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Abstract: During the Japanese intercomparison study, Japan’s Study for Reference Air Quality
Modeling (J-STREAM), it was found that wintertime SO4

2– concentrations were underestimated over
Japan with the Community Multiscale Air Quality (CMAQ) modeling system. Previously, following
two development phases, model performance was improved by refining the Fe- and Mn-catalyzed
oxidation pathways and by including an additional aqueous-phase pathway via NO2 oxidation.
In a third phase, we examined a winter haze period in December 2016, involving a gas-phase
oxidation pathway whereby three stabilized Criegee intermediates (SCI) were incorporated into the
model. We also included options for a kinetic mass transfer aqueous-phase calculation. According
to statistical analysis, simulations compared well with hourly SO4

2– observations in Tokyo. Source
sensitivities for four domestic emission sources (transportation, stationary combustion, fugitive VOC,
and agricultural NH3) were investigated. During the haze period, contributions from other sources
(overseas and volcanic emissions) dominated, while domestic sources, including transportation and
fuel combustion, played a role in enhancing SO4

2– concentrations around Tokyo Bay. Updating the
aqueous phase metal catalyzed and NO2 oxidation pathways lead to increase contribution from other
sources, and the additional gas phase SCI chemistry provided a link between fugitive VOC emission
and SO4

2– concentration via changes in O3 concentration.

Keywords: Community Multiscale Air Quality (CMAQ); East Asia; Tokyo; SO4
2–; stabilized Criegee

intermediates (SCI)

1. Introduction

To improve our understanding of the behavior of air pollutants, advances in three-dimensional
air quality modeling are necessary. Modeling systems can represent key environmental processes
(emission, transport, chemical reactions, deposition) which determine the behavior of air pollutants;
however, there are uncertainties in these processes. To better understand these uncertainties and
improve modeling performance, intercomparison studies can be of great value. Based on the results
and experience of projects in Japan, an intercomparison project called Japan’s Study for Reference Air
Quality Modeling (J-STREAM) was initiated [1], and this has provided insights into how to improve
modeling [2–5]. J-STREAM aims to establish reference air quality models for source apportionment
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and to formulate a strategy for mitigating air pollutants in Japan, including particulate matter with
diameters less than 2.5 µm (PM2.5) and photochemical ozone (O3). The first phase of J-STREAM
focused on understanding the ranges and limitations of PM2.5 and O3 concentrations simulated
by participants using common input datasets. Simulations for the first phase were conducted over
two weeks in each season from January 2013 to March 2014 in accordance with official monitoring
programs for PM2.5 [1]. In Japan, sulfate (SO4

2–) aerosol is a major component of PM2.5 and it was
found that models generally capture the observations but underestimate the concentrations in winter.
Therefore, the model processes that were related to SO4

2– production were carefully reviewed, revealing
inadequate oxidation of SO2 via aqueous-phase reactions of O2 catalyzed by Fe and Mn because of
a lack of trace metal data over Asia in the current emission inventory [3]. For the second phase of
J-STREAM, a winter haze episode for the period 13–25 December 2016 was targeted. In addition to
the incorporation of refinements for the Fe- and Mn-catalyzed aqueous oxidation in the first phase,
the aqueous-phase reaction via NO2 was introduced, and this increased the SO4

2– production levels to
catch the SO4

2– observations. Intercomparison studies involving two state-of-the-art regional models,
the Community Multiscale Air Quality Model (CMAQ) and the Comprehensive Air Quality Model
with eXtensions (CAMx) were also conducted. As a result, it was suggested that differences in model
performances were possibly [4] caused by wet deposition processes. Thus, a third phase of J-STREAM,
which is the focus of the present study, was conducted, which again involved the winter haze episode
examined in second phase. The main purpose of third phase was to obtain and compare the source
sensitivities with respect to major emission sources by model intercomparison.

The remainder of this paper is organized as follows. The model setups for CMAQ are described
in the next section. To improve the estimations for the ambient concentrations of SO4

2–, an additional
gas-phase oxidation pathway involving stabilized Criegee intermediates (SCI) was included in the
model and full details of the reaction chemistry are given. In the results and discussion section, model
performances were evaluated for observations in Tokyo together with an analysis of source sensitivities.
The conclusions are presented in the final section.

2. Modeling Design

The third phase of J-STREAM focuses again on the winter haze episode of 15–25 December 2016 [4].
The domain and the common input dataset for the emissions and the meteorology basically followed
that for the J-STREAM framework [1]. Domain 1 covered the whole of Asia, domain 2 covered the whole
of Japan and domains 3 and 4 covered the Kansai region (including Osaka and Nagoya) and the Kanto
region (including Tokyo), respectively. The horizontal grid resolution was 45 km for domain 1, 15 km
for domain 2, and 5 km for domains 3 and 4. In the second phase, the vegetation database for Japan was
introduced and this revision helped to improve the meteorological fields and the emissions of biogenic
volatile organic compounds [2]. For the emissions inventory, the compositions of metal elements in
PM2.5 over Asia were considered in accordance with chemical composition reports [6] based on our
recommendations in first phase [4]. In the third phase, anthropogenic emissions from China were
revised by adjusting data for 2016 that included updated emission information. For example, the SO2

