves represent the (`, τ) spectrum for a grid point in central Europe (a),
northern Europe (b) and southern Europe (c). The different shapes of the red lines (20CR), describing
the area of normal recurrences, are explainable in terms of the climate characteristics of the grid points
considered. Central Europe (a) features a continental climate with very cold extremes of temperature,
being −10 ◦ C rare for a return time of 1 year while−20 ◦C becomes normal for higher return times.
From 1 to 4 years of return times, 25 ◦C are normal temperature in warm extremes. The grid point
of Northern Europe (b) is located close to the Baltic sea showing mild temperatures in comparison
with a more continental Northern point. Even though, the shape of red line shows cold extremes of
temperature reach −15 ◦C for normal recurrences in return times of 2–4 years and 20 ◦C for warm
extremes in return times of 1–4 years. Temperatures lower than −10 ◦C are rare for return time of
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1 year or less. Southern Europe grid point is located in Guadalquivir valley, presenting very hot
extremes of temperatures reaching 40 ◦C as normal recurrences from 1 to 4 years of return times.
Cold extremes instead are rare for temperatures lower than 0 ◦C. All the models show that return
levels for hot temperature extremes are similar for 1 ≤ m ≤ 4 years (Figure 2). The EMM and the SDM
shows similar behavior with ` almost constant for 1 ≤ m ≤ 4 years.

However, return levels for the cold temperature extremes do depend on the bin length. For cold
(hot) temperature extremes the disagreement (agreement) between the models increases (decreases)
with the bin length, m = 4 (m = 1) and differences between 20CRv2c and EMM also increase (decrease)
with the bin length m = 4 (m = 1).

The agreement between return levels for models and the 20CR (Figure 2) depends on the location.
For location (a), the matching between EMM and 20CRv2c is good for both the hot and the cold
temperature extremes. Only few models deviate significantly from the reanalysis. For location (b) the
representation of cold and warm extremes is poor both for single models and EMM. Even if there is
inconsistency among each single model and 20CRv2c, the EMM follows the behavior of the reanalysis
but it underestimates the hot and overestimates the cold temperature extremes. In location (c), models
are more coherent, although the EMM is shifted towards colder extremes for both the hot and the cold
temperature extremes.

The distribution of the biases in return levels at all grid points is provided in Figure 3 in blue
for the cold and red for the hot temperature extremes. Numbers correspond to CMIP5 models in
Table 1, sorted by decreasing in resolution in order to investigate the role of horizontal resolution.
Figure 3 illustrates the probability distribution of biases between models and 20CRv2c showing the
results for 1 year (Panels a and c) and 4 years (Panels b and d) bin lengths m. Table 3 contains the
statistical information in Figure 3. The boxplots demonstrate the results obtained at some specific
location (Figure 2) : the cold extremes show larger biases than the hot extremes. This premise is also
evident in Figures 4 and 5. Figure 4 shows the errorbars of the biases in cold extremes (a) and hot
extremes (b) for all the bin lengths m. Moreover, biases in warm extremes do not change significantly
with the bin length. A Kolmogorov-Smirnov test shows that the distribution of biases is neither
Gaussian nor centered around zero for the models and the ensemble (Figure 5). The number of outliers
in Figure 5 is represented vs the mean of the biases (a) and the standard deviation (b) for m = 1 and
m = 4 by model (Higher/lower resolution in dark/light colours). In most cases, there are many
outliers, despite the fact that the standard deviation of the biases (Figure 4) is relatively small (Table 3).
The ideal case is only found for the hot temperature extremes at m = 4 years of the MIROC5 model.
This analysis shows that biases are not linked to the low/high resolution of the GCMs since there is no
trend in Figures 3–5.

