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Abstract: Due to its geographical position, Mexico is exposed annually to cold fronts and tropical
cyclones, registering extremely high values that are atypical in the series of maximum annual flows.
Univariate mixed probability distribution functions have been developed based on the theory of
extreme values, which require techniques to determine their parameters. Therefore, this paper
explores a function that considers three populations to analyze maximum annual flows. According to
the structure of the Generalized Extreme-Value Distribution (GEV), the simultaneous definition of
nine parameters is required: three of location, three of scale, and three of probability of occurrence.
Thus, the use of a meta-heuristic technique was proposed (harmonic search). The precision of the
adjustment was increased through the optimization of the parameters, and with it came a reduction
in the uncertainty of the forecast, particularly for cyclonic events. It is concluded that the use of
an extreme value distribution (Type I) structured with three populations and accompanied by the
technique of harmonic search improves the performance in respect to classic techniques for the
determination of its parameters.

Keywords: harmonic search; Generalized Extreme-Value Distribution (GEV); maximum annual flow;
flow frequency analysis; mixed Gumbel; three populations Gumbel distribution; EV1

1. Introduction

Mathematical modeling of natural phenomena has become increasingly important due to the
implications of global warming and associated climate modification, taking special relevance in public
safety activities and economic aspects [1].

The modeling of extreme events is of great importance in countries affected by hurricanes.
Countries in Asia and Latin America are affected by cyclones and hurricanes, therefore new approaches
to frequency analysis with extreme data sets are often sought. In Mexico, a case of two hurricanes
occurring simultaneously on both coasts (Ingrid and Manuel in 2013) has already presented itself.
In general, hurricane winds affect infrastructure in urban areas. However, in Latin American countries,
human settlements on riverbanks are very common. Material damage and loss of human life happens

Atmosphere 2019, 10, 257; doi:10.3390/atmos10050257 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-9607-6274
https://orcid.org/0000-0003-2770-8642
http://www.mdpi.com/2073-4433/10/5/257?type=check_update&version=1
http://dx.doi.org/10.3390/atmos10050257
http://www.mdpi.com/journal/atmosphere


Atmosphere 2019, 10, 257 2 of 19

in rivers and their floodplains. For this reason, this paper considers the evolution of maximum flows
within a region highly exposed to hurricanes. This work also creates the possibility that with the
proposed methodology, other climatic variables can be studied.

Regarding frequency analysis, particularly for extreme events, the objective is to define the events
associated with a return period that provide information to carry out the design of hydraulic works,
decreasing the uncertainty of the forecast [2].

The development of the theory of extreme values comes from the past century, with an intense
exploration of applications to different disciplinary areas in the last 30 years. This theory allows the
modeling of queues in distribution and can extrapolate information in extreme regions with little
or no information [3]. Applications have been developed in hydrology, climatology, oceanography,
and environment within the engineering area. Certainly, one of the most important applications in
Mexico with regard to extreme values theory is the study of hurricane rains. There are historical
data of 350 mm of cumulative rain in 24 h for hurricane Gilberto (1988) and 411 mm (948 mb) in 24 h
for hurricane Paulina (1997), two of the most destructive hurricanes that have ever hit Mexico [4].
These kinds of events are certainly extreme rainfall if compared with the national mean of 770 mm per
year. A detailed study of the origin, characteristics, properties, and applications in hydrology for the
function of the Generalized Extreme-Value Distribution (GEV) was presented in Mexico [5,6].

The study of 31 historical records of flows, maximum annual precipitation, and maximum
wind speeds obtained in rivers and regions of Canada, the United States, England, Kenya, Mexico,
New Zealand, and Switzerland was carried out using the GEV distribution, comparing its performance
using the expressions of standard error and absolute error of adjustment [7].

The graphical, Log-Pearson III, and Gumbel methods were applied to obtain maximum rainfall
intensities in pluviographic stations in eastern Venezuela, concluding that Gumbel’s methodology is
applicable for periods less than 25 years [8].

The existence of areas in which the distribution of extreme values for extra-tropical winds presents
two populations, where local winds may be the product of two different systems with different physical
origins [9]. Each system has its own distribution function, so we can speak of mixed functions in the
modeling of information from two populations [10].

