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Abstract: The purpose of plasma astrophysics is the study and description of the flow of rotating
plasma in order to understand the evolution of various objects in the universe, from stars
and planetary systems to galaxies and galaxy clusters. A number of new applications and
observations have appeared in recent years and actualized the problem of studying large-scale
magnetohydrodynamic flows, such as a thin layer under the convective zone of the sun (solar
tachocline), propagation of accreting matter in neutron stars, accretion disks in astrophysics, dynamics
of neutron star atmospheres, and magnetoactive atmospheres of exoplanets tidally locked with
their host star. The article aims to discuss a fundamental problem in the description and study of
multiscale astrophysical plasma flows by studying its general properties characterizing different
objects in the universe. We are dealing with the development of geophysical hydrodynamic ideas
concerning substantial differences in plasma flow behavior due to the presence of magnetic fields and
stratification. We discuss shallow water magnetohydrodynamic equations (one-layer and two-layer
models) and two-dimensional magnetohydrodynamic equations as a basis for studying large-scale
flows in plasma astrophysics. We discuss the novel set of equations in the external magnetic field. The
following topics will be addressed: Linear theory of magneto-Rossby waves, three-wave interactions
and related parametric instabilities, zonal flows, and turbulence.

Keywords: magnetohydrodynamics; shallow water equations; nonlinear waves; turbulence;
zonal flows

1. Introduction

Plasma in various stars and planets is described by the magnetohydrodynamics of a thin fluid
layer with a free surface in the gravity field. As an example we refer to solar tachocline flows (a thin
layer inside the sun located at the bottom of the convection zone) [1–9], neutron star atmosphere
dynamics [10,11], accreting matter flows in neutron stars [12], and tidally synchronized exoplanets
with magnetoactive atmospheres [13–16]. Such thin layer flows of astrophysical plasma are described
by the magnetohydrodynamic (MHD) shallow water approximation [17] and two-dimensional MHD
approximation [17–19]. The advantage of shallow water approximation is the ability to take into
account the vertical magnetic field while two-dimensional (2D) MHD approximation is more suitable
for turbulence studies [18,20,21].

The MHD equations in shallow water approximation are the alternative for heavy fluid MHD
equations in a case where the layer of incompressible inviscid plasma in a gravity field with a free
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surface is considered. The non-inertial reference frame is rotating with the plasma layer. The MHD
shallow water equations are obtained by height-averaging general incompressible MHD equations.
The pressure is assumed to be hydrostatic and layer height is assumed to be much smaller than is
characteristic for a horizontal linear scale of plasma layer [17,22–30]. The obtained equations play an
important role in astrophysical plasma studies as do the classical shallow water equations in neutral
fluid hydrodynamics. Here, we deal with MHD shallow water equations in the external vertical
magnetic field [10,30]. Such a configuration of a magnetic field is typical for neutron stars [10,16]
and exoplanets [16]. The presence of the external magnetic field leads to new types of waves:
Magneto-Poincare waves and magnetostrophic waves. A detailed analysis of magneto-Poincare
and magnetostrophic three-wave interactions and related parametric instabilities is given in [30,31].

The next step is taking into account the effects of stratification. Astrophysical plasma flows tend
to be stratified, but a complete system of magnetohydrodynamic equations of stratified plasma in
an external field is too complicated for theoretical analysis. The model of superimposed n layers
of different densities is one of many useful models for stratified plasma [28,32]. Here, equations
obtained in [30,31,33] are generalized to the case of a thin plasma layer divided into two layers with
different densities [34]. Obtained MHD two-layer shallow water equations include an external vertical
magnetic field and stratification and play the same important role in astrophysical stratified plasma
as the classical shallow water equations in the neutral stratified fluid dynamics [35]. In [36] the
linear analysis of the magnetohydrodynamic flows under the Boussinesq approximation leads to the
magneto-Archimdes Coriolis waves which are similar to the shallow water magnetohydrodynamic
waves on a f -plane. Taking into account the stratification in MHD models of rotating plasma
is important for the analysis of R-mode oscillations in rotating stars and in the sun [37–39], and
significantly increases the possibility for interpreting the available observational data for large-scale
Rossby waves in the sun [40–43]. The β-plane approximation is used to describe the dynamics of a
plasma layer in the presence of the differential rotation and allows to consider the effects of spherical
geometry [30]. In β-plane approximation, it is assumed that the Coriolis parameter f = 2Ω sin θ