We focus now on the spatial distribution of biases in order to investigate their coherence.
We concentrate on two quantities: the average biases of models EMM, obtained as the difference
between the ensemble mean and 20CR return levels at each grid point (Figure 6), and the SDM at each
grid point (Figure 7). Following the same structure of Figures 3–5 and the cold extremes (Figure 6a,b)
show larger deviations than the hot extremes (Figure 6c,d). This analysis shows the geographical
distribution of biases: for the cold extremes, the Southwestern Iberian peninsula shows the largest
positive biases, while for the largest negative biases occur in the Scandinavian region. The SDM
(Figure 7) shows a coherent spatial structure for both the cold extremes (a, b) and the hot extremes
(c, d). For the cold temperatures, larger biases appear mostly in the Scandinavian peninsula. For hot
temperatures, biases are in general small for both m = 1 and m = 4 year, except at some specific grid
points where they are mainly concentrated over the Baltic sea.
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Figure 2. Recurrence analysis at three specific grid points. Lines represent the curve (`, τ). (a) grid
point in central Europe with small inter-model biases, (b) grid point in northern Europe with large
inter-model biases for cold temperature extremes, (c) grid point in southern Europe withEMM biases
for hot temperature extremes and small inter-model biases . Red line: 20 CRv2c, black dashed line:
EMM and SDM (errorbars), Grey lines: single models.
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Figure 3. Box plots of the biases in Tmin (a,b in blue) and Tmax (c,d in red) between models and
20CRv2c in 1900–1999. Numbers in x-axis correspond to CMIP5 models ordered from highest to lowest
resolution. Central marks are the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers are plotted
individually. Different bin length m are represented: 1 year (a,c) and 4 years (b,d). Detailed statistical
information about this figure in Table 3.
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1 year in blue, 2 years in orange, 3 years in yellow and 4 years in purple. Detailed statistical information
about this figure appear in Table 3.
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return levels. Different bin length m are represented: 1 year (a,c) and 4 years (b,d). Detailed statistical
information about this figure in Table 3 (Ensemble). The three black dots in (d) correspond to central
(Figure 2a), northern (Figure 2b), and southern (Figure 2c) points of Figure 2.
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Figure 7. Standard deviation of the biases of models SDM for Tmax for hot temperature extremes (a,b)
and SDM for Tmin for cold temperature extremes (c,d). Different bin length m are represented: 1 year
(a,c) and 4 years (b,d). Detailed statistical information about this figure in Table 3 (Ensemble). The three
black dots in (d) correspond to central (Figure 2a), northern (Figure 2b), and southern (Figure 2c) points
of Figure 2.
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Table 3. Statistical information extracted from the box plots of the biases (Figure 3) in hot and cold
temperature extremes between models and 20CRv2c in 1900–1999 for two different bin lengths: m = 1
year and m = 4 years.