The presence of cold fronts or tropical cyclones generates atypical values in the series of maximum
annual flows (Q) registered by hydrometric stations installed in the study basins [2]. This behavior has
been studied using the Gumbel probability distribution function of two populations (EV1-2P) [11],
which later gave rise to the development of a new type of probability function named the mixed
probability distribution function [12].

Considering the statistical analysis of the record of maximum annual scale readings of
a hydrometric station in southeastern Mexico, it was concluded that the Gumbel double distribution
function carried out the best adjustment. The same result was obtained for the maximum annual
instantaneous flows that coincide on the same timescale [13].

The proposal to use a probability distribution function based on the Type I Generalized
Extreme-Value Distribution, considering three populations in records for Q [14], showed the pertinence
of its application in the hydrological area and the determination of the parameters through the use of
maximum likelihood (ML) methodology.

Continuing with the proposal [15] has led to a new study using the generalized extreme value
distribution considering three populations for events of a different nature recorded in the same place.
The parameters were determined in an analogous way using ML, and the results show a better performance
when including the Type I Generalized Extreme-Value Distribution for three populations (EV1-3P).

The estimation of the parameters in the GEV has been carried out by using ML, moments,
L moments, the sextiles techniques, and optimizing the objective function [7]. Multiple methods for
estimating the parameters of the Gumbel distribution function are reported in the literature, with the
moments and ML methods being the best known and most used of them all [16].
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The incorporation of technology in hydrological studies, specifically in frequency distribution
analyses, has allowed the exploration of the use of genetic algorithms [2] and meta-heuristic
techniques [17].

The harmonic search (HS) method was proposed based on the principles that underlie the
harmonic improvisation performed by musicians [18]; the characteristics that distinguish this algorithm
are its simple and efficient structure to perform the search [19]. It has been used in areas such as the
optimization of drinking water networks [20], the design of mechanical structures [21], the optimization
of functions [22], and optimization in data classification systems [23].

Other application areas are industry [24–27], optimization testing [28], power systems [29–31],
and signal and image processing [32,33], demonstrating its versatility in multiple disciplinary areas.

The exploration of HS implementation in hydrology has led to parameter estimation in the
nonlinear Muskingum model [34], in the same model using a hybrid algorithm [35], in optimal
groundwater remediation designs [36], in the optimization of storage operation [37], the estimation
of design storms [38], the conceptual modeling of rain-runoff transformation considering seasonal
variations [39], the estimation of time of concentration in basins [40], and the adjustment of Extreme
Value Distribution (Type I) for two populations in series of annual maximum flows [17].

The uncertainty of the forecast is mainly associated with the size of the sample of available
events, however the function adopted for its representation and the technique used to define its
parameters have a substantial influence on said value. Therefore, the objective is to explore the use of
the meta-heuristic technique HS in the simultaneous optimization of the necessary parameters in the
EV1-3P in I time series.

2. Data and Methods

2.1. Hydrometric Data at Hydrologic Region 10

Hydrologic region 10 is located in northwest of Mexico. It extends over parts of the states of
Sinaloa, Sonora, and Chihuahua, from the coastal plain to the crest of the Sierra Madre. Its area is more
than 80,000 km2; it includes some rivers, which supply water for some irrigation districts and provide
hydroelectric power. More than 90 gauged stations with 50 years of historical data constitute the gaging
network. Hydrologic region 10 has a sub-tropical climate. A large proportion of variability in the
rainfall regime of this region is due to the influence of the relief, i.e., the region is under the influence of
the Sierra Madre and is exposed to what is known as the “Mexican Tropical Front”. The mean annual
precipitation in this region is 800 mm, close to the national average (770 mm). The rainy season in
this region is between June and October. However, long periods of drought and long periods of flood
have been recorded, induced mainly by extreme meteorological phenomena. This is a sensitive region
exposed to climatic changes.

To carry out the comparison of the parameters obtained for the EV1-3P using the classical ML
technique with respect to the meta-heuristic HS technique, low records (Q) from the hydrometric
stations of Santa Cruz (10040) and Guamuchil (10031) were used.