emissions from China in 2016 was almost half of emissions in 2010 [7]. For meteorology the revision
was performed in this third phase on the configuration of Weather Research and Forecasting (WRF)
version 3.7.1 [8]. The revised points are summarized as follows and others are based on the established
J-STREAM framework in the first phase. The top pressure level was set on 50 hPa. The reanalysis data
was taken from the National Centers for Environmental Prediction (NCEP) final analysis (ds083.3)
with 6-h intervals and with a 0.25◦ horizontal grid resolution [9], and the sea surface temperature
(SST) data was obtained from the Group for High Resolution Sea Surface Temperature (GHRSST) of
level 4 with 24-h intervals and with 1-km horizontal grid resolution [10] for the initial and boundary
conditions. The grid nudging on wind was conducted on all layers, and those on temperature and
water vapor were not conducted in the planetary boundary layer (PBL). The nudging coefficient for
wind was 1.0 × 10−4 for all domains and those for temperature and water vapor were 5.0 × 10−5 for
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domain 1, 3.0 × 10−5 for domain 2, and 1.0 × 10−5 for domains 3 and 4. The shortwave and longwave
radiation scheme used RRTMG [11], and the microphysics and cumulus options respectively adopted
the Morrison double-moment scheme [12] and the Grell–Devenyi ensemble scheme [13] based on the
performance improvement on pre-simulation.

CMAQ version 5.2 [14] model simulations were performed in this study. The gas and aerosol
chemistry were handled by SAPRC07 [15] and AERO6, respectively. In connection with SO4

2–

production, CMAQ version 5.2 features one gas-phase chemical reaction and five aqueous-phase
chemical reactions [16]. The original configuration released as CMAQ (hereafter referred to as the
base-case simulation) was simulated first. Then, the simulation of chemistry updates A was performed
based on our findings in the first phase [3]. The aqueous-phase oxidation pathways for O2 via Fe and
Mn catalysis were refined by increasing the anthropogenic Fe and Mn solubilities from 10% to 25% and
from 50% to 100%, respectively. In this aqueous-phase oxidation pathway for O2:

− d[S(IV)]/dt = k1[Fe(III)][S(IV)] + k2[Mn(II)][S(IV)] + k3[Fe(III)][Mn(II)][S(IV)] (1)

considered the pH dependency of the rate constants as follows when the synergistic existence of Fe
and Mn,

k3
′ [H+

]0.67
[Fe(III)][Mn(II)][S(IV)] (pH ≥ 4.2),

k3
′′ [H+

]−0.74
[Fe(III)][Mn(II)][S(IV)] (pH < 4.2),

(2)

where k3
′ = 2.51 × 1013 M−1 s−1 and k3” = 3.72 × 107 M−1 s−1 [3]. Moreover, the aqueous-phase reaction

pathway via NO2 was introduced in CMAQ:

− d[S(IV)]/dt = k [NO 2(aq)][S(IV)], (3)

based on consideration of the neutralized or acidic features of aerosols in Asia and having a rate
constant expression as follows:

k = 1.24 × 107 M−1 s−1 (pH < 5.3), k = 1.67×107 M−1 s−1 ( pH > 8.7), (4)

where for the pH range 5.3–8.7, the rate constant was linearly interpolated based on our findings in
the second phase [4]. These revisions, which focused on aqueous-phase oxidation pathways, were
included in chemistry updates A.

Previous studies [3,4] have focused on the need to refine the aqueous-phase sulfur oxidation
pathways, but not the gas-phase reactions. Although refinements of the aqueous-phase oxidation
pathways resulted in an improvement in model performance, underestimations of SO4

2– concentrations
were not corrected. In addition, the increase in SO4

2– production via aqueous-phase oxidation also led
to an increase in SO4

2– wet deposition. Regarding the relation between ambient concentrations of SO4
2–

and deposition of SO4
2–, a comparison between CMAQ and CAMx with observation demonstrated

the potential for overestimation of SO4
2– wet deposition by CMAQ [4]. Originally, the CMAQ model

considered one gas-phase reaction of SO2 to be oxidized by an OH radical. Possible pathways of
gas-phase oxidation involve SCI, which are produced from the reaction of alkenes and O3 [17,18].
A review of the SCI rate constants pointed out the wide range of values, covering three orders of
magnitude [19]. This was due to the lack of direct measurement techniques available at the time to
detect SCI. The impact of the simplest SCI of formaldehyde oxide (CH2OO) has been examined based
on a recently measured rate constant [20]. Also, direct measurement of CH2OO has been reported
by another research group who found a similarly elevated rate constant for SO4

2– production, but
a different rate constant for H2O [21]. The reactions of CH2OO with methanol (CH3OH), ethanol
(CH3CH2OH), and 2–propanol ((CH3)2CHOH) have also been reported [22]. In addition, the higher
SCI of acetaldehyde oxide (CH3CHOO) and propionaldehyde oxide ((CH3)2COO) have also been
reported recently [23,24]. A study on the application of CMAQ in the U.S.A., including the use
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of the representative SCI gas-phase oxidation into an updated 2005 Carbon Bond (CB05), reported
the potential impacts on SO4

