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Abstract: Climate models are important tools to assess current and future climate. While they have
been extensively used for studying temperature and precipitation, only recently regional climate
models (RCMs) arrived at horizontal resolutions that allow studies of snow in complex mountain
terrain. Here, we present an evaluation of the snow variables in the World Climate Research Program
Coordinated Regional Downscaling Experiment (EURO-CORDEX) RCMs with gridded observations
of snow cover (from MODIS remote sensing) and temperature and precipitation (E-OBS), as well
as with point (station) observations of snow depth and temperature for the European Alps. Large
scale snow cover dynamics were reproduced well with some over- and under-estimations depending
on month and RCM. The orography, temperature, and precipitation mismatches could on average
explain 31% of the variability in snow cover bias across grid-cells, and even more than 50% in the
winter period November–April. Biases in average monthly snow depth were remarkably low for
reanalysis driven RCMs (<approx. 30 cm), and large for the GCM driven ones (up to 200 cm),
when averaged over all stations within 400 m of altitude difference with RCM orography. Some
RCMs indicated low snow cover biases and at the same time high snow depth biases, and vice versa.
In summary, RCMs showed good skills in reproducing alpine snow cover conditions with regard to
their limited horizontal resolution. Detected shortcomings in the models depended on the considered
snow variable, season and individual RCM.

Keywords: climate change; MODIS snow cover; station snow depth; Alps; mountain climate

1. Introduction

In mountain climates, snow is a systemic component besides temperature and precipitation. While
future changes in temperature and precipitation have been assessed using climate models, little has yet
been done for snow with climate models, most likely because general circulation models (GCMs) have
a too coarse resolution (>100 km) and regional climate models (RCMs) have only recently reached
reasonable horizontal resolutions (10–50 km) to study changes in snow parameters. This provides
an alternative to the traditional approach of using hydrological or dedicated snow models, which are
forced by temperature and precipitation from climate models [1].

The horizontal resolution of RCMs is now widely in the range of 0.44◦ (~50 km) to 0.11◦

(~12.5 km), see e.g., the CORDEX initiative For Europe, most simulations are also available at the higher
resolution, via the World Climate Research Program Coordinated Regional Downscaling Experiment
(EURO-CORDEX). For complex mountainous terrain such as the European Alps, this resolution is
moderate, however, the RCMs cover the whole domain and thus have a good trade-off between
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resolution and coverage. It should be noted that RCMs have been run also at higher resolutions
(2.2 km with a convection permitting scheme [2]) and employed for snow cover studies [3]. Due to
high computational requirements, such simulations are still rare (i.e., not available as model ensemble)
and do not cover longer temporal ranges (e.g., like the full 21st century).

Large-scale and high-resolution validation of snow in RCMs is hampered, because there are only
few observational data sets, especially for snow water equivalent (SWE). Nevertheless, there have been
regional attempts. Salzmann and Mearns compared multiple RCMs at 50 km resolution with station
observations and reanalysis in the Upper Colorado River basin in the USA and found that RCMs
simulated too little SWE with a too-late start and too-early end of snow cover, most likely because of
unresolved topography and model schemes [4]. Steger et al. compared RCMs at 25 km with a gridded
SWE product for Switzerland and found that, in general, RCMs reproduced spatial and seasonal
variability but underestimated SWE at low elevation and overestimated SWE at high elevations [5].
Da Ronco et al. compared snow cover in the RCM COSMO-CLM with remote sensing observations
from MODIS for the Po river basin in Italy and found a good agreement regarding duration, extent,
and interannual variability, but a too-early snow melt in the RCM. Additionally, they also highlighted
the importance of horizontal resolution [6]. Terzago et al. provide the most comprehensive evaluation
of SWE in RCMs (and GCMs) so far using multiple remote sensing products and reanalysis for the
entire European Alps and found that RCMs overestimated SWE and only ERA-Interim driven RCMs
had a comparable amplitude in the snow cycle while GCM-driven RCMs had large positive biases [7].

In this study, we evaluate snow in the 0.11◦ (~12.5 km) EURO-CORDEX RCMs using
high-resolution observations. This is the first time, to the best of our knowledge, that a high-resolution
comparison has been performed using such an extensive set of RCMs and covering the whole Alpine
domain. Going to high resolution allows to study the effects of the orographic misrepresentation [8]
and temperature biases [9] explicitly. Specifically, we use snow data from the EURO-CORDEX RCMs,
and perform an inter-comparison of snow variables in RCMs, and evaluations of snow cover with
remote sensing (MODIS) and of snow depth with stations. Both evaluations consider relationships
to orography mismatch and to temperature biases (E-OBS and station). Precipitation biases are only
considered with snow cover and E-OBS. The aim is to evaluate the suitability of modelled snow in
RCMs, and to quantify the magnitude of the biases as well as the extent to which they can be related to
the erroneous representation of orography as well as temperature and precipitation forcing.

The paper is divided as follow: Section 2 is devoted to describing the data and the methodology
used, Section 3 presents the results of the comparisons of the models with the observations and
discusses them, and Section 4 summarizes the conclusions and the outlook of the work.

2. Materials and Methods

2.1. Data

2.1.1. Climate Models (RCMs) Snow and Temperature

The climate model data originated from the EURO-CORDEX initiative, whose data is available
via the ESGF (Earth System Grid Federation) servers. We used all RCMs that provide at least one of
the following snow variables, both from reanalysis and GCM driven runs: snow cover fraction (SNC;
unitless; originally with range 0–100 and converted to fractions 0–1; corresponds to the fractional
area of the grid cell that is snow covered), snow depth (SND; provided in meters), or snow amount
(SNW; water amount in snow, usually also named SWE—snow water equivalent; provided in kg m−2).
Not all modelling groups supply all snow variables. Table 1 provides an overview of which variables
were available for which RCM. For brevity, from now on, only the RCM name and not the modelling
institute shall be used.

For the GCM driven runs, the historical period ends in 2005, and then the different RCP
(representative concentration pathway) scenarios start. The gridded remote sensing snow cover data
set covers the period 2002 to 2019, so we merged the historical run with the RCP8.5 scenario to
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maximize the temporal overlap. This was done if the historical and scenario run came from the same
ensemble and downscale realization. RCP8.5 (the high emission scenario) was chosen over the other
scenarios (RCP2.6, RCP4.5, RCP6.0), because the middle scenarios (RCP4.5 and RCP6.0) had only few
model runs thus severely limiting data availability, and RCP8.5 represented the actual emissions after
2006 better than RCP2.6 (see [10] for an assessment until 2012). The complete list of RCMs used can be
found in Table S1.

Table 1. Overview of regional climate models (RCMs) and snow variables (SNC: snow cover fraction;
SND: snow depth; SNW: snow amount) that were available in this study. Meaning of cell content:
empty = variable not available from ESGF (Earth System Grid Federation) servers; X = variable available
for both reanalysis and general circulation models (GCM) driven runs; G = variable only available for
GCM driven runs; (G) = variable only available for specific GCM driven runs.