Gaging station 10040 is located in the San Lorenzo River, at the coordinates 24◦29′05” N and
106◦57′10” W, and measures flows over a catchment area of 8919 km2. It is placed 24 km upstream
of the federal highway #15 bridge on the Mazatlan–Culiacan route, near Santa Cruz de Alaya, in the
municipality of Cosala. Gaging station 10031 is located over the Mocorito River, at the coordinates
25◦28′10” N and 108◦05′10” W, and measures flows over a catchment area of 1645 km2. It is placed
at the crossroads between the river and the South Pacific railroad, on the northern side of the city
of Guamuchil. The gaging stations are in the state of Sonora (Figure 1), and their information was
consulted in the National Data Bank of Surface Waters (BANDAS acronym in Spanish) through the
official website of the National Water Commission (CONAGUA acronym in Spanish). In Mexico,
hydrometric measurements are performed with Mexican Standards (NMX) produced by CONAGUA.
These Mexican standards are based on ASTM D3858-95 and ASTM D5130-95. The stability of the
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cross-sectional area is verified twice a year by CONAGUA. The homogeneity of the database is
reviewed annually by the Mexican Institute of Water Technology (IMTA).
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Figure 1. Geographical location of hydrometric stations in Sinaloa, Mexico.

The hydrometric data was extracted from the maximum annual flows of the sample of the mean
daily flows at each station. Precautions were taken at all times not to select the annual instantaneous
maximum values measured at the stations; this in accordance with the theory of extreme values because
only one value is being sampled.

The historical Q series considered for station 10040 has 45 data points (Table 1), while station 10031
consists of 37 data points (Table 2). This was to establish the frame of comparison with the studies
carried out by Raynal and Garcia [14].

Table 1. Maximum annual flows recorded at hydrometric station 10040.

Year Q (m3/s) Year Q (m3/s) Year Q (m3 s–1) Year Q (m3/s)

1943 2103.0 1955 1252.0 1967 950.0 1979 3080.0
1944 2142.0 1956 369.5 1968 7000.0 1980 1550.0
1945 1023.4 1957 330.0 1969 484.0 1981 306.2
1946 837.6 1958 1958.0 1970 920.6 1982 151.0
1947 1161.2 1959 762.2 1971 812.0 1983 83.0
1948 1062.0 1960 1074.0 1972 3332.4 1984 126.0
1949 784.2 1961 1280.0 1973 898.0 1985 875.0
1950 1086.3 1962 1002.0 1974 2790.0 1986 608.2
1951 487.8 1963 3680.0 1975 620.0 1987 134.1
1952 677.0 1964 861.0 1976 1495.0
1953 807.0 1965 888.8 1977 836.0
1954 553.0 1966 1166.4 1978 940.0

Subsequently, the Q register was ordered in a decreasing way, assigning to each annual flow
a period of return in accordance with the expression proposed by Weibull (Equation (13)) [41], as widely
used by countries such as Mexico, and Central and South America. This allowed the sample data to
be plotted with respect to the reduced variable −ln (−ln ((Tr − 1)/Tr)), and observing segments with
different linear tendencies in the traced behavior (Figures 2 and 3).
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Table 2. Maximum annual flows recorded at hydrometric station 10031.

Year Q (m3/s) Year Q (m3/s) Year Q (m3/s) Year Q (m3/s)

1938 35.0 1948 648.0 1958 1014.0 1968 200.0
1939 299.0 1949 375.0 1959 1610.0 1969 312.0
1940 254.5 1950 272.3 1960 137.0 1970 520.0
1941 65.3 1951 422.3 1961 524.5 1971 1045.0
1942 445.0 1952 376.8 1962 985.0 1972 33.8
1943 1550.0 1953 1173.0 1963 459.5 1973 12.5
1944 391.8 1954 219.0 1964 390.0 1974 10.5
1945 916.0 1955 3507.0 1965 449.0
1946 241.0 1956 165.0 1966 793.9
1947 530.0 1957 526.0 1967 719.5
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2.2. Generalized Extreme-Value Distribution (GEV)

Extreme value theory focuses on those events that constitute the queues of a distribution, that is,
the highest or lowest values for the variable under study. The realization of multiple works focused
on its application allowed Emil Julius Gumbel to write the general theory in his book Statistics of
Extremes in 1958 [42].

This allowed the defining of the characteristic function that allows its adjustment to one of the
three asymptotes, according to the size of the sample of maximum events that constitute the series [43].