2– production [25]. Another study investigated the role of SCI based
on the Master Chemical Mechanism (MCM) [26]. In this study, as a result of advances made in
direct measurement of SCI, the gas-phase chemistry of three SCI (CH2OO, SCI1; CH3CHOO, SCI2;
(CH3)2COO, SCI3) has been explicitly incorporated in SAPRC07. The yields of these three SCI species
are derived directly from the yields of corresponded formic, acetic, and propanoic acids used in the
gas-phase chemical reactions of SAPRC07 in CMAQ. The revised and added reactions are summarized
in Table 1. The rate expression for SCI1 to H2O posed a potential issue for SO4

2– production given
that previous studies concluded that a higher rate constant for the reaction of SCI and H2O led to the
consumption of SCI by H2O [25,26]. In the case of SCI2, this specie has geometric isomers (the syn-
and anti- forms) which exhibit different rate coefficients [23]; however, we simply averaged these
values, treating SCI2 as a single entity. Thus, in addition to the revision of the aqueous-phase reactions
in chemistry updates A, these gas-phase oxidation pathways involving the three SCI species were
considered in the chemistry updates B.

Table 1. Reactions involving the three stabilized Criegee intermediates (SCI) species on SAPRC07
adapted in this study.

Reaction Rate Constant Reference

O3 + ETHE→ . . . + 0.370 × SCI1 [15]
O3 + PRPE→ . . . + 0.185 × SCI1 + 0.075 × SCI2 [15]
O3 + BD13→ . . . + 0.185 × SCI1 [15]
O3 + OLE1→ . . . + 0.185 × SCI1 + 0.159 × SCI3 [15]
O3 + OLE2→ . . . + 0.024 × SCI1 + 0.065 × SCI2 + 0.235 × SCI3 [15]
O3 + ISOP→ . . . + 0.204 × SCI1 [15]
O3 + IPRD→ . . . + 0.100 × SCI1 + 0.372 × SCI3 [15]
O3 + TERP→ . . . + 0.172 × SCI1 + 0.068 × SCI3 [15]
O3 + SESQ→ . . . + 0.172 × SCI1 + 0.058 × SCI3 [15]
SCI1 + SO2 → HCHO + SULF 3.9 × 10−11 [20]
SCI1 + NO2 → HCHO + NO3 1.5 × 10−12 [21]
SCI1 + NO→ HCHO + NO2 2.0 × 10−13 [21]

SCI1 + H2O→ 2.4 × 10−15

9.0 × 10−17
[20]
[21]

SCI1 + MEOH→ 1.4 × 10−13 [22]
SCI1 + ETOH→ 2.3 × 10−13 [22]
SCI1 + ALK4→ 1.9 × 10−13 [22]
SCI2 + SO2 → CCHO + SULF 4.55 × 10−11 [23]
SCI2 + H2O→ 7.0 × 10−14 [23]
SCI3 + SO2 → RCHO + SULF 1.3 × 10−10 [24]
SCI3 + H2O→ 1.5 × 10−16 [24]

Note: Unit of rate constant is cm3 s–1. The names are based on the nomenclature used in the expressions in
SAPRC07; O3, ozone; ETHE, ethene; PRPE, propene; BD13, 1,3-butadiene; OLE1 refers to alkenes with reaction
rates with OH < 7.0 × 10−4 ppm–1 min–1 (excluding ethene); OLE2 refers to alkenes with reaction rates with
OH > 7.0 × 10−4 ppm–1 min–1; ISOP, isoprene; IPRD, lumped isoprene products; TERP, terpene; SESQ, sesquiterpenes;
SO2, sulfur dioxide; SULF, sulfate (SO3 or H2SO4); NO2, nitrogen dioxide; NO3, nitrate radical; NO, nitric oxide;
H2O, water; MEOH, methanol; ETOH, ethanol; ALK4 refers to alkanes and other non-aromatic compounds that
react only with OH with a rate constant range between 5.0 × 10−3 and 1.0 × 10−4 ppm–1 min–1; CCHO, acetaldehyde;
RCHO, lumped aldehydes; SCI species: SCI1 refers to CH2OO, SCI2 refers to CH3CHOO and SCI3 refers to
(CH3)2COO.

The other approach for modeling the aqueous-phase reaction chemistry is the recently developed
kinetic mass transfer (KMT) simulation for gas- and aqueous-phase species that simultaneously
integrates phase transfer, scavenging, deposition, dissociation, and chemical kinetic processes
(AQCHEM-KMT) [27,28] using the Kinetic PreProcessor [29]. It was reported that there was no
significant impact on the monthly averaged data, but possible differences at the hourly timescale
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were noted [27]. To test this newly developed approach, a KMT simulation was also conducted.
The simulations performed in this study are summarized in Table 2.

Table 2. Summary of Community Multiscale Air Quality (CMAQ) simulations conducted in this study.

Name Description

Chemistry Updates A

Fe and Mn solubilities are increased and the rate constant
expression for the Fe- and Mn-catalyzed oxidation by O2
includes a pH dependency. Addition of an NO2 aqueous-phase
reaction (a total of six aqueous-phase reactions were treated).

Chemistry Updates B Same as sensitivity Simulation A, but with addition of gas-phase
oxidation pathways related to SCI (see Table 1).

