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Abstract: Airborne polycyclic aromatic hydrocarbons (PAHs) are of great concern to human health
due to their potential high toxicity. Understanding the characteristics and sources of PAHs, as well as
the governing factors, is therefore critical. PAHs and refractory black carbon (rBC) are both from
combustion sources. This work, for the first time, investigated exclusively the rBC-bound PAH
properties by using a laser-only Aerodyne soot-particle aerosol mass spectrometer (SP-AMS). This
technique offers highly time-resolved PAH results that a traditional offline measurement is unable
to provide. We analyzed two datasets conducted in urban Shanghai during the fall of 2018 and in
suburban Nanjing during the winter of 2017, respectively. Results show that the average concentration
of PAHs in Nanjing was much higher than that in Shanghai. Nanjing PAHs contained more low
molecular weight components while Shanghai PAHs contained more high molecular weight ones.
PAHs in Shanghai presented two peaks in early morning and evening, while Nanjing PAHs had
only one significant morning peak, but remained high throughout the nighttime. A multi-linear
regression algorithm combined with positive matrix factorization (PMF) analyses on sources of PAHs
reveals that the industry emissions contributed the majority of PAHs in Nanjing (~80%), while traffic
emissions dominated PAHs in Shanghai (~70%). We further investigated the relationships between
PAHs with various factors. PAHs in both sites tended to positively correlate with primary pollutants,
including primary organic aerosol (OA) factors, and gaseous pollutants of CO, NO2 and SO2, but
negatively correlated with secondary OA factors and O3. This result highlights the enhancement of
rBC-bound PAHs level due to primary emissions and their oxidation loss upon atmospheric aging
reactions. High concentration of PAHs seemed to frequently appear under low temperature and high
relative humidity conditions, especially in Shanghai.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic species that are ubiquitously
present in ambient air, derived mainly from anthropogenic sources, including incomplete combustion or
pyrolysis of fossil fuels (such as gasoline, diesel, and coal), solid waste, as well as biomass [1–6]. PAHs
themselves are known to possess high health hazards [7–10]. When emitted into the air, PAHs can be
further oxidized into other PAH derivatives (such as nitrated and oxygenated PAHs), which are likely
more toxic and carcinogenic and have longer atmospheric lifetimes than their parent PAHs [11–15].
Studies on concentrations, size distributions, sources, chemical transformations, as well as the spatial
distributions and temporal variations of airborne PAHs, are therefore essential.

As is well known, identification and quantification of PAHs are typically conducted by offline
analysis of filter extracts by using the gas chromatography mass spectrometry (GC-MS) technique [16,17],
which also has the advantage to differentiate PAH isomers with the same molecular weight (MW). Of
course, filter samples often require longer collection time, resulting in lower temporal resolution, which
sometimes limit detailed investigations on quick changes of PAH behaviors in ambient [18]. Sampling
artifacts are also difficult to eliminate during offline analysis. Online measurement techniques
are also developed in the past decades, including the photoelectric aerosol sensor (PAS) [17,19]
and Aerodyne aerosol mass spectrometry (AMS) [20]. AMS is an instrument that is designed to
determine the aerosol concentration, composition, and size distribution in real time with very fine time
resolution. Dzepina et al. [20] first proposed the method to determine PAHs via the quadruple-AMS,
and such method can be used by other versions of Aerodyne AMS, such as the high resolution-AMS
(HR-AMS) [21,22] and soot-particle AMS (SP-AMS) [23]. A number of studies have used this method to
quantify particulate PAHs, studied the chemical evolution of PAHs [16,24–26], as well as PAH emissions
from specific sources, including biomass burning [27] and vehicle emissions [28]. The AMS technique
offers unique highly time-resolved results on PAHs, whereas offline GC-MS measurement cannot.