Modelling Institute RCM SNC SND SNW

CNRM ALADIN53 X
CNRM ALADIN63 G G G

CLMcom CCLM4-8-17 X X X
DMI HIRHAM5 1 G G G

KNMI RACMO22E X X X
SMHI RCA4 X X (G)
ICTP RegCM4-6 X

MPI-CSC 2 REMO2009 X
GERICS REMO2015 X

IPSL-INERIS WRF331F X X
IPSL WRF381P X X

1 HIRHAM5 actually also has snow variables also for the evaluation runs, but only for downscale realization v1,
and in this study only v2 and v3 were used because of some errors in v1 (see also Section 2.1.1). 2 MPI-CSC is
now GERICS.

Since the data have been initially published, some errors in the data were discovered (see also
Errata Table [11]). Regarding snow, these are snow accumulation in RACMO22E (issue number 12
and 13 in [11]), snow accumulation and errors in SND for HIRHAM5 (issue number 18 and 33 in [11];
solved by using only versions above v2), and errors in SNW for RCA4 (issue number 29 in [11]; solved
in data after 20 August 2018).

The snow accumulation issue (grid cells showing constant snow cover and accumulating unrealistic
snow towers) was found true not only for the abovementioned RCMs. While RACMO22E was the
most affected, also ALADIN63 and WRF331F, and partly HIRHAM5, indicated this issue (see Table S2).
The maximum daily SND in the study region (Figure 1) for all historical GCM-driven runs and the
evaluation run was 340 m for ALADIN63, 33 m for HIRHAM5, 464 m for RACMO22E, and 172 m
for WRF331F. But, also SNW amounts were unrealistically high with maximum values between
38,000–236,000 kg m−2 for several RCMs (ALADIN53, ALADIN63, WRF381P, RACMO22E, and RCA4).
Because this issue only affects some high-altitude grid cells, we decided to exclude these grid cells
based on SND and SNW thresholds. A grid cell was removed for a given RCM, if its daily SND
was above 10m and/or SNW was above 7000 kg m−2 during any historical or evaluation run. These
thresholds were chosen, because for SND, the 10 m are used internally in RCA4, too, and for SNW,
it corresponds to 10 m SND with a conservative high limit on snow density. RACMO22E was most
affected with 223 grid cells removed (4.4% out of 5046 total land grid cells in the study area), followed
by HIRHAM5 with 152 grid cells (3%), while the other RCMs had 15–71 (0.3–1.4%) affected cells
(Table S3 and Figure S1).

In addition to snow variables, also 2 m temperature (TAS, Kelvin), precipitation (PR, mm s−1) and
model grid altitude (OROG, meter above sea level) were used. Temperature was converted to degrees
Celsius, precipitation to mm day−1. For WRF381P no altitude grid was available from ESGF servers,
so it was removed from most of the analysis, since they required some altitude information.
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Figure 1. Map of study region (European Alps). (Top) Terrain map with boundaries of the Alpine 
Convention (Alpconv), marking the core Alpine region. Points indicate the station locations (+: used 
for reanalysis driven RCMs, x: used for GCM driven RCMs; stars (+ and x overlaid): used for both). 
(Map tiles by Stamen Design, under CC BY 3.0. Data by Open Street Map, under ODbL). (Bottom) 
Example map of MODIS snow cover fraction (SNC) for 1 January 2012, upscaled to RCM resolution 
(~0.11°). 

2.1.2. E-OBS Temperature and Precipitation 

For gridded temperature and precipitation fields, we used E-OBS v20.0e [12], which is a gridded 
product based on the interpolation of station data. The mean temperature and precipitation are 
available in daily resolution for the period 1950–2018 at 0.1° horizontal resolution for Europe. 
Auxiliary data consisted of the elevation grid. The data was downloaded from Copernicus servers. 

2.1.3. Remote Sensing (MODIS) Snow Cover Fraction 

The gridded observational snow product applied in this study is snow cover from remote 
sensing [13]. We used a MODIS-based product that has been specifically tailored to the complex 
terrain in the Alps [14]. It spans the period July 2002 until May 2019 at daily resolution and covers 
the whole alpine arc plus some surroundings at 250 m horizontal resolution (Figure 1). Clouds have 
been removed using temporal and spatial filters [13], in order to be able to conduct climatological 
comparisons. 

MODIS is only available since relatively recent periods, and while there are other remote sensing 
products that cover more of the past such as e.g., AVHRR (Advanced Very High Resolution 
Radiometer) at coarser spatial resolution, we still decided to use MODIS due to the following points. 
First, it has a higher accuracy (even when aggregated) than the older satellites. Second, the 
implementation is specifically tailored to the complex terrain found in the Alps. Third, it is in daily 
resolution and, thanks to the cloud-filtering, has complete time series. Fourth, this study is part of a 
project aiming at downscaling snow cover from regional climate models, and MODIS is the only 
product that offers a high resolution with a long enough period. 

Figure 1. Map of study region (European Alps). (Top) Terrain map with boundaries of the Alpine
Convention (Alpconv), marking the core Alpine region. Points indicate the station locations (+: used for
reanalysis driven RCMs, x: used for GCM driven RCMs; stars (+ and x overlaid): used for both). (Map
tiles by Stamen Design, under CC BY 3.0. Data by Open Street Map, under ODbL). (Bottom) Example
map of MODIS snow cover fraction (SNC) for 1 January 2012, upscaled to RCM resolution (~0.11◦).

2.1.2. E-OBS Temperature and Precipitation

For gridded temperature and precipitation fields, we used E-OBS v20.0e [12], which is a gridded
product based on the interpolation of station data. The mean temperature and precipitation are
available in daily resolution for the period 1950–2018 at 0.1◦ horizontal resolution for Europe. Auxiliary
data consisted of the elevation grid. The data was downloaded from Copernicus servers.

2.1.3. Remote Sensing (MODIS) Snow Cover Fraction

The gridded observational snow product applied in this study is snow cover from remote
sensing [13]. We used a MODIS-based product that has been specifically tailored to the complex terrain
in the Alps [14]. It spans the period July 2002 until May 2019 at daily resolution and covers the whole
alpine arc plus some surroundings at 250 m horizontal resolution (Figure 1). Clouds have been removed
using temporal and spatial filters [13], in order to be able to conduct climatological comparisons.

MODIS is only available since relatively recent periods, and while there are other remote sensing
products that cover more of the past such as e.g., AVHRR (Advanced Very High Resolution Radiometer)
at coarser spatial resolution, we still decided to use MODIS due to the following points. First, it has
a higher accuracy (even when aggregated) than the older satellites. Second, the implementation is
specifically tailored to the complex terrain found in the Alps. Third, it is in daily resolution and,
thanks to the cloud-filtering, has complete time series. Fourth, this study is part of a project aiming at
downscaling snow cover from regional climate models, and MODIS is the only product that offers
a high resolution with a long enough period.
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2.1.4. Reference Orography

The elevation of RCM grid cells is smoothed out because of numerical stability. The E-OBS
elevation is also smoothed because of the interpolation. Thus, even if the model topography is based
on an accurate digital elevation model, it differs from real topography. Since one aim was to investigate
the effects of this orographic mismatch, we needed a reference “true” orography. For this we took
the digital elevation model used in the MODIS processing [13], which is based on the SRTM (Shuttle
Radar Topography Mission), and which has been aggregated to MODIS resolution. In the following
this “true” elevations will be called “MODIS elevation”, implying this is the observed (and not model)
topography and that it corresponds to the MODIS data.