F(qi) = Pr(Q ≤ qi) = e(−[1+
qi−ε
λ k]

−
1
k ); where qi, ε,λ, k ∈ R (1)
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Equation (1) represents the (GEV) and establishes three types of distribution that graphically
generate asymptotic behaviors according to the values adopted from the parameters of location (ε),
scale (λ), and shape (k). F represents the probability of non-exceedance for the probability distribution
function. qi is the order assigned to the maximum annual expenditure in the time series.

In the case where k tends to 0 and −∞ < qi < ∞ is defined as Type I (EV1), this is called the
Gumbel function. If k < 0 and ε + λ/k < qi <∞, this is defined as Type II, known as the Frechet function.
Finally, if k > 0 and −∞ < qi < ε + λ/k, a Type III or Weibull function is generated [44].

The probability density function (pdf ), obtained by means of the ratio of change (qi) with respect
to the independent variable Q, has the form:

dF(qi)

dq
= f (qi) =

1
λ

e(−[1−
qi−ε
λ k]

1
k )

[
1−

qi − ε

λ
k
] 1

k−1
(2)

2.3. Gumbel Distribution

The Gumbel distribution (EV1) is one of the three distributions generated from the GEV [45],
and in which the random variable presents bias to the right [16].

F(qi) = e−e(−
qi−ε
λ )

(3)

The pdf for EV1 is:

f (qi) =
1
λ

e−e(−
qi−ε
λ )

e(−
qi−ε
λ ) (4)

2.4. Extreme-Value Distribution (Type I) for Two Populations

The EV1 function of two populations (EV1-2P), considers in its general structure a vector of
parameters (θ) and the value of the probability of occurrence for non-cyclonic events (P), which give
validity to each of the components of the function for the recorded data [46].

F(qi;θ) = PF(qi;θ1) + (1− P)F(qi;θ2) (5)

Considering implicit the vector of parameters, which is formed by four elements, two of them
associated with the location and the rest with the scale, the Gumbel mixed distribution is:

F(qi) = P1e−e
(−

qi−ε1
λ1

)

+ (1− p)e−e
(−

qi−ε2
λ2

)

(6)

The corresponding pdf for the EV1-2P is:

f (qi) = P 1
λ1

e−e
(−

qi−ε1
λ1

)

e(−
qi−ε1
λ1

)
+ (1− P) 1

λ2
e−e

(−
qi−ε2
λ2

)

e(−
qi−ε2
λ2

) (7)

In Equation (7), the subscript 1 represents the non-cyclonic population and the subscript 2
constitutes the cyclonic population. The restriction 0 < P < 1 must be met, so that (1 − P) will represent
the data for cyclonic events.

2.5. Extreme-Value Distribution (Type I) for Three Populations

Based on the general form of the EV1-2P [15] proposed, the EV1 considering three populations
(EV1-3P) is applied to the analysis of maximum annual flows through an interactive package developed
in Visual Basic 5.0.

F(qi;θ) = P1F(qi;θ1) + P2F(qi;θ2) + (1− (P1 + P2))F(q1;θ3) (8)
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Again considering the vector of parameters to be implicit, it is now made up of six elements, three
of them associated with the location and the rest with the scale. Additionally, it has two probabilities
that must be determined, while the third will complement these two.

F(qi) = P1e−e
(−

qi−ε1
λ1

)

+ P2e−e
(−

qi−ε2
λ2

)

+ (1− (P1 + P2))e−e
(−

qi−ε3
λ3

)

(9)

The corresponding pdf for the EV1-3P will take the form:

f (qi) = P1
1
λ1

e−e
(−

qi−ε1
λ1

)

e(−
qi−ε1
λ1

)
+ P2

1
λ2

e−e
(−

qi−ε2
λ2

)

e(−
qi−ε2
λ2

)

+(1− (P1 + P2))
1
λ3

e−e
(−

qi−ε3
λ3

)

e(−
qi−ε3
λ3

)
(10)

Equations (9) and (10) are subject to the restriction 0 < P1 + P2 < 1, so that the third element makes
sense. The first population is associated with flows of small magnitude, the second one with flows of
medium magnitude, while the third one is associated with flows of greater magnitude for a return period.