Kinetic Mass Transfer (KMT) Selection of the AQCHEM-KMT option

3. Results and Discussion

3.1. Model Performance

To gain an appreciation of the four simulations performed by CMAQ, the spatial distributions of
SO4

2– concentrations simulated in domain 1 of J-STREAM are shown in Figure 1, based on averaging
of the entire monitoring period. The high concentrations of SO4

2– over the Asian continent that
included the downwind region of Japan were related to transboundary SO4

2– in Japan as discussed
previously [30–34]. The differences in distributions of SO4

2– between the base-case simulations and
those for the chemistry updates A and KMT are clearly evident. An increase in SO4

2– concentrations
of greater than 5% for chemistry updates A compared with the base-case simulation was found for
the Korean Peninsula and Japan which is the downwind region of the Asian continent. This finding
was the same as demonstrated in our previous study [4]. However, when comparing KMT and the
base-case simulation a negative effect was noted, the largest change in SO4

2– concentrations of more
than −5% being detected over the Sea of Okhotsk. This region corresponded to a SO4

2– concentration
of less than 1.0 µg/m3 with the absolute change in concentration being less than −0.1 µg/m3. This result
suggests nonsignificant impacts by KMT on averaged SO4

2 and was consistent with the report on the
KMT test case over the U.S.A. [27].
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Figure 1. Spatial distribution of (left) SO4
2– concentrations simulated by the CMAQ base-case

simulation for domain 1 and (right) changes in SO4
2– concentrations for chemistry updates A and KMT

averaged over the period 15–25 December 2016.

To investigate the effects of including the three SCI in the simulations, each SCI treated in this
study was tested in an incremental manner. The results are shown in Figure 2 as the difference from the
chemistry updates A. A total of six cases were tested: SCI1 with either a higher or lower rate constant
for the reaction of SCI1 with H2O, SCI1 plus the addition of SCI2, and SCI1 plus SCI2 with the further
inclusion of SCI3. The increase in SO4

2– production that occurred with the inclusion of SCI1 was not
found in the simulation with the higher rate constant for SCI1 + H2O but was clearly observed in the
simulation with the lower rate constant over mainland China and toward the downwind region of
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northern Japan, over India and extending to the Bay of Bengal, Bangladesh, and Myanmar, and over
some parts of Indonesia. The importance of the rate constant for H2O which can consume SCI1,
as demonstrated over Asia in this study, was suggested in research conducted over the U.S.A. [25].
The addition of SCI2 did not cause an increase in SO4

2– concentrations and this may well reflect the
fact that only two chemical reactions were involved in producing SCI2 whose stochastic coefficients
were smaller than those for SCI1 (Table 1). The further inclusion of SCI3 led to an increase in SO4

2–

concentrations in spite of the use of a higher or a lower rate constant for the reaction of SCI1 with
H2O. Chemistry updates B showed a 1–2% increase in SO4

2– concentrations over mainland China
and a 1–3% increase over Northern India, even when using a higher rate constant for SCI1 + H2O,
and showed a greater than 5% increase in SO4

2– concentrations over mainland China and a 1–2%
increase over the northern part of Japan and the Kansai and Kanto regions when a lower rate constant
for SCI1+H2O was used. Through incremental testing of the three SCI, the importance of the value of
the rate constants for SCI1 + H2O over Asia was demonstrated as was also revealed in the study over
the U.S.A., and clearly indicates the need for distinct treatments of the individual SCI given that SCI3
has a potential impact on SO4

2– production independent of that for the rate constant of SCI1 with H2O.
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Figure 2. Spatial distribution of SO4
2– concentrations simulated by the CMAQ chemistry updates B

as changes from chemistry updates A averaged over the period 15–25 December 2016 in domain 1.
The inclusion of SCI was tested incrementally as (top-left) only SCI1 with a higher rate constant for
H2O (SCI1(H)), (top-center) the addition of SCI2 to SCI1(H), and (top-right) the addition of SCI3 to
SCI1(H) and SCI2, (bottom-left) SCI1 with a lower rate constant of H2O (SCI1(L)), (bottom-center) the
addition of SCI2 to SCI1(L), and (bottom-right) the addition of SCI3 to SCI(L) and SCI2.

From the incremental testing of SCI, we selected the case for SCI1 with the low rate constant
with H2O, SCI2, and SCI3, hereafter referred to as chemistry updates B. The modeling domain for
J-STREAM covered the whole of Japan as domain 2 and the Kanto region (including Tokyo) as domain 4.
The simulated ambient SO4

2– concentrations and the wet deposition over domain 4 are shown in
Figure 3. High ambient concentrations of SO4

2– were limited to the region over the Tokyo Bay area,
and a large amount of wet deposition was found over the southwest areas of the Kanto region.
With respect to chemistry updates A and B, the reason for the increase in ambient concentrations
of SO4

2– was clarified, whereas changes in the rates of wet deposition for SO4
2– between chemistry

updates A and B were not apparent when compared with that for ambient SO4
2– concentrations.