No. Model
Stand. Dev. Mean Skewness % Outliers

Bin Length (m)
min max min max min max min max

1 CMCC-CMS 1.97 0.99 −6.89 −2.56 0.43 0.02 22 16 1y
1.82 0.90 −3.42 −3.51 −0.18 −0.14 24 35 4y

2 CCSM4 1.47 0.70 0.28 0.54 0.83 −0.52 18 9 1y
1.86 0.54 1.96 0.33 0.24 −0.47 19 14 4y

3 CESM1-BGC 1.31 0.71 1.33 0.57 0.53 1.04 19 15 1y
1.14 0.69 0.73 0.08 0.45 −0.43 9 9 4y

4 CESM1-FASTCHEM 1.55 0.66 1.03 0.96 0.77 0.19 32 10 1y
1.33 0.50 0.47 0.47 0.59 −0.06 8 17 4y

5 EC-EARTH 1.55 0.77 0.21 −3.43 0.01 −1.24 22 6 1y
1.32 0.63 0.32 −3.02 −0.22 −0.81 14 5 4y

6 MRI-CGCM3 1.16 0.90 −2.28 −1.43 1.37 0.20 12 7 1y
1.85 0.45 −2.42 −2.08 −0.20 1.19 16 6 4y

7 BCC-CSM1-M 2.74 1.20 0.51 −1.71 0.26 −1.13 16 3 1y
2.69 1.06 1.58 −0.21 0.18 1.17 4 1 4y

8 MRI-ESM1 1.10 0.84 −2.35 −1.34 1.47 0.25 16 5 1y
1.93 0.49 −2.44 −1.75 0.19 0.24 18 9 4y

9 CNRM-CM5 1.56 0.83 −2.23 0.77 −0.01 0.52 20 7 1y
1.25 0.62 −1.23 0.88 0.00 −0.51 19 7 4y

10 MIROC5 1.43 0.64 −0.04 2.00 0.23 0.80 21 2 1y
1.26 0.49 3.13 1.62 0.35 −0.08 20 2 4y

11 ACCESS 1-0 1.41 0.78 3.06 −1.75 0.70 0.46 2 3 1y
1.82 0.83 3.44 −0.14 −0.52 −0.82 1 1 4y

12 ACCESS1-3 1.28 1.00 3.92 0.21 1.15 0.99 10 3 1y
1.56 1.00 6.90 1.14 −0.67 −0.81 12 1 4y

13 HadGEM2-CC 1.37 0.84 −3.70 −0.26 0.23 0.94 5 8 1y
1.49 0.67 −3.73 −0.51 −0.24 0.85 16 18 4y

14 HadGEM2-ES 1.44 0.75 −1.44 0.11 1.35 −0.17 22 3 1y
1.14 0.70 −1.13 0.40 −1.04 1.22 27 5 4y

15 HadGEM2-AO 1.22 0.85 −0.57 0.12 1.04 0.14 12 8 1y
1.10 0.72 −0.59 0.39 −0.14 0.70 13 5 4y

16 INM-CM4 2.04 1.27 −3.19 2.46 1.10 −0.28 19 4 1y
1.83 1.12 −3.79 2.06 0.63 −0.34 14 2 4y

17 IPSL-CM5A-MR 1.86 0.86 −0.86 −0.76 0.49 0.66 34 10 1y
1.95 0.64 −1.09 −0.83 −0.09 0.15 23 5 4y

18 MPI-ESM-MR 1.63 0.83 −1.60 −1.97 −0.03 0.52 25 10 1y
1.14 0.61 0.58 −1.65 −0.52 0.27 16 6 4y

19 CMCC-CMS 1.89 1.00 −4.88 −2.29 −0.02 0.02 21 23 1y
1.89 0.87 −2.12 −3.04 −0.40 0.05 42 19 4y

20 CSIRO-MK3-6-0 4.45 1.09 −5.85 −0.37 0.82 0.20 42 8 1y
3.53 1.20 −2.54 −0.45 −0.03 −0.67 33 12 4y

21 MPI-ESM-LR 1.65 0.66 −0.92 −2.63 0.40 0.16 31 2 1y
1.29 0.62 0.74 −2.05 −0.49 0.46 13 6 4y

22 MPI-ESM-P 1.38 0.74 −0.42 −2.01 0.55 −0.22 34 17 1y
1.45 0.50 1.28 −1.87 0.20 0.55 16 10 4y

23 FGOALS-2 2.35 1.02 0.44 6.20 0.39 −0.67 35 7 1y
2.63 0.82 −2.81 5.54 0.42 −0.10 24 4 4y

24 NorESM1-M 1.31 0.72 1.03 −1.44 0.52 −0.88 29 9 1y
1.35 0.43 0.24 −1.30 0.31 −0.16 18 2 4y
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Table 3. Cont.

No. Model
Stand. Dev. Mean Skewness % Outliers

Bin Length (m)
min max min max min max min max

25 GFDL-ESM2G 1.53 0.86 −3.42 −0.81 0.20 −0.24 14 8 1y
1.35 0.56 −2.74 0.11 −0.07 0.65 6 12 4y

26 GFDL-CM3 1.51 0.94 −1.88 −2.20 0.14 −0.84 14 4 1y
1.61 0.63 1.47 −0.69 0.05 −0.37 2 24 4y

27 GFDL-ESM2M 1.47 0.82 −2.50 −1.72 0.69 −0.03 8 2 1y
1.32 0.64 −0.74 0.45 −0.95 −0.32 4 10 4y

28 IPSL-CM5B-LR 1.90 1.05 −9.51 −0.57 0.05 −0.72 26 20 1y
3.28 0.81 −10.06 −1.74 −1.83 −1.58 29 5 4y

29 BCC-CSM1-1 1.98 0.68 0.16 −2.37 1.84 −0.37 7 2 1y
2.42 0.89 0.58 −0.84 0.34 0.54 9 1 4y

30 MIROC-ESM 1.87 0.77 2.46 −0.32 −0.11 −0.42 16 16 1y
1.76 0.67 5.83 0.08 −0.24 −0.05 6 1 4y

31 MIROC-ESM-CHEM 1.51 0.80 2.20 −0.19 −0.23 −0.07 14 9 1y
1.69 0.80 5.78 0.28 −0.32 −0.25 4 3 4y

32 CMCC-CESM 1.74 0.79 −4.65 −2.18 −0.23 −0.42 13 4 1y
2.23 1.02 −7.01 −3.26 −0.04 −0.32 10 22 4y

ENSEMBLE 4.50 3.19 −1.29 −0.61 0.53 −0.03 19 8 1y
5.01 2.98 −0.39 −0.46 −0.13 −0.01 15 9 4y