2.6. Return Period

The return period (Tr), also known as the recurrence interval, defines the average time elapsed
in years for an event of a specific magnitude to occur or be of greater value [47]. It is related to the
probability of excess through the expression

P(Q ≥ qi) × T = 1 (11)

However, the analysis of frequency in maximum annual flows is carried out using probabilities of
non-excess, which are related to Tr through the expression

P(Q ≤ qi) = 1−
1

Tr
(12)

Equation (12) allows Tr to work directly instead of probabilities, the advantage of which lies in
considering the same units (years) as the useful life on site. Multiple expressions to calculate Tr have
been proposed [48], assigning non-zero occurrence values for events outside the limits recorded in the
hydrological series of events.

In the present work, we used the expression proposed by Weibull, who considered the size of the
data sample (N) and the decreasing order in which the event (m) is stored in the sample [41].

Tr =
N + 1

m
(13)

Tr values obtained with different expressions vary notably, in particular from the first to the fifth
element of a decreasing series; after that, the values are identically equal [49].

2.7. Standard Adjustment Error

To verify the accuracy of the adjustment made, the Standard Adjustment Error (EEA, Spanish
acronym) of the Q estimates F(qi) was used with respect to those recorded F′(qi) both associated with
the same probability [50,51].

EEA =

√√√√√√ n∑
i=1

[F′(qi) − F(qi)]
2

N − np
(14)

In Equation (14), in the denominator is established the comparison of N in relation to the number
of parameters (np) of the analyzed distribution, which in the case of the EV1-3P is eight. EEA is
considered to be the objective function to be minimized by the HS meta-heuristic technique.
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2.8. Harmonic Search

The meta-heuristic algorithm called harmonic search (HS) has a five-step structure whose common
goal is the definition of the solution vector for the objective function.

This vector considers all the variables present in the objective function and is achieved using
an optimization technique that establishes the search for the global minimum. The scheme used is
similar to the generation of harmonies carried out in musical processes based on the improvisation
capacity of the performers in a melodic group [18].

In the first step, the parameters of the algorithm must be defined according to the nature of the
problem. This begins by the defining of the decision variables (NHS) that make up the harmonic vector,
as well as its possible solution space (xi). This is done by identifying the upper (xUi) and lower (xLi)
limits within which the defined objective function f (xi) will be evaluated.

At the same stage, the number of vectors (HMS) that will be stored in the solution matrix called
harmonic memory (HM) is specified. These solutions will be contrasted with a new stochastic solution
(xi+1), thus establishing the solution of the corresponding iterative step.

In the same way, the HMCR (Harmonic Memory Consideration Rate) parameter is a percentage
where it is defined if any of the solutions stored in the harmonic memory are taken. When using
one of these solutions, the temporary solution matrix is formed, otherwise a new solution must be
proposed. The (bi) bandwidth is defined by the minimum and maximum gauged flows. The PAR
parameter allows the convergence of the model since it controls that the random solutions are not out
of the bandwidth.

All of the mentioned parameters establish the reference frame within which the total number
of specified iterations (NI) will be carried out, and the iterative process can also be limited by
a stop criterion.

As a second step, HM is constructed, with each of the solution vectors indicated in HMS including
a random number (R1) in the interval of 0 to 1 that modifies the uniform distribution of the xUi − xLi
range of each variable.

xi = xLi + R1 · (xUi − xLi) (15)

The third step is the generation of new harmonies xi′ = (x1′, x2′, . . . , xN′) using an improvisation
process that considers the parameters HM, PAR, and HMCR. In this generation, a second random
number (R2) is used in the interval of 0 to 1 that will modify the magnitude of bi.

xi′ = xi + R2 · bi (16)

Compliance with the restrictions to which the problem is subject is reviewed. If any of them is not
complied with, the value of f (xi) is penalized, for the EV1-3P there is one:

i f P1(xi) + P2(xi)> 1
Penalty = CP1· f (xi)

else
Penalty = 0

end

(17)

The fourth step updates HM according to the harmony solution generated in the previous step
considering the fulfillment of restrictions, and it will take the position of the most unfavorable harmony
stored with respect to the performance of the defined value of the target function.

If the harmony generated in this step is better than the worst performance vector stored in the HM
matrix, will be replaced; otherwise, it will be discarded and a new iteration will be started, continuing
in this way until a defined value for NI is reached.