As expected, the revision of the gas-phase oxidation pathways, which included the SCI, successfully
led to only an increase in ambient SO4

2– concentrations. Using the KMT simulation, slight decreases in
both the ambient SO4

2– concentrations and wet deposition were revealed over the Kanto region.
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Figure 3. Spatial distribution of (top) ambient concentrations of SO4
2– and (bottom) wet deposition

simulated by (left) CMAQ base-case simulation and (right) changes by chemistry updates A, B,
and KMT relative to the base-case averaged over the period 15–25 December 2016 over domain 4.
The observation site at Tokyo is indicated by the gray circle.

A detailed comparison with experimental observations was conducted using an aerosol chemical
speciation analyzer (ACSA) automated monitoring system (Kimoto Electric, Co., Ltd., Osaka, Japan)
at Mukoujima (139.81◦ E, 35.71◦ N) for hourly measurements of ambient concentrations of SO4

2–

and the network observations from the Acid Deposition Monitoring Network in East Asia (EANET)
at the Tokyo site (139.76◦ E, 35.69◦ N) for daily SO4

2– wet deposition (gray circle, Figure 3). This
automated system for monitoring ambient concentrations of SO4

2– by ACSA has been evaluated in a
previous study conducted in western Japan where the importance of high-resolution monitoring was
demonstrated [35]. The wet deposition of aerosols was measured via the use of automated wet-only
samplers and the concentration of SO4

2– in precipitation was determined by ion chromatography [36].
The time series of hourly observations and the CMAQ for ambient concentrations of SO4

2– are shown
in Figure 4. The temporal variation of the observed ambient concentrations of SO4

2– gave the following
variations during the analysis period: around 1 µg/m3 during 15–18 December; a subsequent increase
from 0.6 µg/m3 to 3.9 µg/m3 within 1 day on 18 December; a consistently higher concentration of
around 4 µg/m3 from 19 to 22 December; and a subsequent decrease from 3.8 µg/m3 to 0.6 µg/m3 within
1 day on 22 December. All of the four CMAQ simulations generally mimicked the observed temporal
variations. A detailed discussion of model performance based on statistical analysis is presented later.
The hourly precipitation data for the four models and the daily accumulated SO4

2– wet deposition by
experimental observation at the Tokyo site over the campaign period is presented in Figure 4. From
this data, it is possible to define an increasing SO4

2– concentration period (P1), a relatively stable
period (P2), and a decreasing period (P3). From the modeled hourly precipitation results, P3 clearly
corresponded to a rainy day. Over Tokyo, there was no observed rain except in the P3 period and this
was also shown by the model. The EANET observation at the Tokyo site was conducted on a daily
basis (from 9 a.m. to 9 a.m. the next day); the accumulated precipitation during 22–23 December was
15.5 mm, and the modeled result was 15.2 mm. Wet deposition was only observed and modeled during
P3; the accumulated observed and modeled SO4

2– wet deposition data were 6.6 mg/m2 and 5.0 mg/m2,
respectively. The four simulations by CMAQ did not show much difference in wet deposition.
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Figure 4. Temporal variation of (top) hourly observed and modelled ambient concentrations of SO4
2,

and (bottom) hourly modelled precipitation at the Tokyo site for domain 4. The inset in bottom figure
is the daily accumulated SO4

2– wet deposition for the observed and modelled results.

For a comparison of the ambient concentrations of SO4
2–, the model performance was judged

according to the statistical analysis data, namely, the correlation coefficient (R) with the significance level
determined by the Students’ t-test, the normalized mean bias (NMB), the normalized mean error (NME),
the mean fractional bias (MFB) and the mean fractional error (MFE). In line with the recommended
benchmarks based on the modeling study over the U.S.A., the proposed model performance goals
were NMB < ±10%, NME < +35%, and R > 0.70 for the best model performance, and the proposed
model performance criteria were NMB < ±30%, NME < +50%, and R > 0.40 for acceptable model
performance for the daily SO4

2– concentration levels [37]. The model performance goals were also
proposed as MFB ≤ ±30% with MFE ≤ +50% for the best model performance, and model performance
criteria were proposed as MFB ≤ ±60% with MFE ≤ +75% for acceptable model performance [38].
In addition, the corresponding percentages of the performance terms (within a factor of 2 and 3) were
also calculated. The results for statistical analysis are listed in Table 3.

Table 3. Statistical analysis of model performance for SO4
2– concentrations at the Tokyo site in domain

4 of J-STREAM.

Base-Case Chemistry
Updates A

Chemistry
Updates B KMT

N 247
Mean (observation) [µg/m3] 1.70

Mean (model) [µg/m3] 1.68 1.70 1.74 1.66

R 0.68 *
(p < 0.001)

0.68 *
(p < 0.001)

0.69 *
(p < 0.001)

0.68 *
(p < 0.001)

NMB [%] −1.4 ** 0.0 ** +2.6 ** −2.1 **
NME [%] 45.0 * 45.1 * 44.1 * 44.9 *
MFB [%] +10.7 ** +12.0 ** +14.4 ** +9.8 **
MFE [%] 52.1 * 52.1 * 51.4 * 51.9 *

% within a factor of 2 69.6 69.2 70.5 70.4
% within a factor of 3 87.9 87.9 87.9 88.3

Note: ** indicates model performance goal, and * indicates model performance criteria, see text for these judgements.
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Compared with the hourly SO4
2– observations observed at Tokyo, all of CMAQ models showed

R values of around 0.7 with a statistical significance level of p < 0.001. As shown in Figures 1 and 2,
chemistry updates A and B led to an increase in SO4

2– concentrations whereas KMT led to a slight
decrease in SO4

2– concentrations. As seen in Figure 4, the differences by KMT were not clarified in
hourly time scale in this case applied for the winter pollution episode at Tokyo. Judging from the
proposed criteria [37,38], all four CMAQ model simulations were considered to have met the model
performance criteria.