Note the emission sources of PAHs are similar as those of refractory black carbon (rBC) or
soot, and PAHs are in fact intermediates during soot formation [29], and can be converted to soot
during combustion [28,30,31]. Different PAH compounds have different gas-to-particle partitioning
properties [32–34]. PAHs with relatively large numbers of benzene rings mainly exist in fine particles [35],
and those with smaller MWs may partition into gas phase [36]. In addition, some studies have shown
that the particle-bound PAHs can react with ozone (O3), and form a viscous layer to protect the
underlying PAHs from ozonolysis, so that prolongs their chemical lifetimes [37]. Therefore, the PAHs
co-emitted with rBC particles might evaporate or be oxidized into other species during their atmospheric
transport; PAHs that are emitted separately from rBC may coagulate or adsorb on rBC particles as
well. As an aerosol component, rBC also exerts adverse effects on human health [38], although not as
toxic as PAHs when inhaling the same amount. Studies of the rBC-bound PAH properties, and its
correlation with other factors, can advance our understanding on both rBC and PAH properties, as
well as the health co-benefits from rBC and PAH reductions.

The Aerodyne SP-AMS is the most advanced version of Aerodyne AMS, which uses an intra-cavity
infrared laser to measure rBC, and another thermal vaporizer to measure non-refractory materials [39].
If we remove the thermal vaporizer, the SP-AMS can exclusively measure rBC-containing particles only,
acquiring the concentration, size, and composition of both rBC cores and any species that coat on rBC
cores [40,41], including, of course, rBC-bound PAHs. In this study, we aim to use the SP-AMS technique
to elucidate the characteristics of the PAHs species associated with rBC particles in two representative
megacities in the Yangtze River Delta (YRD) region of China, investigate their concentrations, source
contributions, as well as their relationships with a series of factors, including different primary and
secondary particle-phase components, gas-phase pollutants, and meteorological parameters.
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2. Experiments

2.1. Sampling Sites and Instrumentation

In this study, we conducted SP-AMS measurements in two megacities (as shown in Figure 1).
The first study was performed during winter in suburban Nanjing (from 23 January to 24 February,
2017). The SP-AMS was deployed inside the campus of Nanjing University of Information Science
and Technology (NUIST). The site was mainly affected by nearby industrial emissions (petrochemical
plants, chemical plants, power plants, ironmaking, and steelmaking plants, etc.), residential activities,
and road traffic (Nanjing Jiangbei expressway), as marked in Figure 1. The dataset is denoted as NUIST
hereafter. The second campaign was performed in urban Shanghai from 31 October to 2 December,
2018. The sampling site was located inside the Shanghai Academy of Environmental Sciences (SAES).
It was surrounded by business buildings, and influenced mainly by dense residential and traffic
activities (Figure 1). The dataset is denoted as SAES hereafter. The two sites both locate in the densely
populated YRD region, but under different environments as indicated above. Therefore, comparison
of their results may provide useful insights into the ambient PAH properties emitted from different
sources. Of course, since we only have one SP-AMS, it should be noted that the results from two sites
were not for the same period, but both measurements were performed in seasons with relatively high
particular matter (PM) pollution.
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Figure 1. Field measurement sites (Nanjing University of Information Science and Technology—NUIST;
Shanghai Academy of Environmental Sciences—SAES) and surrounding areas.

During these two campaigns, the laser-only mode of SP-AMS was operated to measure
rBC-containing particles only. More instrument details can be found in our previous work [41].
Concentrations of major gas pollutants (CO, NO2, SO2, and O3) and the meteorological parameters
(temperature, relative humidity, wind speed, and direction) were determined simultaneously in parallel
with aerosol measurements in both sites.

