## Supplementary Materials:

## Zachary J. DeBruyn <sup>1</sup>, Claudia Wagner-Riddle <sup>2</sup> and Andrew VanderZaag <sup>3,\*</sup>

## **Error Propagation:**

The equations used to calculate errors shown in Table 1 are provided below, along with brief example calculations.

i) Error related to path length (*E*<sub>PL</sub>) was calculated as:

$$E_{PL} = \frac{0.02 m}{PL} \tag{1}$$

(2)

For example, with a 1.1 m path length,  $E_{PL} = 0.018$ , or 1.8%.

ii) Error related to the standard concentration ( $E_{CH4}$ ) was calculated as:

$$E_{CH4} = 0.02 [CH_4]$$

Where the concentration was certified to ±1% accuracy, and we used 2% (i.e. 0.02) for this analysis.

iii) Error from a gap of air between the device and calibrating chamber (*Ec*) was estimated assuming the gap was at an ambient concentration of 1.8 ppm, and from 4 to 5 cm wide: For example, with a gap of 5 cm, PL = 2.0 m, and standard concentration of 30.6 ppm, we calculated  $E_G = -4.2\%$  using this equation:

$$E_G = \frac{\left[(PL - 0.05m)[CH_4] + (0.05m \cdot 1.80 \, ppm)\right] - PL[CH_4]}{PL[CH_4]} \times 100\%$$
(3)

iv) Error from temperature correction was calculated as the difference in temperature correction coefficient at two temperatures differing by 2°C, i.e.

$$E_{CT}=(C_{To}-C_{T2})/C_{To},$$
(4)

The manufacturer-supplied equation for temperature correction is as follows, where  $C_T$  is the correction coefficient, T is the temperature in °C:

$$C_T = 1 \times 10^{-11} \mathrm{T}^4 - 3 \times 10^{-9} \mathrm{T}^3 + 7 \times 10^{-6} \mathrm{T}^2 + 0.0032 \mathrm{T} + 0.9328,$$
(5)

For example, at 20°C, CT = 1.000, while at 22°C, CT=1.007. Thus, *EcT*=0.007, or 0.7%. v) Error from pressure correction was calculated as the difference in pressure correction coefficient at two pressures differing by 2kPa, i.e.,

$$E_{CP}=(C_{Po}-C_{P2})/C_{Po}, \qquad (6)$$

\_1

The manufacturer supplied equation for the pressure correction coefficient ( $C_P$ ) is as follows, where P is the pressure (kPa), a and b are constants (a = -0.28862, b = 16041.81):

$$C_{P} = a \left[ \frac{4P^{2}}{b} - \frac{\sqrt{2}P^{2}}{b} \left( \frac{\left(\frac{b}{P^{2}} + 2\right) \left[2 + \frac{2b}{P^{2}}\right]^{1/2}}{\left(1 + \frac{b}{P^{2}}\right)} \right) \right]^{-1}$$
(7)

For example, at 100 kPa, CP=0.9917, while at 102 kPa, CP=1.004. Thus, *EcP*=0.012, or 1.2%.

## Allan Variance:

The Allan variance was calculated for a period when the GF3 was sampling stable methane concentration. The log-log plot decreases with a -1 slope, and does not reach a minimum in this time period, suggesting that longer sampling duration would further reduce noise.



**Figure S1.** Allan variance (black line) during sampling of stable methane concentration. The dashed orange line shows the slope of -1.

Figure S1: Allan variance (black line) during sampling of stable methane concentration. The dashed orange line shows the slope of -1.