2.1.5. Station Snow Depth and Temperature

Station data was collected from the Hydrological office of the province of Bolzano in Northern Italy,
from the German weather service (DWD) for Germany, and from MeteoSwiss for Switzerland. Stations
that fell in the study region (see top of Figure 1) and had snow depth and temperature measurements
were selected. The distribution of meteorological stations is known to be not homogeneous in space
nor along the altitudinal gradient. In our case, the stations sampled the central part of the study area,
both north and south of the main ridge. The altitudinal distribution of the stations encompassed the
distribution of the coarse grid cell altitudes (at ~12.5 km) from 0 to 3000 m; however, since many
stations were located in the central part of the Alps, their relative frequency was higher between 500
and 2000 m, and lower otherwise (Figure S2). The data was selected and preprocessed in order to have
high temporal coverage with minimal missing data.

For this, nearby stations were merged if their horizontal distance was less than 1 km and their
altitude difference less than 100 m. Then some basic quality threshold on the snow depth data were
applied (no negative values, not more than 250 cm snow fall in one day, not more than 70 cm snow
melt in one day; see also [15]). Afterwards an initial subset was taken, that consisted of stations with
starting year before 1990 and ending after 2000, with at least 15 years of observations, and not more
than 8 missing years in any 11 year window. With this initial subset, a gap-filling was applied to reduce
the number of missing observations, similar to what has been done in temperature and precipitations
climatological studies [16,17]. The gap-filling is based on up to three neighboring stations, if they show
a high correlation (>0.8) with the station with missing data, and if there is enough data in common
(at least 150 days in an adaptive window of at most 91 days in a fixed 11 year period centered around
the missing day). Additive (for temperature) and multiplicative (for snow depth) scaling factors were
calculated for the neighboring stations with respect to the reference station. The imputed value is then
a distance weighted average of the scaled values of the neighboring stations. Then, monthly averages
were calculated if at least 90% of the daily values were available.

Finally, two separate subsets were made for reanalysis- and GCM-driven RCMs, since for
reanalysis driven RCMs year-to-year correspondences can be expected, while for GCM driven RCMs
only climatological comparisons are meaningful. For reanalysis driven RCMs, only the common period
for all RCMs (1989–2008) was considered, and stations were selected if they had at least 10 years of
data. For GCM driven RCMs, only the common period 1970–2005 was considered, and stations were
selected if they had at least 26 years of data within that period. Note that the selection was done
separately per month, so slightly different station numbers were available for each month. This was
done, because for most stations, recording was stopped at the end of the snow season and sometimes
even before. Thus, using only complete time series for all months would have drastically reduced the
number of stations. Anyhow, the number of stations was almost constant across the seasons (winter,
spring, . . . ). In the end, ~208 stations were available for reanalysis driven RCMs and ~130 for GCM
driven RCMs (see Figure 1 for a map of the station locations).
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2.2. Methods

2.2.1. Preprocessing and Spatial Alignment

Since all gridded fields were in different horizontal resolutions and projections, they had to be
aligned first to make comparisons possible. Since the RCMs were the objects of interest, we decided to
keep the RCM resolution as reference and take the MODIS projection as target. The RCM resolution
was 0.11◦, which is approximately 8.5 × 12.25 km in the European Alps. The MODIS data had a higher
resolution of 250 m (231 m in projection) and was upscaled to match grid cells of approximately
8.5 × 12.25 km size by using factors 37 and 53. For each coarse resolution grid cell, this made the
calculation of fractional snow cover possible using the binary snow/land MODIS data. Snow cover
fraction was calculated as fraction of number of pixels of snow/(land + snow), not counting cloud
pixels, and only if there were less than 30% cloud pixels. Elevation of the coarse resolution MODIS
grid was taken as average elevation of all fine grid cells.

The RCM data was then projected onto the coarse resolution MODIS grid, which was in LAEA
(Lambert azimuthal equal-area) projection, using CDO (climate data operators) and nearest-neighbor
interpolation. By providing the reference target grid, the interpolation with CDO worked for both
normal and rotated-pole grids found in RCMs. All RCM variables (SNC, SND, SNW, TAS, PR,
and OROG) were projected using the same method to preserve within grid cell relationships, and
nearest-neighbor was chosen over e.g., bilinear, because bilinear introduced spurious min/max values
for the fractional variable snow cover. The E-OBS grids (mean temperature, precipitation and elevation)
were bilinearly interpolated onto the target grid.

2.2.2. Comparison of Gridded Data

Having all gridded data on a common reference grid allows comparisons on a per-cell basis for
(1) snow variables (SNC, SND, SNW) among different RCMs, and (2) the variables SNC (RCM vs.
MODIS), TAS and PR (RCM vs. E-OBS), and elevation (RCM, MODIS, E-OBS).

To compare snow variables within RCMs, we used daily values for the years 1971 to 2000 and
from only one GCM (since differences in RCMs driven with different GCMs are low) to reduce the
amount of data. Comparisons with MODIS and E-OBS were done for monthly averages over the
whole time period (i.e., over all years). For the reanalysis driven RCMs, the maximum overlap of all
RCM periods with MODIS and E-OBS was October 2002 to September 2008. While the period does
not sample a climatology, average values should still be comparable, since the lateral forcing ensures
a year-to-year correspondence. For the GCM driven RCMs, the common period was October 2002 to
May 2019, which is still not large in climatological terms (e.g., 30 years), but represented the maximum
temporal overlap.

In order to account for the orographic mismatch, we calculated the differences between RCM and
MODIS and between RCM and E-OBS. Since the temperature difference between RCM and E-OBS can
also be caused by their different orography, the temperature difference has been lapse-rate adjusted for
the different elevation in each RCM versus E-OBS using monthly lapse rates as given in [18].

2.2.3. Comparison of Gridded with Point Data

Comparing grid cell area averages to single point observations is problematic, and should be
avoided if possible. However, in certain cases, such as for snow depth or snow water equivalent, there
are no high-quality high-resolution gridded data sets, so comparing grid cells to station data cannot be
avoided. See also [4] for the issues and needs on comparing point scale observations to area averages.