The spatial distributions of SO4
2– concentrations during the periods P1, P2, and P3 are displayed in

Figure 5. The diagram indicates that the region with high SO4
2– concentrations greater than 2.0 µg/m3

in P1 was limited to near the coastline of Tokyo Bay, whereas other areas were below 2.0 µg/m3 on
average. It can be considered that the increased SO4

2– concentrations indicated in Figure 3 were not
associated with the broad feature spread over the Kanto region but with the limited haze episode over
Tokyo. For P2, the high SO4

2– concentration regions expanded over the Tokyo Bay area, and nearly
the whole of Eastern Kanto (the eastern part of this domain) was covered with high concentrations of
SO4

2– of around 2.0–2.5 µg/m3 (dark green color). For P3, the high SO4
2– concentrations found over the

Tokyo Bay area extended into the northern part of this domain, while the western boundary had lower
concentrations of less than 0.5 µg/m3. The decreased concentrations of SO4

2– indicated in Figure 3
would have been be influenced by the intrusion of this low concentration zone. To clarify the reasons
for this, a sensitivity analysis against the major domestic sources was conducted.

Atmosphere 2019, 10, x FOR PEER REVIEW 9 of 16 

(p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) 
NMB [%] −1.4 ** 0.0 ** +2.6 ** −2.1 ** 
NME [%] 45.0 * 45.1 * 44.1 * 44.9 * 
MFB [%] +10.7 ** +12.0 ** +14.4 ** +9.8 ** 
MFE [%] 52.1 * 52.1 * 51.4 * 51.9 * 

% within a factor of 2 69.6 69.2 70.5 70.4 
% within a factor of 3 87.9 87.9 87.9 88.3 
Note: ** indicates model performance goal, and * indicates model performance criteria, see text for 
these judgements. 

The spatial distributions of SO42– concentrations during the periods P1, P2, and P3 are displayed 
in Figure 5. The diagram indicates that the region with high SO42– concentrations greater than 2.0 
μg/m3 in P1 was limited to near the coastline of Tokyo Bay, whereas other areas were below 2.0 μg/m3 
on average. It can be considered that the increased SO42– concentrations indicated in Figure 3 were 
not associated with the broad feature spread over the Kanto region but with the limited haze episode 
over Tokyo. For P2, the high SO42– concentration regions expanded over the Tokyo Bay area, and 
nearly the whole of Eastern Kanto (the eastern part of this domain) was covered with high 
concentrations of SO42– of around 2.0–2.5 μg/m3 (dark green color). For P3, the high SO42– 
concentrations found over the Tokyo Bay area extended into the northern part of this domain, while 
the western boundary had lower concentrations of less than 0.5 μg/m3. The decreased concentrations 
of SO42– indicated in Figure 3 would have been be influenced by the intrusion of this low 
concentration zone. To clarify the reasons for this, a sensitivity analysis against the major domestic 
sources was conducted. 

 
Figure 5. Spatial distribution of SO42– concentrations simulated by the CMAQ base-case simulation 
averaged over (a) P1, (b) P2, and (c) P3 for domain 4. 

3.2. Model Sensitivities 

Here, the sensitivities for major domestic sources were investigated. Four major domestic 
sources, transportation (automobile, ship, aviation, and machinery), stationary combustion (power 
plant, industry, waste incinerator), fugitive VOC (fuel evaporation, and solvent use), and agricultural 
NH3 (livestock, and fertilizer application). These source groups were numbered g01, g02, g03, and 
g04, respectively. The SO2 emissions over domain 4 used in the simulation are shown in Figure 6 as 
the daily average distributed in two dimensions. High emission levels greater than 500 kg/day were 
found over the Tokyo Bay area and values greater than 100 kg/day were broadly observed over the 
central Kanto region and over the ocean. In the sensitivity analysis, SO2 emissions were contained in 
g01 and g02 but not in g03 and g04. The emissions from g01 and g02 are also illustrated in Figure 5. 
It can be clearly seen that SO2 emissions over the sea were dominated by g01 reflecting ship emissions 
as being the main source and that emissions over the land were dominated by g02. In this respect, 
the SO2 emissions from power plants and industries are mostly centered along the coastline; as a 
result, SO2 emissions in the Kanto region were densely concentrated over the Tokyo Bay area. 

Figure 5. Spatial distribution of SO4
2– concentrations simulated by the CMAQ base-case simulation

averaged over (a) P1, (b) P2, and (c) P3 for domain 4.