(Ω—angular velocity, θ—latitude) can be expanded in a series up to the first order of smallness near
local latitude. Rossby waves play an important role in the formation of zonal flows in two-dimensional
magnetohydrodynamic turbulence [21]. Magnetic Rossby waves obtained in [1,40] are observed in
the sun [39,43] and explain solar seasons [8,41,42]. Magneto-Rossby waves determine the large-scale
dynamics of the sun and stars, magnetoactive atmospheres of tidally locked exoplanets, flows in
accretion disks, and in atmospheres of neutron stars.

As was mentioned above, plasma flows are usually stratified. Thus, the study of stratification in
the theory of linear Rossby waves in frameworks of the MHD two-layer shallow water model is of
significant importance. In this paper, the multiscale method is used to analyze nonlinear interactions
of magneto-Rossby waves and three-wave nonlinear amplitude equations [33,34]. It is shown that
there are two types of instabilities and their growth rates are found. Below we give important details
of the MHD one-layer and two-layer shallow water models as well as recent advances in theory of
non-linear interactions of magneto-Rossby waves on the basis of our previous research [30,31,33,34].

The equations of two-dimensional magnetohydrodynamics with the Coriolis force in a β-plane
approximation are used for a qualitative analysis and numerical simulation of processes in plasma
astrophysics. Two-dimensional equations allow a solution in the form of Rossby waves in the linear
approximation, whereas in the nonlinear limit, these equations in the absence of the β-term describe
classical isotropic two-dimensional MHD turbulence. The complete equations of two-dimensional
magnetohydrodynamics on a β-plane describe the interaction of two-dimensional MHD turbulence
and Rossby waves. We also note that 2D MHD equations on a β-plane have a solution in the form
of magneto-Rossby waves in the presence of poloidal and/or toroidal magnetic field in the linear
approximation [33], turbulent flows with Alfven waves in the nonlinear limit without the β-effect,
and their interaction in the complete system of equations. This situation is typical for the solar
tachocline [18].
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MHD turbulence in a rotating plasma is a common state of flow in plasma astrophysics. The
study of fundamental properties of turbulence allows one to understand the evolution of various
astrophysical objects from the sun and stars to planetary systems, galaxies, and galaxy clusters. This
study requires the generalization and development of methods of geophysical fluid dynamics [44]
taking into account fundamental differences in the behavior of large-scale turbulent plasma flows
in the presence of magnetic fields. A solution of such a complex physical problem requires both
the development of simplified models and the use of numerical experiments. This particularly
concerns zonal flows appearing because of isotropy breaking in the system due to two anisotropization
mechanisms in astrophysical plasma, namely, rotation and Lorentz force. Thus, the picture of zonal
flows characteristic of planetary atmospheres [45–48] becomes more complicated.

Zonal flows in magnetohydrodynamics are also typical for a toroidal plasma. Stationary solutions
for the toroidal magnetized plasma in the form of shear flows along magnetic surfaces were found
in [49,50]. The formation of zonal flows in such systems is attributed to drift turbulence [51].

Below, first results on space-time dynamics of two-dimensional rotating decaying MHD
turbulence and zonal flows physics are outlined based on [21]. Qualitative concepts on the
determination of the boundary between wave and turbulent dynamics are generalized for a MHD
case and a new criterion is suggested describing the boundary between wave dynamics and MHD
turbulence [21,52]. This is a promising field of research because it is well known that even a very
low magnetic field can play an important role, changing the properties of turbulent transport in
a conducting fluid. The model of 2D MHD turbulence in the presence of the Coriolis force is a
base model in plasma astrophysics, since flows tend to become plane due to fast rotation or the
effect of an external vertical magnetic field [53]. It is also noteworthy that, in the presence of strong
stratification, turbulent flows demonstrate the formation of numerous planar structures in the form of
two-dimensional non-interacting layers. Most (not all) flows in plasma astrophysics have a spherical
geometry therefore, the projection of the angular rotation velocity on the local vertical coordinates
varies with the latitude. The β-plane approximation is used for the linear approximation of the
Coriolis parameter f dependence on the coordinate in the south-north direction. Below, first results
of numerical simulation of two-dimensional decaying MHD turbulence on the β-plane are presented
based on [21].