Grid cell quantities in RCMs do, due to sub-grid variability, typically not correspond well with
station data, concerning both their spatial and temporal variability. These scale issues have to be
kept in mind when analyzing and interpreting results. Some of the temporal small-scale issues have
been accounted for, by using temporal averages. Spatial averages (e.g., per grid cell) have not been
considered, because of the large heterogeneity of station distribution and the complex terrain.
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Technically, the comparison between point and grid cell was made by selecting the grid cell,
in which the point observation fell. For the reanalysis driven RCMs, the time series of monthly
snow depth were selected to match the available years that each station and RCM had in common.
These years could also have some gaps in between, but they had to be at least 10 years in common.
Then, these values were averaged over all years. Contrarily, for the free-running GCM driven RCMs,
selecting single common years for short periods is not appropriate. Instead monthly climatological
values were calculated for the period 1970–2005, which is the common historical period for RCMs.
The same was done for the stations, which had to have at least 26 years of available observations (see
also Section 2.1.5.)

2.2.4. Statistics, Software, and Data

Linear regression models were applied to capture the contribution of altitude, temperature and
precipitation differences on differences in snow cover. The model’s response variable was the snow
cover bias and it was estimated using four sets of explanatory variables: (1) the altitude difference,
(2) the temperature difference, (3) the precipitation difference, and (4) all these three differences.
We computed the percentage of explained variance adjusted for the number of explanatory variables
(i.e., the adjusted R squared) for each model, which then allows to judge the importance of each variable
in isolation, and its share in the model that includes all three. The models were run separately for each
month, each GCM-RCM combination, and for different altitude classes (<500, 500–1000, 1500–2000,
and >2000 m).

All calculations were performed in R version 3.6.1 [19], while making heavy use of the data.table [20]
and ggplot2 [21] packages. The code has been deposited at [22].

3. Results and Discussion

3.1. Snow Variables in RCMs

First, some context shall be provided by showing the relationships between the three snow variables
in RCMs, and how these relationships differ between RCMs. The closest link was between snow depth
(SND) and snow amounts (SNW) for the five RCMs that provided both variables. The relationship was
perfectly linear for HIRHAM5 (slope set to 300 kg m−3; see also Issue 33 in [11]), almost perfectly linear
for CCLM-8-4-17 and RACMO22E. ALADIN63 and RCA4 revealed more distinct variations in snow
density (Figure S3). Slopes of linear models of SNW by SND were between 289 and 386 kg m−3.

Six RCMs allowed a comparison between SND and SNC (Figure 2). SNC is strongly linked to
SND with SNC increasing along with SND and saturating at some point. However, the strength of the
link and the saturation point depended on the RCM. For CCLM-8-4-17 and RACMO22E, most of the
SNC variability was up to ~20 cm of SND, and SNC was 100% for almost all values of SND above
30 cm. For WRF331F, SNC showed more variability up to ~100cm of SND. For ALADIN63 and RCA4,
the SNC was not so tightly linked to SND as for the other RCMs. Many (high-altitude) points showed
high SND values (>2 m) with only partial SNC, while for the lower altitudes SNC was 100% also for
lower SND. The SNC values of HIRHAM5 were different from all other RCMs: None showed a full
snow cover (SNC = 100%), but most of the SNC values were below ~30% with corresponding SND
values up to 8 m.

SNC is typically parametrized by SNW and not SND; nevertheless, we showed the relationship to
SND, because later SND is compared to observations and not SNW. Moreover, since SND and SNW
were highly correlated, similar results were observed when comparing SNW and SNC (Figure S4).
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3.2. Large Scale Comparison of Snow Cover in RCMs to MODIS 

The annual cycle of alpine-wide averages of snow cover was represented in reanalysis driven 
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cover, all RCMs reproduced the seasonal dynamics remarkably well. Reanalysis driven WRF331F 
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Figure 2. Daily SNC versus SND for the period 1971–2000 and all grid cells in the study region by
RCM. Two-dimensional histograms are shown with colors referring to the number of grid cells (in
log10). The GCM is denoted in the row labels on the right. Left panels show the entire SND range,
while right panels present a magnification of the 0–50 cm SND range.

3.2. Large Scale Comparison of Snow Cover in RCMs to MODIS

The annual cycle of alpine-wide averages of snow cover was represented in reanalysis driven
RCMs (Figure 3), as well as in GCM driven RCMs (Figure S5). Except for RACMO22E, which
consistently overestimated snow cover, and HIRHAM5, which consistently underestimated snow
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cover, all RCMs reproduced the seasonal dynamics remarkably well. Reanalysis driven WRF331F
showed the best overlap with the inner higher altitude Alps (inside the alpine convention boundaries,
see also Figure 1), while CCLM4-8-17 and RCA4 slightly overestimated winter snow cover (Figure 3).
In the lower altitude surroundings of the Alps (outside the alpine convention boundary), all RCMs
tended to underestimate snow cover, except for RACMO22E. GCM driven RCMs showed a similar
pattern (Figure S5) with respect to the different RCMs, while differences in RCMs forced with different
GCMs were small.

These differences in snow cover could partly be related to the seasonal cycle of the temperature
bias (Figure 3 and Figure S5). For instance, WRF331F, which showed the best overlap for snow
cover, also had the lowest temperature bias in winter (actually, almost none), while CCLM4-8-17 had
an average temperature winter bias between −1 and −2 ◦C. However, the temperature bias could not
explain everything, as e.g., RCA4 and RACMO22E had similar temperature biases up to −4 ◦C, but
their snow cover fraction differed up to ~20% in absolute terms.

Precipitation biases were in the range of 20–80 mm for all RCMs inside the alpine convention
boundaries, except for summer. However, no relationship was detected to the snow cover biases at
this large scale: RACMO22E, for instance, had the lowest precipitation biases but the highest snow
cover biases.
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Figure 3. Comparison of reanalysis driven RCMs with observations (MODIS for snow cover, E-OBS for
temperature and precipitation). Monthly averages are shown for inner (inside Alpconv) and outer
(outside Alpconv) Alps for the period October 2002 to September 2008 for reanalysis driven RCMs
(see Figure 1 for the Alpconv boundaries). Top panels show snow cover fraction over the year, middle
panels show the difference between RCM and E-OBS mean temperature, and bottom panels show the
difference between RCM and E-OBS precipitation.

The orographic smoothing of RCMs also could not explain the snow cover biases, since the
distribution of the difference between RCM and MODIS orography was symmetric around zero
(Figure S6). However, the altitude differences were quite large. For the higher altitude region (inside
the alpine convention boundary), half of the grid cells differed in their altitude by more than 80–130 m
depending on RCM, and 10% of the grid cells differed even by more than 280–400 m. For the lower
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altitude region (outside the alpine convention boundary), 90% of the grid cells differed by less than
100–170 m.

No overarching statements can be made for all RCMs, but the biases depended on RCM, month,
high vs. low altitude and whether they were driven by reanalysis or GCMs. For example, reanalysis
driven WRF331F reproduced the seasonality and the amplitude of high-altitude Alpine snow cover
almost perfectly, however it underestimated the low-altitude snow cover. The GCM driven version
had in both cases more snow cover. Otherwise, high-altitude winter snow cover was overestimated
by RACMO22E, CCLM4-8-17, RCA4, and ALADIN63. On the other hand, low-altitude early spring
snow cover was underestimated by CCLM4-8-17, reanalysis driven WRF331F, and GCM driven RCA4.
RACMO22E strongly overestimated snow cover in all months and all altitudes, while HIRHAM5 had
the lowest snow cover extent, far away from the observed and the other RCMs, which was likely
related to a rather strange snow cover parametrization (see Figure 2 and Figure S4).