2.2. PAHs Quantification and Source Apportionment

The SP-AMS data were analyzed by using Igor Pro 6.37 (WaveMetrics, Oregon, USA) with the
SQUIRREL (version 1.59D) and PIKA (1.19D) data analysis toolkit (publicly available from: http://cires1.

http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#Upgrade
http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#Upgrade
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colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#Upgrade). The SP-AMS laser
can evaporate the rBC-containing particles, and all species are subjected to 70 eV electron impact (EI)
ionization [38], and we can obtain signals of ion fragments from these species. Most PAHs existing in
particle phase in ambient air have relatively high molecular weight (>200 g/mol). Based on possible
molecular formulas of PAHs and mass-to-charge (m/z) ratios of corresponding fragments, and the fact
that PAHs are very resistant to fragmentation (which means that the molecular ions represent most
signals of the corresponding parent PAH compounds), Dzepina et al. [20] proposed a well-validated
method to identify different PAH compounds and calculate the total PAHs mass concentration. Here,
the same methodology was adopted to determine the mass loadings of rBC-bound PAHs in Shanghai
and Nanjing. A relative ionization efficiency of 1.4 was used here for PAHs quantification, consistent
with previous studies [21,22,26].

Positive matrix factorization (PMF) [42] was employed to deconvolute the rBC-associated organic
aerosol (OA) species to a few factors indicative of specific sources or processes. It is a receptor-only
model, which requires no prior information about factor profiles or time series. Ulbrich et al. [43]
developed an evaluation software tool with a user-friendly interface, which allows us to conduct the
PMF analysis on AMS data. Zhang et al. [44] further provide standard procedures to evaluate PMF
solutions and choose the optimal one. For NUIST dataset, five OA factors were resolved, as detailed
in Wu et al. [45]. Note in Wu et al. [45], the PMF results were used to elucidate the relationship of
OA with hygroscopicity of rBC-containing particles, while characteristics of rBC-bound PAHs were
not discussed. For the SAES dataset, PMF analysis was conducted on the OA mass spectra including
ions with m/zs of 12 to 120. The OA mass spectral matrix was further pre-processed by removing
ions with low signal-to-noise ratio (SNR<0.2), down-weighting of ions with SNR of 0.2–2.0, and some
time points appearing to be outliers. PMF solutions with a different number of factors, varying f peak

values (rotations), and seeds (initial values) were also systematically explored, and finally a six-factor
solution was chosen to be the best solution. More details regarding the diagnostic and justification of
the PMF results of SAES dataset are presented in Cui et al. [46]; note that work focuses on the chemical
properties and aging process of rBC-containing particles, while current work aims to elucidate PAH
properties, and compare it with those in Nanjing.

After we obtained the time series of PMF factors, a multi-linear regression method was applied to
apportion the PAHs and rBC signals to different sources for NUIST and SAES datasets, respectively
(details in Section 3.2). Such method has been used in our previous work to quantify sources of
fullerene soot [47], and in some other studies for rBC [48]. Correlation analyses were also performed
on PAHs with other aerosol components, gaseous pollutants, as well as meteorological parameters.

3. Results and Discussion

3.1. Overview of PAHs Concentration and Distribution

Figure 2 presents the mass concentrations of rBC and rBC-bound PAHs, normalized mass spectrum
of PAHs, and mass contributions of different groups of PAHs. The rBC-bound PAHs concentration
in NUIST ranged from 5.4 to 301.9 ng/m3, with an average value of 46.0( ± 38.0) ng/m3 (mean ± one
standard deviation). This average PAHs level is lower than, but in a similar order as that measured by
offline GC-MS in the same location (64.3 ng/m3) during winter of 2014–2015 [49]. PAHs concentration
in SAES varied from 0.38 to 42.25 ng/m3, with a mean of 6.6( ± 6.9) ng/m3. This PAHs level is much
lower than that of NUIST, but is in the same order of previous reported values of 7.2 ng/m3 (suburban
area) and 6.5 ng/m3 (urban area) in Shanghai [50]. Considering that we only measured the portion
of PAHs bound with rBC, lower levels therefore could be anticipated. Overall, the results show that
PAHs pollution in suburban Nanjing, at least during winter, was more significant than that during fall
in Shanghai, likely due to enhanced emissions from nearby industry activities around NUIST; much
more heavy-duty diesel trucks around NUIST (no restrictions on those vehicles around this site) than
those around SAES might also add the rBC-bound PAH emissions.