3.2. Model Sensitivities

Here, the sensitivities for major domestic sources were investigated. Four major domestic sources,
transportation (automobile, ship, aviation, and machinery), stationary combustion (power plant,
industry, waste incinerator), fugitive VOC (fuel evaporation, and solvent use), and agricultural NH3

(livestock, and fertilizer application). These source groups were numbered g01, g02, g03, and g04,
respectively. The SO2 emissions over domain 4 used in the simulation are shown in Figure 6 as the
daily average distributed in two dimensions. High emission levels greater than 500 kg/day were found
over the Tokyo Bay area and values greater than 100 kg/day were broadly observed over the central
Kanto region and over the ocean. In the sensitivity analysis, SO2 emissions were contained in g01 and
g02 but not in g03 and g04. The emissions from g01 and g02 are also illustrated in Figure 5. It can be
clearly seen that SO2 emissions over the sea were dominated by g01 reflecting ship emissions as being
the main source and that emissions over the land were dominated by g02. In this respect, the SO2

emissions from power plants and industries are mostly centered along the coastline; as a result, SO2

emissions in the Kanto region were densely concentrated over the Tokyo Bay area.
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dimensions and most of g01 is distributed on the surface layer of the model, whereas g02 is distributed
over the upper layer of the model, considering the stack heights.

To obtain the sensitivity values, the traditional so-called “brute force” method was applied.
The emission from each source group was reduced by 20% and the simulation was conducted as
a sensitivity simulation; next, the difference between the base-case simulation and the sensitivity
simulation was calculated. In this study, this difference was multiplied by 5 to correspond to a 100%
reduction; accordingly, the source contribution can be regarded as follows:

Source contribution of gi = (Base-case simulation − Sensitivity simulation for gi) × 5, (5)

where i = 01, 02, 03, and 04 are the four source groups as defined above. The source contribution of
other sources (except the four domestic anthropogenic emissions), such as anthropogenic emissions
from outside of Japan, biogenic emissions, biomass burning emissions, and volcanic emissions, are
calculated as follows:

Source contribution of others = Base-case simulation−
∑04

i=01
Source contribution of gi. (6)

A perturbation magnitude of 20% was applied to achieve a compromise between producing a
clear signal and applying a sufficiently small perturbation to allow the results to be scaled linearly to a
different perturbation level according to the Task Force on Hemispheric Transport of Air Pollution
(TF HTAP) modeling [39]. In this study, we focused on four domestic sources and conducted a total of
four cases of CMAQ sensitivity simulations on the base-case simulation. In addition to this base-case
simulation and the four sensitivity simulations, three other simulations for the chemistry updates
A, B, and KMT were also performed against the four emission source groups; as a result, a total of
16 additional simulations (4 source groups × 4 simulation cases) were conducted over domain 4.

The temporal variations of source contributions during P1, P2, and P3 are shown in Figure 7,
which gives an overview of source characteristics at the Tokyo site; this figure is based on the CMAQ
base-case simulation. The first part of P1 was dominated by contributions from other sources but the
latter part, when an increased SO4

2– concentration was revealed, was dominated by domestic sources
of g01. Subsequently, P2 was dominated mainly by the contributions from other sources, and the
contribution from g02 was the second largest factor. The contribution from g01 was small. During
the latter part of P2, where there was an increase in SO4

2– concentration, the contribution from g01
was again observed. The period P3 was illustrated by declining contributions of other sources and
g01, and the source contribution from g02 was negligible during P3. Throughout the entire period,
source contributions from g03 and g04 were small because the g03 and g04 sources did not include
SO2 emissions.
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CMAQ base-case simulation.

The spatial distributions of g01, g02, and other sources calculated in the CMAQ base-case
simulation, shown in Figure 8, are based on the averages of data over P1, P2, and P3. During
P1, the source contributions of g01 and g02 were limited over the Tokyo Bay area, and the source
contributions of other sources, which were spread over the whole domain, were less than 2.0 µg/m3 on
average. These spatial distribution patterns for the source contributions were well understandable
in terms of the simulated SO4

2– concentrations shown in Figure 5. This clearly indicated that the
high concentrations of SO4

2–, which were greater than 2.0 µg/m3 and limited to the coastline of Tokyo
Bay, were due to the domestic contributions of g01 and g02. The impacts by domestic sources of
g01 and g02 were spread over the Tokyo Bay area during P2, and the source contribution of g01
extended to the north during P3, whereas that of g02 was transported further into the northwestern
area. The transportation of the source contribution of g02 in a northwestern direction may reflect a
vertical emission distribution. Throughout P2 and P3, the source contributions of other sources were
found over the whole domain. Therefore, it can be concluded that the simulated SO4

2– concentrations
over the Kanto region were generally dominated by the source contribution of others and the higher
concentrations of SO4

2– seen at the Tokyo observation site were attributed to the domestic sources of
g01 and g02, which had limited impact around the Tokyo Bay area.