This overestimation for high and underestimation for low altitudes has been previously reported
in [5] for RCMs at 25 km resolution and Switzerland. A similar analysis to this study was performed
for a sub region of the Alps (Po basin) with only one RCM (CCLM) and using MODIS snow cover [6].
This study indicates that their results scale to the whole Alpine domain, since the seasonal evolution of
snow cover extent matches the one found here for CCLM (overestimation in winter, underestimation
in spring; see Figure 3: inside Alpconv).

3.3. Small-Scale Snow Cover Variability

3.3.1. Isolated Effects of Altitude, Temperature, and Precipitation Differences

The small-scale snow cover biases were assessed by relating the differences in per grid cell snow
cover to the differences in altitude, temperature and precipitation. The separate effects of each variable
are shown in [22]. The strongest effect was for the altitude difference, such that snow cover was
higher in RCMs compared to MODIS if the altitude in RCMs was also higher than in MODIS and
vice versa. This effect was present, with different magnitudes, in all RCMs (both reanalysis and GCM
driven), all months, and over all altitudes. The effect of temperature differences was not so strong,
but still visible [22], such that snow cover in RCMs was higher compared to MODIS if temperature
in RCMs was colder than in E-OBS and vice versa. The effect of precipitation was even lower than
for temperature, but consistent in the sense that snow cover in RCMs was higher than in MODIS if
precipitation was higher in RCMs compared to E-OBS and vice versa [22].

In the following the combined effect of each pairwise combination of altitude, temperature,
and precipitation differences on snow cover biases is presented. Figure 4 shows the SNC bias in
January in relationship to both differences in altitude and temperature for reanalysis driven RCMs
(see Figure S7 for GCM driven RCMs and January, and [22] for all other months). Biases were low
for the lowest and highest altitudes, because in winter these were either fully snow covered or snow
free. For the middle altitudes (500–2000 m) there was a clear and strong relationship between the snow
cover bias and the orography mismatch. The temperature bias had a smaller additional effect. SNC
biases were lowest if both altitude and temperature differences were at their minimum.

Precipitation biases did not show any additional effect on snow cover biases in addition to the
altitude differences, except for WRF331F, for which higher snow cover biases were linked to higher
precipitation biases (see Figure S8 for January). However, their effect was much smaller than the effect
of altitude differences. Figure S9 shows the effect of temperature and precipitation biases on snow
cover biases in January. It confirms the previous two comparisons in that temperature biases have
stronger effects than precipitation biases. However, it shows another pattern clearer than before: There
were almost no observations that had at the same time low temperature and low precipitation biases,
except for low altitudes up to 1000 m for CCLM4-8-17, RCA4, and WRF331F. Figures for all other
months, as well as GCM driven RCMs can be found in [22].
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Figure 4. January snow cover bias in relation to altitude difference and temperature difference.
The average snow cover fraction (SNC, unitless) bias (RCM–MODIS) in January is shown for classes of
altitude difference (RCM–MODIS, x-axis) and classes of temperature difference (RCM–E-OBS). Rows
are the different RCMs, and columns MODIS altitude classes. The area of the bubbles indicates the
number of grid cells in the respective bin. SNC bias values were averaged over all grid cells in the
respective bin, and the underlying grid cell data is averages for reanalysis driven RCMs and MODIS
for the common period October 2002 to September 2008. Extreme values (delta temperature above
4 and below −8 degrees C, delta altitude above 800 or below −800 m) were excluded from this plot for
better visualization and because their number is insignificant.

One reason that the temperature difference effect seemed lower than the altitude difference
effect might be in the interactions, since the temperature difference was not corrected for the altitude
difference between RCM and MODIS (only between RCM and E-OBS). So, the presented temperature
differences can be regarded as independent of the altitude difference between RCM and MODIS. These
temperature differences correspond to the cold biases that have been found in RCMs in the Alpine
region [9]. We did not lapse rate adjust the temperatures for the difference between RCM and MODIS
altitudes, because there was considerably variability in empirical monthly lapse rates in RCMs, which
ranged from 4.8 to 9.1 ◦C/km (over all months and all RCMs), and differences between RCMs by month
were up to 3.1 ◦C/km (see also Table S4).

3.3.2. Combined Effects of Altitude, Temperature, and Precipitation Differences

In order to quantify these effects, we employed simple linear regression models to derive the
amount of explained variance by altitude difference, temperature difference, precipitation difference,
and all three. We did not consider other explanatory variables, because our aim was not to create a good
explanatory model, but only to quantify the effects of altitude, temperature and precipitation differences.

On average, the altitude difference could explain 19% of the variance in SNC bias, the temperature
difference 11%, the precipitation difference 6%, and all together 31% (Table S5) for GCM driven RCMs.
However, there were large differences between the months and altitude, and some also between RCMs.
Most of the variance in snow cover bias could be explained in the months November to April and
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for the middle altitudes (500–1500 m) with average R squared values of 52–65% depending on RCM
(excluding HIRHAM5) with all differences as explanatory variables (Figure 5). In the higher altitudes,
the explained variance dropped for the months December to February, because these areas were mostly
snow covered in RCMs and MODIS, irrespective of potential biases. The maximum R squared could
reach up to 73–87% depending on RCM, when looking at all altitudes and months.

The relative importance of the three explanatory variables for the total explained variance
depended on altitude and RCM. For altitudes below 1000 m the temperature difference was the sole
or more important variable for all RCMs. For altitudes above 1000 m the altitude difference was the
sole or most important variable for ALADIN63, CCLM8-4-17, RCA4, and WRF331F. Temperature was
an important variable for RACMO22E in general, and for WRF331F during spring. Precipitation was
important only for WRF331F up to 1500 m, and for HIRHAM5 at highest altitudes >2000 m. The results
did not differ substantially for reanalysis driven RCMs (Table S6 and Figure S10).

The low importance of precipitation can be caused by the questionable quality of E-OBS
precipitation in the Alpine region. The station density differs strongly by nation and biases with respect
to regional precipitation data sets with higher station density can reach up to RCM biases [23]. Possibly,
better results could be obtained using a precipitation grid with a higher and more homogeneous station
density for the Alps, such as e.g., [24]. However, neither E-OBS nor [24] are corrected for undercatch
and uncertainties increase for small-scale features in all gridded precipitation data sets because of the
more regional distribution of precipitation as compared to temperature [23].
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The small-scale biases in snow cover depended largely on the topography mismatch caused by 
the smoothing in the RCMs. Approximately half of the variability in snow cover across grid cells in 

Figure 5. Explained variance in snow cover bias (RCM–MODIS) with linear regression models.
R squared values (adjusted for the number of explanatory variables) were obtained from linear
regression models of snow cover bias (RCM–MODIS) with different explanatory variables (covariates)
(∆ alt: altitude difference (RCM–MODIS), ∆ tmean: temperature difference (RCM–E-OBS), ∆ pre:
precipitation difference (RCM–E-OBS), ∆ alt + ∆ tmean + ∆ pre: all three differences). Rows are the
different RCMs, and columns MODIS altitude classes. RCMs are GCM driven; the number of different
GCMs is given in row labels; the transparent band shows the minimum and maximum over all GCMs,
while the solid line is the average.