http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#Upgrade
http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#Upgrade
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Figure 2. Time series of refractory black carbon (rBC) and rBC-bound polycyclic aromatic hydrocarbons
(PAHs) in Nanjing University of Information Science and Technology (NUIST) (a) and in Shanghai
Academy of Environmental Sciences (SAES) (c), and normalized average mass spectrum of PAHs in
NUIST (b) and in SAES (d) (PAH fragments are classified into three groups; pie charts show mass
contributions of the three groups of PAHs).

Correspondingly, average rBC concentrations in NUIST and SAES were 2.76 (±1.60) and 1.21
(±0.99) µg/m3, and the mean mass ratios of rBC-bound PAHs to rBC were 0.0167 and 0.0055, respectively.
Moderate correlations were found between time series of PAHs and rBC (0.53 of NUIST and 0.62 of
SAES), and there were periods with relatively high PAHs loadings, yet low rBC concentrations (for
example, 28 January, 2017 in NUIST), and vice versa (16–18 February, 2017 in NUIST) (Figure 2a). Both
results point to different source contributions to and/or influences of atmospheric processes on PAHs
and rBC. This is discussed in detail in the following sections.

Figure 2b,d display the normalized mass spectra of PAHs in NUIST and SAES, respectively.
The fragments were grouped into PAHs with 4 rings, 5-6 rings, and 7 rings. For NUIST, relatively
low MW 4-ring PAHs were dominant (53.8%), followed by 5-6 ring PAHs (32.9%), and 7-ring PAHs
(13.3%). In contrast, for SAES, mass contribution of 4-ring PAHs was much less (39.0%), while high
MW 7-ring ones became more important (24.6%), and contribution of 5-6 ring PAHs (36.4%) were
similar to that of NUIST. Since different groups of PAHs have different gas-to-particle partitioning
properties and vapor pressures, different distributions of PAHs in NUIST and SAES might lead to their
distinct atmospheric behaviors.

Figure 3 illustrates the diurnal variations of rBC, rBC-bound PAHs and mass ratios of PAHs to
rBC. For NUIST, both rBC and PAHs presented morning peaks (3.39 µg/m3 of rBC, and 68.76 ng/m3 of
PAHs) likely due to elevated traffic or industrial emissions. They had minimums (1.91 µg/m3 of rBC,
and 29.47 ng/m3 of PAHs) in the afternoon, probably owing to emission decrease and the dilution effect
by elevated planetary boundary layer (PBL) height, etc.; their concentrations rose continuously in the
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early evening and remained at a high level throughout the nighttime. PAHs/rBC ratios also showed
a morning peak and an afternoon minimum, reflecting the semi-volatile behavior of PAHs (high
evaporation loss due to high temperature in the afternoon) and possible loss due to photochemical
reactions of PAHs with atmospheric oxidants. For SAES, beside the morning peaks (1.56 µg/m3 of
rBC, and 10.23 ng/m3 of PAHs) and afternoon minimums (1.02 µg/m3 of rBC, and 4.96 ng/m3 of PAHs),
early evening peaks of rBC (1.35 µg/m3) and PAHs (11.86 ng/m3) were more apparent than those in
NUIST. Such differences between the two datasets may be attributed to diverse source contributions:
the NUIST site was affected significantly by industrial emissions, which were relatively stable, and the
early evening increases were probably owing to a decrease of PBL height. Meanwhile, the SEAS site
was predominantly governed by traffic emissions; therefore, in addition to the PBL influence, evening
rush hour traffic stood out and led to more obvious enhancements.
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3.2. Source Appointments of PAHs and rBC