2. Magnetohydrodynamic Shallow Water Equations With an External Field in Rotating Frame:
Magneto-Rossby Waves

In this section we briefly discuss the details of a shallow water MHD model in an external
vertical magnetic field and recent findings of linear magneto-Rossby waves and their non-linear
interactions [10,30,31,33]. The MHD shallow water equations in an external vertical magnetic field are
obtained from the full set of three-dimensional MHD equations. These shallow water equations are
obtained for the thin fluid layer with a free surface in the gravitational field (Figure 1) which is rotating
with the Coriolis parameter f [10]. For a magnetic field normalized by the factor (4πρ)−

1
2 , in which ρ

is the (assumed constant) density the equations take the form:

∂h
∂t

+
∂hvx

∂x
+

∂hvy

∂y
= 0 (1)

∂(hvx)

∂t
+

∂(h(v2
x − B2

x))

∂x
+ gh

∂h
∂x

+
∂( h(vxvy − BxBy))

∂y
+ B0Bx = f hvy (2)

∂(hvy)

∂t
+

∂(h(v2
y − B2

y))

∂y
+ gh

∂h
∂y

+
∂(h(vxvy − BxBy))

∂x
+ B0By = − f hvx (3)

∂(hBx)

∂t
+

∂(h(Bxvy − Byvx))

∂y
− B0vx = 0 (4)
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∂(hBy)

∂t
+

∂(h(Byvx − Bxvy))

∂x
− B0vy = 0. (5)

In Equations (1)–(5) h is layer height, vx, vy are horizontal velocities in shallow water
approximation in the xy-plane, Bx, By are horizontal components of height-averaged magnetic fields
in shallow water approximation in the x and y directions respectively, B0 is an external magnetic field
which is normal to the xy-plane, and f is the Coriolis parameter of the flow. The set of Equations (1)–(5)
is the result of integrating the three-dimensional MHD equations over z-axis. The total pressure
(hydrodynamic and magnetic) is assumed to be hydrostatic [23–25,28]. This closed set of equations
derived in [10] is complete for analyzing linear waves and non-linear interactions. In the limit of
B0 = 0 these equations reduce to the common MHD shallow water equations [17]. Indeed, the set of
Equations (1)–(5) is supplemented with equations that significantly differ the MHD shallow water
equations with external vertical magnetic field from the equations without vertical magnetic field [30]:

∂Bz

∂t
+ B0(

∂vx

∂x
+

∂vy

∂y
) = 0 (6)

∂hBx

∂x
+

∂hBy

∂y
+ Bz = 0. (7)

In the traditional derivation of the MHD shallow water equations from the full set of
three-dimensional MHD equations in [23,24,28] the vertical component of magnetic field is assumed
to be zero. The presence of a vertical magnetic field leads to significant changes of horizontal magnetic
field dynamics in shallow water approximation. It should be noted that the horizontal magnetic field
is solenoidal in the case without an external magnetic field. However, it is not the case in the presence
of an external vertical magnetic field. The vertical variations of a magnetic field are nonzero and the
divergence-free condition contains a vertical component as seen in Equation (7). Therefore to cover
magnetic field dynamics completely it is necessary to consider the equation for the vertical variation of
magnetic field of Equation (6). Thus the magnetic field is three-dimensional in nature and each of its
components depends on horizontal coordinates only. The divergence-free condition of Equation (7)
is satisfied identically as a consequence of equations for the magnetic field of Equations (4)–(6) and
is used to set the correct initial conditions. The MHD shallow water equations are extended for
compressible plasma in [54].

Figure 1. Thin plasma layer in a vertical magnetic field. h(x, y, t)—layer height, fs(x, y, t) = 0—bottom
profile, B0—external vertical magnetic field, g—gravity.
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There are two types of linear waves in this case due to the presence of a vertical magnetic field.
The first type is a magneto-Poincare mode which is the generalization of linear Poincare waves in
classical shallow water equations, while the second type of linear solutions describes magnetostrophic
waves that do not have analoges in neutral fluids [10]. In the case of a zero vertical magnetic field,
MHD shallow water equations have stationary solutions in the form of poloidal and/or toroidal
magnetic fields and three-waves interactions do not exist the same as for neutral flows [30]. Indeed,
four-waves interactions exist in this particular situation [55].