Atmosphere 2019, 10, 257 9 of 19

In the last step, it is verified if the convergence criterion has been fulfilled or not. This gives the
total number of harmonies performed with respect to the value defined for NI at the beginning of
the algorithm.

3. Results

After consulting the Q records at the hydrometric stations, their descriptive statistics were defined
for hydrometric stations 10040 (Table 3) and 10031 (Table 4).

Table 3. Mean and standard deviation of Q for hydrometric station 10040.

ID Station Name Data (years) Mean (m3/s) Standard Deviation (m3/s)

10040 Santa Cruz 45 1228.42 1203.99

Table 4. Mean and standard deviation of Q for hydrometric station 10031.

ID Station Name Data (years) Mean (m3/s) Standard Deviation (m3/s)

10031 Guamuchil 37 580.78 635.36

Each value in the register was then ordered in decreasing order, assigning the corresponding Tr to
each event (see Equation (13)). To initiate the HS meta-heuristic technique, the initial parameters of the
algorithm were defined in each of the case studies, which correspond to the hydrometric stations.

For station 10040, xU = [1, 7000, 7000, 1, 7000, 7000, 7000] was defined, and for station
10031, xU = [1, 4000, 4000, 1, 4000, 4000, 4000, 4000]. The rest of the parameters for both stations were
xL = [0, 0, 0, 0, 0, 0, 0, 0], HMS = 40, NI = 10000, HMCR = 0.90, and PAR = 0.30, and B = (xU − xL)/NI
was considered as the expression for the bandwidth.

Once the parameters were defined, the technique was randomly started with the initial harmonic
memory. Thirty processes were performed for each station in the optimization of the parameters,
taking as a solution the one that generated the minimum value of EEA. The solution obtained was
compared with that previously reported by Raynal and Garcia [14].

The final solution of station 10040 is shown below by graphing the stochastic optimization process
for each of the parameters that constitute the EV1-3P function (Figures 4–8).
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The graphs associated with the stochastic process of optimization for each of the parameters in
the EV1-3P function for station 10031 are shown in Figures 9–13).
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The optimized solution and the calculated value of the EEA to verify the goodness of the
adjustment, carried out for both hydrometric stations, was recorded (Table 5).

Using the optimized solution, design values were obtained for both stations for 20, 50, 100, 500,
1000, 5000, and 10000 years of return period (Table 6). These values are used for the design of different
engineering works and in our particular case, hydraulic infrastructure for the incidence of tropical
cyclones, considering the level of confidence associated with their safety.
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Table 5. Comparison of parameters obtained in the EV1-3P using Maximum Likelihood (ML) and
harmonic search (HS) methods.

Parameter
10040 10031

ML HS ML HS

P1 0.34 0.62 0.10 0.45
ε1 (m3 s–1) 351.30 580.65 8.88 373.27
λ1 (m3 s–1) 254.99 510.30 7.97 206.95

P2 0.40 0.10 0.70 0.42
ε2 (m3 s–1) 898.68 3889.84 230.23 165.41
λ2 (m3 s–1) 121.96 1251.38 188.29 249.35

P3 0.26 0.28 0.20 0.12
ε3 (m3 s–1) 1893.20 882.79 999.90 1598.59
λ3 (m3 s–1) 1139.43 118.67 622.42 717.73

EEA 391 300.76 245 187.92

Table 6. Comparison of the design values of gaging stations 10040 and 10031 obtained by using the
parameters computed in the EV1-3P by using ML and HS methods.

Tr
QT (m3/s)

10040 10031

ML HS ML HS

20 3652 4362 1778 2122
50 4770 5769 2401 2883

100 5583 6706 2849 3411
500 7435 8773 3863 4589
1000 8228 9647 4296 5089
5000 10068 11667 5299 6247

10000 10862 12545 5731 6745

With the parameters computed in the EV1-3P by using ML and HS methods, the design value
behavior for different return periods was calculated for both stations. Figures 14 and 15 show the
fitting with respect to the historical Q series.
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4. Discussion