3.3.3. Topography and Scale Considerations and the Added Value of Higher Resolutions

The small-scale biases in snow cover depended largely on the topography mismatch caused by
the smoothing in the RCMs. Approximately half of the variability in snow cover across grid cells
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in November to April could be explained by the differences between model and true topography.
This is a crucial issue, since the importance of topography in complex mountain terrain is well
known. However, RCMs encompass large regions, e.g., the European CORDEX domain covers all of
Europe plus some surroundings, and in large parts of the domain the topography is well resolved,
or its influence is negligible. Moreover, the benefits of higher resolutions in RCMs are debated (see
e.g., the added value issue in [25]), also because the higher resolution EURO-CORDEX RCMs did not
reduce biases in observed temperature and precipitation compared to previous lower resolution RCMs
such as PRUDENCE [9], even in the complex Alpine terrain.

So, while for temperature and precipitation the added value of higher resolutions is generally
unclear, we would argue that for precipitation and snow in complex terrain, higher resolutions have
large added values. Using very-high resolution convection-permitting RCMs (~2 km horizontal grid
spacing), clear benefits were found for precipitation in the Alps compared to coarser resolutions [2],
however not for temperature. Similarly, snow amounts were better reproduced in these high resolution
RCMs [3]. In another study concerning snow cover, biases were lowered by increasing the horizontal
model resolution from 14 km to 8 km [6]. The findings in this study corroborate this issue by showing
how much of the variability in snow cover was explained by topography mismatches.

These higher resolutions also open up the possibility to use RCMs outside their traditional use for
temperature and precipitation studies, such as for snow. Many studies were performed since, covering
different parts of the world, such as e.g., Spain [26], France [27], Northern Europe [28], the Colorado
River Basin in the US [29], or Japan [30,31].

3.4. Comparison of Snow Depth in RCMs to Stations

Compared to observations from remote sensing, observations from meteorological stations were
not homogenously distributed in space and especially not along the hypsometry of the studied region.
Most of the stations lie in valleys, the number of stations declines with altitude and only very few
exist at high elevations (e.g., >2000 m). This was also reflected in the distribution of the altitude
differences between stations and model orography (Figures S11 and S12). For altitudes below 1000 m,
the altitude difference was slightly skewed to positive differences (i.e., model orography higher than
station elevation), but with most of the distribution centered around 0 m; the median difference was
76 m. For altitudes between 1000 m and 2000 m, most of the altitude differences were well above 0 m,
with a median difference of 444 m. For altitude above 2000 m, only very few stations were available
(up to 7), and some of them were located on mountain peaks, thus model orography was more than
1000 m below the station’s elevation.

Figure 6 shows the relationship between difference in snow depth versus differences in altitude
for January for reanalysis driven RCMs. As expected, there was again a clear relationship between
biases in snow depth and orographic mismatch across all RCMs. Snow depth biases were lowest when
altitude differences were lowest. This relationship was found for the other months as well and for
GCM driven RCMs [22]. However, for the GCM driven runs, the RCMs had a positive bias (more
snow) for altitudes >1000 m even when altitude differences were low, while for reanalysis driven
RCMs, these biases centered around 0. This relationship was not present when looking at differences in
temperature compared to differences in altitude [22]; only for the GCM driven runs, a minor correlation
was observed.

The reason why no correlation was found for station data but for E-OBS might be two-fold. First,
it could be related to scale issues of comparing points to grids. Second, adjusting all RCMs with
the same lapse rate although they vary substantially (see also Table S4) might introduce spurious
effects, which, combined with the actual temperature biases and local climate patterns, could results in
arbitrary values. The altitude differences were higher for the stations than for the E-OBS grid, and thus
the lapse rate correction had a stronger influence on the station data.
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Figure 6. January snow depth bias (model–station observations) in reanalysis driven RCMs as function
of altitude difference. The difference in snow depth is shown for the different RCMs (columns) and
altitude classes of the stations (rows). Each point represents a station, and the difference in snow depth
was calculated as the difference between the average monthly snow depth for all years that the station
had in common with the RCM (during the period 1989–2008).

In order to quantify these biases and to compare the different RCMs, we calculated the median
(and IQR; inter–quartile–range) snow depth bias for the stations that were within ±400 m of altitude
difference with the RCMs. The ±400 m difference threshold was chosen in order to maximize the
number of stations available, and at the same time reduce the influence of orography mismatch. Since
each RCM orography differs, the station selection was performed separately per RCM. Average biases
were then remarkably low (Table 2): Within −8 to +7 cm up to 2000 m of altitude for all reanalysis
driven RCMs, except for RCA4 in spring months (March–May) between 1000 and 2000 m, where RCA4
overestimated snow depth on average by 19–34 cm.

Comparing the different RCMs with respect to the IQR (the bias range where half of the stations
lay), CCLM4-8-17 had the lowest biases over all months and altitudes (largest IQR was −12 to 3 cm),
followed by WRF331F, which slightly underestimated winter snow for altitudes between 1000 and
2000 m with IQRs between −8 to 6 cm and −25 to 1 cm. RACMO22E overestimated snow depth
in December to March for altitudes below 1000 m with IQRs between 2 to 5 cm and 1 to 11 cm,
and underestimated snow depth between 1000 m and 2000 m with IQRs up to −15 to 9 cm. RCA4 was
comparable to CCLM4-8-17 and WRF331F for altitudes below 1000 m, however, between 1000 and
2000 m it had the largest IQRs of all RCMs going up to 14 to 108 cm. These large IQR of RCA4 might
be related to the snow density parametrization, which can produce rather low snow densities in some
cases (see also Figure S3).
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Table 2. Average snow depth bias (RCM minus station) in cm for stations that are within ±400m of
altitude difference with RCM orography. Values are median (IQR, inter–quartile–range, in parentheses)
differences between four different reanalysis driven RCMs and stations, by elevation class of the stations,
and month. The number of stations is not balanced between elevation classes, and is ~70 for (0, 500],
~46 for (500, 1000], and ~22 for (1000, 2000].