To further elucidate the PAHs and rBC sources, we employed a multi-linear regression method
to apportion the signals of PAHs and rBC to different sources (i.e., different PMF factors). For
the NUIST dataset, five factors were resolved, including the traffic-related hydrocarbon-like OA
(HOA), industry-related OA (IOA), aged biomass burning OA (ABBOA), semi-volatile oxygenated
OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Their mass spectral profiles and time
series are presented in Wu et al. [45], therefore are not shown here. For SAES dataset, we separated
six factors, including the enriched hydrocarbon-like OA (HOA-rich), rBC-enriched OA (rBC-rich),
biomass burning OA (BBOA), nitrogen-enriched OA (NOA), less oxidized oxygenated OA (LO-OOA),
and more oxidized oxygenated OA (MO-OOA). The high-resolution mass spectra and corresponding
time series of those factors are depicted in Figure 4. For NUIST dataset, HOA, IOA, and BBOA were
primary OA (POA) factors, SV-OOA and LV-OOA were secondary OA (SOA) factors; for the SAES
dataset, HOA-rich, rBC-rich, BBOA and NOA were four POA factors, LO-OOA and MO-OOA were
SOA factors.

Note that PAHs and rBC mostly originate from primary sources [1,38] rather than secondary
sources; thus, the regressions were only conducted on primary factors. Actually, if we added secondary
factors into the fitting, correlations between measured and re-constructed rBC and PAH concentrations
would all become weaker; therefore, exclusion of SOA factors was reasonable (SOA factors were, in
fact, negatively correlated with PAHs as shown in Section 3.3). Finally, we established the following
empirical formulas for PAHs and rBC for NUIST and SAES datasets, respectively.

rBCre-constructed, NUSIT

= 1.171 × [HOA] + 0.945 × [IOA] + 0.543 × [ABBOA] + 0.456
(1)

rBCre-constructed, SAES

= 1.453 × [rBC-rich] + 0.240 × [HOA-rich] + 0.833 × [NOA]
+ 0.243 × [BBOA] + 0.146

(2)
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where rBCre-constructed, NUSIT and rBCre-constructed, SAES (µg/m3) represent the re-constructed mass
concentrations of rBC in NUIST and SAES, respectively. Factors in braces were time series of
corresponding factors.

PAHsre-constructed, NUSIT

= 11.44 × [HOA] + 44.917 × [IOA] + 5.43 × [ABBOA] + 26.14
(3)

PAHsre-constructed, SAES

= 6.478 × [rBC-rich] + 1.474 × [HOA-rich] + 0.655 × [NOA]
+ 2.495 × [BBOA] + 1.314

(4)

where PAHsre-constructed, NUSIT and PAHsre-constructed, SAES (ng/m3) represent the reconstructed PAHs
concentrations in NUIST and SEAS, respectively. Meanings of braced factors were the same as those in
Equations (1) and (2).Atmosphere 2020, 11, 202 7 of 15 
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(a), and their corresponding time series in SAES (b).

By using above formulas, re-constructed PAHs and rBC concentrations agreed fairly well with
corresponding measured data (all with p <0.01, Pearson’s r of 0.93 and 0.97 for rBC, Pearson’s r of
0.81 and 0.76 for PAHs of NUIST and SAES, respectively) (as shown in Figures 5 and 6), indicating
effectiveness of this method. We then used the regressed coefficients and mean concentrations of
factors to calculate their relative contributions to rBC and PAHs, as shown in the pie charts. Results
show that source contributions to total POA, rBC, and PAHs were remarkably different for NUIST and
SAES datasets. POA in NUIST was comprised of 42.0% IOA, 32.5% ABBOA, and 25.5% HOA; source
contributions to rBC was 45.5% IOA, 34.3% HOA, and 20.2% ABBOA; while PAHs appeared to be
overwhelmingly contributed by IOA (80.1%), followed by HOA (12.4%), and a minor contribution
from ABBOA (7.5%). POA in SEAS was composed of 21.6% rBC-rich OA, 25.5% HOA-rich, 30.1%
BBOA, and 12.4% NOA. Note rBC-rich OA was likely associated closely with traffic diesel combustion
(and possibly some ship emissions), HOA-rich factor was likely linked with traffic gasoline emissions,
and NOA was a local POA factor, possibly from industrial activities. Relative mass contribution to rBC
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was largest from the rBC-rich factor (54.5%), followed by 17.9% NOA, 14.9% HOA-rich, and 12.7%
BBOA. For PAHs, direct traffic-related OA contributions were still dominant (50.8% rBC-rich OA and
19.1% HOA-rich); BBOA contribution was a bit more (27.1%) than its contribution to rBC, while NOA
contribution (possible industry contribution) was very small (2.9%). Source contributions to PAHs in
NUIST and SEAS were found to be contrastingly different.
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Figure 6. Scatter plots of measured and re-constructed rBC (a) and PAHs concentrations (b), and pie
charts of mass contributions of different factors to the total primary organic aerosol (POA) (c), and relative
contributions of these factors to rBC (d) and PAHs (e) in SAES.