For the optimization of both stations, the parameter vectors xU and xL were defined according
to the historical Q register. In the case of xL, taking care that it had to maintain physical sense for all
the parameters of Equation (9), they adopted the value of zero, which corresponds to the absence of
flow in the hydrometric station and to a null probability for the first and second population. xU is the
value of the maximum annual flows of the sample and P is the probabilities of the first and second
population. The calculation of P with the proposed HS meta-heuristic technique for the EV1-3P,
from the multiple populations that compose the historical data sample, represents a great advantage
over other procedures. Yue et al. [52] reports that the calculation of the probability parameter is
sensitive to the correlation coefficient for defining the size of the populations, especially when the
bivariate extreme-value distribution model with Gumbel marginals is used. This is not the case with HS,
as all parameters are optimized simultaneously. It is important to emphasize that P3, which represents
the probability of the third population, is a function of P1 and P2 by means of the term (1 − (P1 + P2)),
which indicates whether the data sample is adjusted to an EV1-3P function or should be adjusted to
an EV1-2P function. It is important to mention that when processing samples from two populations,
finding the P parameter is easier. Simply select the size of one of the series and the second will be
defined [46,51].

The rest of the parameters were defined, and once the iterative processes of both hydrometric
stations were initiated, the existence of convergence to the minimum possible value of the objective
function could be appreciated (Figures 4 and 9).

In the first case study, station 10040 provided 45 data points for which 4500 iterations were
necessary before starting a gradual decrease in the EEA. Before that, we can observe a decrease with
seasonality from 0.13 to 0.55 in the first 200 iterations. There was a then staggered decrease from 0.55
to 0.22 over 2500 iterations. In this case, the number of iterations is much higher than that reported in
the literature for this sample size [20,38].

The mean of the 40 harmonic vectors with which harmonic memory was initiated corresponds to
the same number of stochastic proposed initial solutions. The new model iterations replace the most
unfavorable solution.

An important decrease in the average is observed in the first 1000 iterations, which indicates
the speed of the method to converge on a solution. After that, the speed of convergence is reduced
until iteration 6000, from which we can observe that practically, the solution that optimizes the eight
parameters of the EV1-3P function has been reached.
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Figures 6–8 represent the stochastic processes of probabilities, location, and scale parameters in
the three populations of Equation (9). Overall P2, ε1, ε3, λ1, and λ3 show significant variation in the
first 2000 iterations, after which they begin to show asymptotic horizontal behaviors.

ε2 and λ2, contrary to P2, require 6000 iterations prior to establishing the horizontal trend of
solution, which suggests that the probability of the second population has a transcendental role in the
optimization process. The results of this model are obtained with a faster convergence (less iterations)
than the one reported in models in Sinsuphan et al. [30] and Yoon et al. [38].

These graphical behaviors are given by the successive repetition of the magnitude of each
parameter with respect to the iterations performed. However, due to the generation of random
numbers within the code, values are recorded that break the trend in a punctual manner, returning to
count again in iterations after the horizontal trend.

In the second case study, 37 data points were considered from station 10031, which generated a
much higher value of the EEA target function, starting with a magnitude of 0.95 (Figure 9) as opposed
to 0.13 in the first case study (Figure 4).

At the beginning of the optimization process, minimal iterations were required to reduce the EEA
value to 0.41. The number of iterations was reduced to 2000 and finally, this is the value of the final
solution. This behavior reaffirms the efficiency of the meta-heuristic technique for minimizing the
objective function (Equation (14)).

Similarly, the behavior shown by the average of the 40 vectors that constitute the harmonic
memory starts with a value of 2.50 (Figure 10), as opposed to 0.45 in the first case study (Figure 5),
which is derived from the lower dispersion shown by the data when plotted with respect to the
reduced variable.

Nevertheless, there is an initial reduction in the average value until it reaches 1.25 in the first
iterations, from which the slope of the curve is reduced, starting a less accelerated process until reaching
a value of 0.30 in iteration 1000, presenting a slight seasonality. At 2000 iterations, the solution has
been reached.

When graphing the successive behavior of the stochastic values of the probability in the three
populations, variation can be observed in the first 2000 iterations to later establish the trend of solution.

Unlike the first case study, a greater stability is shown in P1 and P2, which therefore generates
an associated stability in P3 and specifically reduces the amplitude in its search interval, which is not
greater than 0.60 in most cases.

Regarding the location parameters, it can be observed that both ε1 and ε2 experience trends in the
first 2000 iterations, and the horizontal trend of solution resulting from the consecutive repetition of
the response value is subsequently established. However, trends in small values are reflected in trends
of significant magnitude in ε3, which causes it to be established up to iteration 7000.