Elevation Class [m] Month CCLM4-8-17 RACMO22E RCA4 WRF331F

(0, 500] Nov 0 (0, 0) 1 (0, 1) 2 (1, 2) 0 (0, 1)
(0, 500] Dec 0 (0, 0) 3 (2, 5) 3 (2, 4) 1 (1, 2)
(0, 500] Jan 0 (−1, 0) 3 (2, 7) 3 (2, 4) 0 (0, 1)
(0, 500] Feb 0 (−1, 0) 4 (2, 9) 3 (2, 4) 0 (0, 1)
(0, 500] Mar 0 (0, 0) 3 (1, 7) 2 (2, 4) 0 (0, 0)
(0, 500] Apr 0 (0, 0) 0 (0, 1) 1 (1, 1) 0 (0, 0)
(0, 500] May 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

(500, 1000] Nov −1 (−1, 0) 1 (0, 1) 1 (1, 2) 1 (0, 1)
(500, 1000] Dec −1 (−3, 0) 3 (1, 5) 2 (0, 3) 2 (0, 4)
(500, 1000] Jan −1 (−3, 0) 4 (1, 7) 1 (−1, 3) 1 (−1, 4)
(500, 1000] Feb −3 (−6, −1) 5 (1, 11) 1 (−2, 3) 0 (−2, 3)
(500, 1000] Mar −1 (−4, 0) 5 (2, 10) 2 (1, 4) 0 (−1, 1)
(500, 1000] Apr 0 (0, 0) 1 (0, 2) 1 (1, 2) 0 (0, 0)
(500, 1000] May 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

(1000, 2000] Nov −1 (−2, 1) 2 (0, 3) 2 (0, 8) 0 (−1, 3)
(1000, 2000] Dec −2 (−7, 0) −3 (−4, 3) −1 (−6, 22) −5 (−8, 6)
(1000, 2000] Jan −3 (−8, 1) −7 (−11, 3) 1 (−11, 38) −8 (−13, 6)
(1000, 2000] Feb −3 (−12, 3) −8 (-15, 9) 7 (−8, 57) −7 (−17, 5)
(1000, 2000] Mar 1 (−7, 6) −3 (-9, 17) 19 (−1, 94) −3 (−25, 1)
(1000, 2000] Apr −1 (−4, 1) 6 (0, 33) 24 (14, 108) 0 (−6, 6)
(1000, 2000] May 0 (0, 0) 1 (0, 19) 34 (3, 72) 0 (0, 1)

When looking at GCM driven RCMs, the snow depth biases increased substantially compared to
reanalysis driven RCMs (Figure 7). Median biases were no longer in the cm range, but up to 2 m for
altitudes between 1000 and 2000 m. There were also more substantial differences between RCMs and
the elevation classes, and also between GCMs. Similar to the reanalysis driven runs, CCLM4-8-17 had
the lowest biases across all elevations, now in the range of −4 to 32 cm. For elevations below 1000 m,
ALADIN63, HIRHAM5, and RCA4 were also comparable to CCLM4-8-17, however, with some over-
and under-estimation. WRF331F overestimated snow depth below 1000 m, on average, up to 10 cm,
and RACMO22E even more up to 19 cm. For altitudes between 1000 and 2000 m, average biases were
lowest for CCLM4-8-17 and HIRHAM5, while for the other RCMs they reached values of ~1 m, and
even >2 m for RACMO22E.
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(0, 500] Feb 0 (−1, 0) 4 (2, 9) 3 (2, 4) 0 (0, 1) 
(0, 500] Mar 0 (0, 0) 3 (1, 7) 2 (2, 4) 0 (0, 0) 
(0, 500] Apr 0 (0, 0) 0 (0, 1) 1 (1, 1) 0 (0, 0) 
(0, 500] May 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

(500, 1000] Nov −1 (−1, 0) 1 (0, 1) 1 (1, 2) 1 (0, 1) 
(500, 1000] Dec −1 (−3, 0) 3 (1, 5) 2 (0, 3) 2 (0, 4) 
(500, 1000] Jan −1 (−3, 0) 4 (1, 7) 1 (−1, 3) 1 (−1, 4) 
(500, 1000] Feb −3 (−6, −1) 5 (1, 11) 1 (−2, 3) 0 (−2, 3) 
(500, 1000] Mar −1 (−4, 0) 5 (2, 10) 2 (1, 4) 0 (−1, 1) 
(500, 1000] Apr 0 (0, 0) 1 (0, 2) 1 (1, 2) 0 (0, 0) 
(500, 1000] May 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

(1000, 2000] Nov −1 (−2, 1) 2 (0, 3) 2 (0, 8) 0 (−1, 3) 
(1000, 2000] Dec −2 (−7, 0) −3 (−4, 3) −1 (−6, 22) −5 (−8, 6) 
(1000, 2000] Jan −3 (−8, 1) −7 (−11, 3) 1 (−11, 38) −8 (−13, 6) 
(1000, 2000] Feb −3 (−12, 3) −8 (-15, 9) 7 (−8, 57) −7 (−17, 5) 
(1000, 2000] Mar 1 (−7, 6) −3 (-9, 17) 19 (−1, 94) −3 (−25, 1) 
(1000, 2000] Apr −1 (−4, 1) 6 (0, 33) 24 (14, 108) 0 (−6, 6) 
(1000, 2000] May 0 (0, 0) 1 (0, 19) 34 (3, 72) 0 (0, 1) 

When looking at GCM driven RCMs, the snow depth biases increased substantially compared 
to reanalysis driven RCMs (Figure 7). Median biases were no longer in the cm range, but up to 2 m 
for altitudes between 1000 and 2000 m. There were also more substantial differences between RCMs 
and the elevation classes, and also between GCMs. Similar to the reanalysis driven runs, CCLM4-8-
17 had the lowest biases across all elevations, now in the range of −4 to 32 cm. For elevations below 
1000 m, ALADIN63, HIRHAM5, and RCA4 were also comparable to CCLM4-8-17, however, with 
some over- and under-estimation. WRF331F overestimated snow depth below 1000 m, on average, 
up to 10 cm, and RACMO22E even more up to 19 cm. For altitudes between 1000 and 2000 m, average 
biases were lowest for CCLM4-8-17 and HIRHAM5, while for the other RCMs they reached values 
of ~1 m, and even >2 m for RACMO22E. 

 
Figure 7. Average snow depth bias (RCM minus station) for stations that are within ±400 m of altitude 
difference with RCM orography. Lines indicate the median snow depth difference between the 

Figure 7. Average snow depth bias (RCM minus station) for stations that are within ±400 m of altitude
difference with RCM orography. Lines indicate the median snow depth difference between the different
RCMs and stations, and the transparent band is the IQR (inter–quartile–range). RCMs are shown
in columns, with the driving GCM indicated in colors; rows are elevation classes of the stations.
The number of stations is not balanced between elevation classes, and is ~55 for (0, 500], ~35 for
(500, 1000], and ~9 for (1000, 2000].
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3.5. Synthesis of the Evaluations for Snow Cover and Snow Depth

The evaluation of snow depth in RCMs was performed using large set of station observations
covering the north, central and south-eastern parts of the Alps. Results should be taken cautiously,
since point values do not represent area averages. However, results were in many aspects similar to
other studies using gridded comparisons of snow amounts. For example, in this study snow depth
biases in reanalysis driven RCMs were extremely low, but GCM driven RCMs had large positive
biases. The same was found using gridded snow water equivalent products for the same RCMs and
the same region (European Alps) [7]. Similarly, the overestimation of high-altitude snow amounts (and
underestimation in low altitudes) reported in [5], was found also here, however, only for GCM driven
RCMs in this study. For the reanalysis driven ones, in this study, snow depth biases were low across all
altitudes (except for RCA4).