The similarities and differences of the source contributions conducted through the CMAQ base-case
simulation and chemistry updates A, B, and KMT are summarized in Figure 9. The similarity of
source contributions calculated by the CMAQ base-case simulation and the CMAQ KMT simulation
are indicated for P1, P2, and P3. As revealed by the statistical analysis data listed in Table 3, this
similarity was due to the similarity in model performances between the base-case simulation and
KMT. Differences were found for chemistry updates A and B, and the magnitude of the differences
was distinguishable during P1 compared with P2 and P3. Chemistry updates A, which was revised to
enhance aqueous-phase oxidations, led to an increase in the source contribution of other sources. This
result was also found in our previous study on the second phase of J-STREAM [4]. The aqueous-phase
reactions considered were a refinement of the Fe- and Mn-catalyzed reactions and an additional NO2

oxidation pathway; in this context, the concentrations of Fe, Mn, and NO2 in Japan were much lower
than those over Asia, thus the domestic source contributions were not enhanced. The approach taken
in x was important for capturing the impact of transboundary air pollution.
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Chemistry updates B, which included three SCI species, led to an increase in the source
contributions of g03. For other simulations, there was negligible impact by g03; however, the source
contribution of g03 was found in chemistry updates B, especially during P1. The source group g03 is a
domestic fugitive VOC source and did not contain SO2 emissions directly related to SO4

2– production.
This is because a change in the O3 concentration. The source contributions of g01, g02, g03, and g04 on
chemistry updates B during P1 are shown in Figure 10. The source contributions of g01 and g02 to the
O3 concentration were negative. The sources g01 and g02 contain abundant NOx emissions and urban
areas generally correspond to VOC-sensitive regimes during the winter [40], hence reflecting the NOx
disbenefit effect. The source contribution of g03 was related to an increase in the O3 concentration,
and this increment of the O3 concentration was further connected to the increase in the three SCI
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species as incorporated in this modeling study, and which yielded an increase in SO4
2– production.

It was demonstrated that revision of the gas-phase SO4
2– oxidation via SCI can be connected to the

source sensitivity of VOC sources via a change in the O3 concentration.
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4. Conclusions

The Japanese air quality model intercomparison study, J-STREAM, has shown that although
SO4

2– is generally well-captured by the models, concentrations of SO4
2– were underestimated during

winter. In previous studies, the modeled SO4
2– concentrations were revised by focusing on the Fe-

and Mn-catalyzed oxidation pathways and highlighting the importance of developing an emission
inventory for trace metals over Asia in the first phase [3]. We further increased production of SO4

2– by
the addition of an aqueous-phase NO2 oxidation pathway in the second phase [4]. To further improve
the modeling performance of gas-phase oxidation, three SCI were incorporated in the third phase
of J-STREAM and the KMT option available in the latest CMAQ model was examined. A difference
between the KMT and the base-case simulation was found over the Sea of Okhotsk, and the absolute
differences in SO4

2– concentrations were less than −0.1 µg/m3, giving essentially similar results with a
test case for KMT over the U.S.A. Most previous studies have treated SCI in bulk; however, in this study,
three SCI were treated separately with each SCI and incrementally tested and where the dependency
of the rate constant of SCI1 with H2O was also examined by performing sensitivity simulations with a
high and low rate constant. It was found that only when the lower rate constant for the SCI1 + H2O
reaction was used that the production of SO4

2– was increased by SCI1, and the importance of the value
of the rate constant of SCI1 with H2O for the Asian region was highlighted. This finding was consistent
with a previous study conducted for the U.S.A. It was further demonstrated in the present study that
the key role of SCI3 is to increase SO4

2– production because this reaction is independent of the rate
constant of SCI1 with H2O. It was established that the explicit treatment of each SCI is required to
enable clarification of the role of SCI on SO4

2– production.
In addition to the investigation of model performance, the third phase of J-STREAM included

an intercomparison study on source sensitivities. Four major domestic sources (transportation,
stationary combustion, fugitive VOC, and agricultural NH3) were investigated as source groups.
The source sensitivities were estimated based on the traditional sensitivity simulation approach
whereby a 20% emission reduction was calculated, the result of which was subtracted from the
base-case simulation. It was clarified that the winter haze episode at the Tokyo site was generally
dominated by emission sources from outside Japan, and the haze was enhanced by the domestic
emission sources of transportation and fuel combustion. The estimations of source contributions were
nearly the same between the base-case CMAQ simulation and KMT. With the chemistry updates
involving the aqueous-phase Fe- and Mn-catalyzed oxidation reactions and NO2 oxidation, it was
found that these revisions led to an increase in transboundary impacts. In the case of the chemistry
updates with the inclusion of SCI, it was shown that the change to fugitive VOC emissions could
impact SO4

2– concentrations by influencing O3 which in turn influences SCI.
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As a result of conducting the first, second and third phases of J-STREAM, we have successfully
demonstrated a means to enhance simulated SO4

2– production during the winter when underestimations
of SO4

2– concentrations have been problematic. Given recent drastic reductions in SO2 emissions
from China, further declines in SO4

2– can be expected, and reactive nitrogen will continue to play an
important role in this process due to the abundance of freely available NH3. Because of the difficulty
of producing reliable simulation models for reactive nitrogen species because of their semi-volatile
nature, it is first necessary to establish accurate simulations for SO4

2–. The means to enhance SO4
2–

production has been demonstrated for a single winter haze episode, and further tests on other haze
episodes should be performed. Furthermore, the incorporation of SCI in this study suggests sensitivity
to fugitive VOC sources that do not include direct SO2 emissions but can change O3 concentrations,
and this effect should be tested in other seasons.
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