3.3. Relationships between PAHs and Other Factors

In general, the mass loading and variation of a certain species in ambient are controlled by
an integrated effect from emissions, reactions, and meteorology. Therefore, we explored the relationships
of PAH concentrations with primary or secondary species, including both particle-bound and gas-phase
species, as well as the meteorological parameters.
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Figure 7 presents the variations of PAH concentrations against different OA terms, including
the oxidation state (OSc), mass concentrations of POA and SOA. OSc is defined as 2 × O/C-H/C [52],
here O/C and H/C are oxygen-to-carbon and hydrogen-to-carbon atomic ratios. Generally, PAH
concentrations decreased with the increase of OSc for both NUIST (except a small plateau between
−1.15 and −0.95) and SAES. Since OSc can be treated as a metric of the aging or oxidation degree
of OA, this result reflects the loss of PAHs upon atmospheric aging. On the contrary, PAHs had
an obvious positive relationship with POA for both datasets (Figure 7b,f), verifying its primary origin.
Furthermore, investigations on correlations between PAHs with individual POA factors (not shown
here) revealed that PAHs in NUIST correlated the best with IOA, and PAHs in SEAS correlated tightest
with rBC-rich OA. These results are in line with the pie charts shown in Figures 5 and 6—that IOA and
rBC-rich OA were dominant sources of PAHs in NUIST and SAES, respectively.
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Figure 7. Variations of PAH concentrations versus the oxidation states (OSc), POA, semi-volatile
oxygenated OA (SV-OOA) or less oxidized oxygenated OA (LO-OOA), and low-volatility oxygenated
OA (LV-OOA) or more oxidized oxygenated OA (MO-OOA) concentrations: (a–d) NUIST; (e–h) SAES.

The relationships between PAHs and SOA factors, however, were a bit complex. In particular,
the PAHs in NUIST even presented an increasing trend with SV-OOA (although not highly correlated).
We think this positive correlation reflects the semi-volatile behavior of PAHs, similar to that of SV-OOA
in NUIST, rather than an indication of secondary production of PAHs. NUIST PAHs did contain
more low MW PAHs, which might partially explain this semi-volatile behavior. For SAES, in fact,
the factor with relatively low oxidation degree (LO-OOA) had no clear semi-volatile behavior; therefore,
the PAHs correlated negatively with it, as expected. For these highly oxygenated SOA factors, LV-OOA
in NUIST and MO-OOA in SAES, very clear anti-correlations were observed between them with PAHs,
suggesting again the primary not secondary origin of PAHs, as well as oxidation loss of PAHs, along
with the formation of large amounts of SOA.