Snow cover extent is a sub-grid process in RCMs. It is typically parameterized as a function of
snow amount. The parameterization differed strongly between RCMs, e.g., for CCLM8-4-17, snow
cover and snow amount (or depth) were strongly linked, while for RCA4 the link was looser. Actually,
for RCA4, time series of snow cover fraction of single pixels resembled much those of MODIS (not
shown here), so the parameterization might even be adjusted empirically.

Because of this and the results of the evaluation of snow depth above, one cannot generalize the
performance of each RCM in reproducing snow as a whole, but each snow variable has to be considered
separately. A good representation of snow cover such as for RCA4 cannot guarantee similar results for
snow depth, and vice versa: HIRHAM5 had snow depth estimates very close to observations, but its
snow cover was substantially off.

Table 3 shows a summary of over- and under-estimation of snow cover and snow depth per
RCM and month. While the elevation dependency of biases is not included in the table, it still gives
an indication on the consistency or discrepancy in biases, such as e.g., the overestimation of both snow
cover and snow depth for RACMO22E, or the underestimation of snow cover and at the same time
overestimation of snow depth for GCM-driven HIRHAM5 and RCA4 in winter.
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Table 3. Over- and under-estimation of snow cover fraction and snow depth in regional climate models. Indicative table summarizing average biases in snow cover
fraction over all the study domain and snow depth over all stations (that is, ignoring any elevation dependency of biases). Meaning of cell contents from October to
September: + (overestimation), − (underestimation), o (within tolerance level). First sign left of slash (/) stands for snow cover fraction and second sign for snow depth.
The tolerance level is ±0.05 for snow cover fraction and ±5 cm for snow depth.

RCM GCM Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Reanalysis Driven

CCLM4-8-17 ECMWF-ERAINT o/o o/o o/o o/o o/o −/+ o/+ o/o o/o o/o o/o o/o

RACMO22E o/o o/o +/+ +/+ +/+ +/+ +/+ o/+ o/o o/o o/o o/o

RCA4 o/o o/o o/+ o/+ o/+ o/+ o/+ o/+ o/+ o/+ o/o o/o

WRF331F o/o o/o o/+ o/+ o/+ o/+ o/+ o/+ o/o o/o o/o o/o

GCM Driven

ALADIN63 CNRM-CERFACS-CNRM-CM5 o/o o/+ o/+ +/+ +/+ o/+ +/+ o/+ o/+ o/+ o/o o/o

MOHC-HadGEM2-ES o/o o/+ o/+ o/+ −/+ o/+ o/+ o/+ o/o o/o o/o o/o

CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 o/o o/o +/+ +/+ o/+ o/+ o/+ o/o o/o o/o o/o o/o

ICHEC-EC-EARTH o/o o/o o/o o/o −/o −/o o/o o/o o/o o/o o/o o/o

MOHC-HadGEM2-ES o/o o/o +/o o/o −/o −/+ o/+ o/o o/− o/o o/o o/o

MPI-M-MPI-ESM-LR o/o o/o o/o o/o −/o −/+ o/+ o/o o/o o/o o/o o/o

HIRHAM5 CNRM-CERFACS-CNRM-CM5 o/o −/o −/o −/+ −/+ −/+ −/+ o/o o/o o/o o/o o/o

ICHEC-EC-EARTH o/o −/o −/o −/+ −/+ −/+ −/+ o/o o/o o/o o/o o/o

MOHC-HadGEM2-ES o/o −/o −/o −/+ −/+ −/+ −/o −/o o/o o/o o/o o/o

NCC-NorESM1-M o/o −/o −/o −/o −/+ −/+ −/o −/o o/o o/o o/o o/o

RACMO22E CNRM-CERFACS-CNRM-CM5 o/o +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ o/o o/o o/o

ICHEC-EC-EARTH +/o +/+ +/+ +/+ +/+ +/+ +/+ +/+ o/+ o/o o/o o/o

MOHC-HadGEM2-ES o/o +/o +/+ +/+ +/+ +/+ +/+ +/+ o/o o/o o/o o/o

MPI-M-MPI-ESM-LR o/o +/o +/+ +/+ +/+ +/+ +/+ +/+ o/o o/o o/o o/o

NCC-NorESM1-M o/o +/o +/+ +/+ o/+ +/+ +/+ +/+ o/+ o/o o/o o/o

RCA4 CNRM-CERFACS-CNRM-CM5 o/o o/+ o/+ +/+ o/+ o/+ o/+ o/+ o/+ o/+ o/+ o/o

ICHEC-EC-EARTH o/+ o/+ o/+ o/+ −/+ o/+ o/+ o/+ o/+ o/+ o/+ o/+

IPSL-IPSL-CM5A-MR o/+ o/+ o/+ −/+ −/+ −/+ o/+ o/+ o/+ o/+ o/+ o/+

MOHC-HadGEM2-ES o/o o/o o/o o/+ −/+ −/+ o/+ o/+ o/+ o/+ o/o o/o

MPI-M-MPI-ESM-LR o/o o/o o/o o/+ −/+ −/+ o/+ o/+ o/+ o/+ o/+ o/o

NCC-NorESM1-M o/o o/o o/+ o/+ −/+ −/+ o/+ o/+ o/+ o/+ o/+ o/o

WRF331F IPSL-IPSL-CM5A-MR o/o +/+ o/+ o/+ o/+ o/+ +/+ o/+ o/+ o/+ o/o o/o
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4. Conclusions

A two-fold evaluation of snow in the EURO-CORDEX regional climate models was performed
using observations. First, snow cover was compared to remote sensing at the scale of the European Alps
and at the grid cell level. Second, snow depth was compared to stations at the point level. The main
conclusions are:

1. RCMs were able to reproduce snow cover seasonality and amplitude at the scale of the European
Alps fairly well, despite some over- and under-estimations depending on month and RCM.

2. Reanalysis driven RCMs had lower biases than GCM driven RCMs for both snow cover and
snow depth, implying that the forcing plays an important role.

3. The orography mismatch, partly also the temperature and less the precipitation biases, exerted
a strong influence on biases in snow variables. In regions with low altitude, temperature,
and precipitation differences, RCMs showed minimal biases in snow cover and snow depth,
implying that the snow schemes in the RCMs produce reasonable estimates with respect to
their resolution.

4. The parameterization of grid-scale snow cover fraction varies substantially amongst the RCMs.
Because of this, RCMs that performed well for snow cover did not necessarily perform well
for snow depth, and vice versa. Consequently, it is not possible to rank the RCMs in general
terms for their capability to reproduce snow, as each variable (cover and depth) has to be
considered separately.

The results of this evaluation give credibility to existing studies of snow projections using RCMs
and allows climate modelers to further improve the representation of snow. Furthermore, it motivates
the use of high-resolution RCMs for future snow studies in complex mountainous terrain.
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