Finally, the location parameters λ1 and λ2 also presented several initial horizontal tendencies in
the first 2000 iterations and later establish the solution tendency. However, defining λ3 by means of the
stochastic search showed an important oscillation even when it tends to reduce gradually without
showing a solution tendency as marked as in the previous parameters.

With the eight parameters defined for the EV1-3P function in each of the stations, the maximum
flows were calculated to compare them one by one with respect to the Q recorded and define the value
of the EEA (Equation (14)).

When comparing the adjustment made using the ML technique carried out [16], a decrease of
90.24 units in the EEA is observed for hydrometric station 10040 and 57.08 units for hydrometric station
10031 (see Table 5). In the first case, there is a reduction of 23.07% in the reported values, and 23.29% in
the second case, using a classical optimization technique with respect to the meta-heuristic technique
used in this work.

When recording the information (Table 5) of both case studies for P1, an increase in value is
observed. In P2 there is a decrease, while for P3 there is little change. As P1 increases, the values of



Atmosphere 2019, 10, 257 16 of 19

ε and λ increase. In the case of P3, its behavior is complementary with respect to ε and λ, with an
important difference when associated with the reduced number of data points of the sample used.

In the graphical representation of the optimization carried out (Figures 14 and 15), using the HS,
the three flows of greater magnitude of the reduced variable calculated are greater than the historical
ones registered, which allows the maximum flow of the calculated series to be closer in magnitude to
the maximum flow registered. This is significantly reflected in the EEA value for the sample.

In the behavior described by the design values for higher return period magnitudes in both
stations (Figure 15), suggest that the results estimated using the HS method produce an overestimate
of approximately 20% in the design values for return periods greater than 10 years. For shorter return
periods, in both methods there are no discrepancies between the design values.

In the optimization process, it is advisable to consider the largest possible series of maximum
annual flow to improve the estimation in design values with a high return period.

In future works, the application of the EV1-3P to the rest of the stations in the state of Sinaloa
will be explored to verify that the results obtained in this work can be generalized. If possible,
this generalization process will study stations in other states of Mexico and other parts of the world
that have the same effect of cyclonic events. Escalante-Sandoval [53] suggests that it is very important
to consider the Mixed Weibull distribution and its bivariate option when analyzing floods generated
by a mixture of two populations. In Latin America and the Caribbean, measurement continues to be
one of the fragile points of modern hydrology. In addition to the problem of insufficient information,
the traditional analysis of the frequency flows for extreme values implies the verification of the
homogeneity of historical series. The fact that a historical series of data consists of several populations
may be the result of a number of factors, including seasonal variations in flood occurrence mechanisms,
e.g., hurricanes or the El Niño/La Niña phenomenon. The estimation of floods for a certain return
period can be inefficient for design purposes. For this reason, the use of mixed distributions is a good
option to improve the prediction of extreme floods. Extreme phenomena affecting Mexico, such as the
occurrence of two hurricanes at the same time (Ingrid and Manuel in 2013), should be studied with
mixed probability distributions of two or more populations [53]. Recent studies have shown that when
using mixed distributions, such as Mixed Gumbel, Gumbel-Logistic and Gumbel-Hougaard Copula,
the main problem is the adaptation of extreme values [54].

5. Conclusion

Having implemented an HS meta-heuristic technique for the EV1-3P of Q, it is concluded that it is
an effective and efficient option for the simultaneous determination of the three location, the three
scale, and the three probability parameters, according to the structure of nine parameters that conform
to the structure of the function.

Likewise, it is established that it represents a better option for the analysis of frequency distribution
in samples containing cyclonic and non-cyclonic events compared to classical techniques such as ML.

The decrease in the value of the EEA establishes that a better Q forecast is made depending
on different return periods, with which the uncertainty of the design flows is reduced in regions
periodically affected by cyclonic events, particularly in the coastal regions of the Pacific Ocean.

The mathematical tool presented here applies to runoff data. Therefore, future hydrological
responses will have to be studied with the analysis of extreme events, as the processes of the hydrological
cycle are sensitive to climate change. However, the proposed methodology can be used with other
meteorological factors that have an influence on the runoff process, as extreme meteorological elements
will impact in the calculation of runoff [55].
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