4.2. Effects of Resolution: A Regional Application

The sole use of CMIP5 simulations is not conclusive on the dependence on the resolution of
temperature extremes biases. Indeed the simulations span only a limited range of scale of order of
hundreds kilometers. To complete this study, we therefore analyze the outputs of 8 post-processed
regional models simulations (Table 2) from the bias Corrected EURO-CORDEX Climate Projections for
the period 1971–2005. Regional climate models add crucial spatial detail for temperature extremes,
allowing us to study fine-scale processes missing in Global Circulation Models,(e.g., Urban effects).
As for CMIP5 models, for the regional simulations we compute the EMM and SDM in a similar way.
These results are displayed in Figure 8. They show that increasing the resolution does not reduce the
order of magnitude of the SDM. As in the CMIP5 case, biases for the hot temperature extremes are
smaller than for the cold temperature extremes. The hot extremes biases are mostly located on the
Iberian Peninsula, as for CMIP5 models. The cold biases appear anywhere in continental Europe and
do seem not directly linked to the orography. These results are in line with Vautard, et al. [34] and
Lhotka and Kysely [38]. In Vautard, et al. [34] most of the regional models show an overestimation
of hot temperature extremes in Mediterranean regions and an underestimation over Scandinavia.
Thus, a preliminary analysis of the sources of spread show that the simulation of hot temperature is
primarily sensitive to the convection and the microphysics schemes. Lhotka and Kysely [38] suggest
that simulated cold events in central Europe should be analyzed and interpreted with caution, since
they may develop also under zonal flow in some models, which contradicts observations.
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Figure 8. Recurrences analysis for eight EURO-CORDEX runs at m = 1 years. Average biases of models
(a) for hot temperature extremes EMM for Tmax (as in Figure 6c for CMIP5) and (b) for cold temperature
extremes EMM for Tmin (as in Figure 6a for CMIP5). Standard deviation of the biases of models (c) for
hot temperature extremes SDM for Tmax (as in Figure 7c for CMIP5) and (d) for cold temperature
extremes SDM for Tmin (as in Figure 7a for CMIP5)

5. Discussion

We have analyzed the recurrence spectra for hot and cold temperature values in the European
region by using a methodology that provides robust estimates of return levels. In order to assess the
dependence on the horizontal resolution on the temperature extremes biases, we have used both CMIP5
global medium resolution simulations and regional high resolutions runs from EURO-CORDEX.

Our results show that inconsistencies of European recurrence spectra between models and
reanalysis can be much larger than the climate change signal in each model. Moreover, although the
biases are generally centered around zero, their spatial variability suggests that these are caused not
only by the differences in the average temperature of CMIP5 models but they largely depends on
model dynamics/physics. For cold temperatures we find that biases depend on the chosen return
period, whereas for the hot temperatures this dependence is observed only for return periods shorter
than the seasonal cycle. An additional important difference is that, while for warm temperatures the
biases are centered around zeros, for rare (m = 4y) cold temperatures the average biases are mostly
positive, although bias model dependence is very large. In individual models, the asymmetry between
hot and cold temperature recurrences and their biases is probably due to the (mis)representation of the
albedo for negative temperatures, as already discussed by [39]. Indeed an ensemble average of CMIP5
simulations allows to reduce those biases even though the distributions of hot and cold temperature
extremes differ in variance and number of outliers with respect to the 20CRv2c reanalysis.

Our results suggest how to perform models selection in order to avoid the models leading to
biased estimations of temperatures extremes on extended regions as well as on specific grid-points
for both global (CMIP5) and regional (EURO-CORDEX) simulations. This outcome is coherent with
Tebaldi and Knutti [40] who argued that the quantification of all aspects of model biases requires
multi-model ensembles, ideally as a complement to the exploration of single-model bias.

Our analysis gives geographical details on the distribution of the biases: in general we find that
models have the largest biases in hot temperature values in South Western Europe for both global and
regional simulations. For CMIP5 simulations, cold temperature extremes biases are larger over North
Europe and the multi-model bias spread is larger on the coastal grid-points. Improving the resolution
does not change the order of magnitude of the averaged biases although the multi-model spread is
reduced on the coasts. Overall, the biases in temperature extremes for recurrences in EURO-CORDEX
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simulations seem to be related to the physical parameterizations instead of the orography, since some
areas with complex geography do not present large biases. This motivates to further pursue the
bias corrections techniques to include the physical mechanisms at the origin of the biases in cold
temperature extremes, e.g., water phase transitions or ice-radiation feedbacks and interactions.

6. Conclusions

This paper presents a tool for a general assessment of biases in the recurrence spectra for
temperatures. We find that:

• The recurrence spectra obtained by the model ensemble mean are generally consistent with those
of 20CRv2c.

• The spectra biases have a strong regional dependence.
• A comparison with an ensemble of regional climate simulations shows that the resolution does

not change the order of magnitude of spectral biases between models and reanalysis.
• The spread in recurrence biases is larger for cold extremes.

Our analysis of biases provides a new way of selecting a subset of the CMIP5 ensemble to obtain
an optimal estimate of temperature recurrences for a range of time-scales. This assessment could be
extended to investigate the seasonal dependence of such the spectra, or their dependence on future
climate change.

In a changing climate, the analysis suggests that biases are so large for some grid points, that
it would not be straightforward to provide robust regional projection of hot and cold temperature
extremes, especially when using only a single model. Moreover, it suggests that sea-land effects
should be taken into account as biases are mostly concentrated around the coasts. Instead, it seems
that averaging the biases over Europe and/or over different models could provide results directly
comparable with the 20CRv2c.
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