Figure 8 illustrates the relationships between PAHs with those criteria gaseous pollutants, including
CO, NO2, SO2, and O3. Note that concentrations of CO, NO2, and SO2 in NUIST were all higher
than those in SEAS; in particular, NUIST SO2 concentration was a few times higher than SAES SO2,
indicating a more important role of industrial (likely coal combustion) emissions in NUIST. PAHs
in both NUIST and SAES, in general, correlated positively with CO, NO2, and SO2, as these gases
were also, in large part, from primary emission sources, as PAHs. Only the correlation between
PAHs and NO2 in NUIST was less clear-cut, which was in fact also reasonable, considering that PAHs
in NUIST were mainly from industry emissions, yet NO2 was mainly from traffic. On the other
hand, PAH concentrations decreased continuously with the increases of O3 in both NUIST and SAES.
Different from other gases, O3 is exclusively produced from photochemical reactions; therefore, this
anti-relationship may suggest that PAHs were subject to photochemical oxidation, which impacted
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its atmospheric levels. Results in Figures 6 and 7 together demonstrate the enhancement of the mass
concentration of PAHs due to primary emissions, as well as the loss or sink of PAHs due to atmospheric
oxidation reactions.
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At last, we investigated impacts of meteorological parameters (relative humidity (RH), temperature
(T), wind speed (WS), and wind direction (WD)) on PAH concentrations (as shown in Figure 9). First, it
is interesting to observe that WS had no clear impact on PAH loadings at both sites. The dilution effect
by wind speed was not significant unless there were strong winds (WS >3.5 m/s). For NUIST, PAHs
concentration from air parcels (east to southeast) was the highest, coincident with the industry zone
from that direction (Figure 1).Again, it demonstrates the dominance of industrial emissions to PAHs in
NUIST. For SAES, except that PAHs concentration was quite low in air parcels from north to east, other
air parcels all brought about relatively high loadings of PAHs, likely due to traffic activities from the
freeway and residential area (Figure 1). Regarding the effects of temperature, PAH concentrations in
both sites decreased against an increase in temperature, probably owing to two reasons: one is the
evaporation loss of PAHs at higher temperatures; another is the oxidation loss (since periods with
high temperatures, such as afternoons, often overlapped with periods with strong solar radiation, i.e.,
strong photochemical oxidation). In both sites, responses of PAH concentrations to RH changes were
generally positive (especially in SAES), but there was a drop at very high RH (>90%) probably due to
scavenging effects. The positive correlations were more likely owing to that high RH often occurring
during a time (i.e., nighttime and early morning) when strong anthropogenic PAH emissions were
exacerbated by low PBL heights.
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4. Conclusions

In this work, for the first time, we applied a laser-only SP-AMS to investigate rBC-bound PAHs
during the winter in suburban Nanjing, and during fall in urban Shanghai. Highly time-resolved data
allowed us to characterize the mass spectra, diurnal patterns, sources of PAHs, and their correlations
with other factors. Average rBC-bound PAHs concentration in Nanjing was 46.0 ng/m3, much higher
than that determined in Shanghai (6.64 ng/m3). Nanjing PAHs were found to contain more low MW
PAHs, while in Shanghai, high MW PAHs contribution was more significant. The diurnal pattern of
PAHs concentration in Nanjing showed a clear morning peak and an overall high level throughout
the nighttime, while Shanghai PAHs concentration presented bimodal distribution in early morning
and evening, indicating a clear impact from traffic activities. Source apportionment on PAHs via
a multi-linear regression method using PMF-resolved OA factors as inputs, showed that, indeed, traffic
emissions were a major source of PAHs in Shanghai (70%), while industry emissions overwhelmingly
dominated PAHs in Nanjing (80%). We further investigated the relationships between PAHs and
other factors. PAHs presented overall positive relationships with POA and CO, NO2, and SO2, but
negatively correlated with OSc, SOA factors, and O3, demonstrating enhancement of PAHs level in
ambient, due to primary sources and oxidation loss from atmospheric aging. PAHs also decreased with
an increase in temperature, again, reflecting possible evaporation and/or oxidation loss of PAHs. High
PAHs concentrations often appeared under low T and high RH conditions, especially in Shanghai. Our
findings here provide useful insights into the understanding of pollution levels, temporal variability,
and the source and lifecycle of PAHs in representative atmospheric environments.
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