In the following we outline basic findings about magneto-Rossby waves due to their importance
in solar and stellar physics and in the dynamics of astrophysical disks. Taking into consideration the
effects of sphericity leads to the β-plane approximation to introduce the vertical component of the
angular velocity Ω on the latitude θ. Waves induced by the latitude dependence of the Coriolis force are
analogous to the Rossby waves in geophysical fluid dynamics and are referred to as magneto-Rossby
waves. In the β-plane approximation, it is assumed that the variations of Coriolis parameter f are small:

f = 2Ω sin θ ≈ 2Ω sin θ0 + 2Ω (θ − θ0) cos θ0 = f0 + βy. (8)

Here, f0 = 2Ω sin θ0 and β = ∂ f /∂y. With allowance for the dependence of Equation (8) of the
Coriolis parameter on the latitude, momentum variation Equations (2) and (3) describe the rotating
flows on a sphere in the Cartesian system of coordinates.

The dispersion relation in shallow water approximation in presence of the vertical magnetic field
has a form [33]:

ω4 −ω2( f 2
0 + gh0k2 + 2(

B0

h0
)2)−ωgh0βkx + (

B0

h0
)2(gh0k2 + (

B0

h0
)2) = 0. (9)

In the high-frequency approximation, the dependence of the Coriolis parameter on the latitude in
the expression of Equation (9) disappears, and the dispersion relation describes the magneto-Poincare
mode in magnetic fluid dynamics in the shallow-water approximation. In the low-frequency
approximation, dispersion relation of Equation (9) describes large-scale flows of magneto-Rossby
waves and takes the form [33]

ω =
( B0

h0
)2(gh0k2 + ( B0

h0
)2)

gh0βkx
. (10)

Relation in Equation (10) describes the magneto-Rossby waves propagating in the k direction.
The main mechanism of their formation is the shift of the rotating flow due to the latitude dependence
of the Coriolis force. The dispersion relation for the magneto-Rossby waves in the horizontal magnetic
field is obtained in [2].

The multiscale asymptotic method is applicable to study nonlinear effects. The solution u =

(h, vx, vy, Bx, By) = u0 + εu1 + ε2u2 of original Equations (1)–(5) is represented as a series in the small
parameter ε. Keeping the terms proportional to ε2, a set of linear inhomogeneous equations for u2

is obtained. It contains the secular terms that result in asymptotic solutions growing linearly with
spatial and temporal coordinates. In this case, the condition εu2 << u1 is violated on large scales.
Therefore, to obtain the non-linear correction, the dependence of the amplitudes of linear waves on the
slow time and large linear scales is introduced so as to ensure the elimination of secular terms on the
corresponding scales. To implement such a procedure, fast (T0, X0, Y0) and slow (T1, X1, Y1) variables
are introduced. In this way, the compatibility conditions with the slow amplitudes are obtained under
which the secular terms are eliminated and u1 = u1(T1, X1, Y1) is defined. As a result the complete
set of equations for waves interactions in shallow water MHD in the external vertical magnetic field
is obtained.

Considering three interacting waves (θ1 + θ2 = θ3) with amplitudes ψ, φ, χ that satisfy the
phase matching condition ω1(k1) + ω1(k2) = ω1(k3) and k1 + k2 = k3 amplitude equations for
magneto-Rossby waves in vertical magnetic field are obtained [33]:
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a1
∂χ

∂T1
+ b1

1
∂χ

∂X1
+ b2

1
∂χ

∂Y1
= s1φψ (11)

a2
∂φ

∂T1
+ b1

2
∂φ

∂X1
+ b2

2
∂φ

∂Y1
= s2χψ∗ (12)

a3
∂ψ

∂T1
+ b1

3
∂ψ

∂X1
+ b2

3
∂ψ

∂Y1
= s3χφ∗ (13)

where the coefficients ai, b1
i , b2

i , si are constant and determined by initial conditions ( f , g, h0 B0, β) in
incompressible flows [33] and in compressible flows [54]. The coefficients in Equations (11)–(13) slightly
change when considering magneto-Rossby waves in the horizontal magnetic field [33,54]. The set of
Equations (11)–(13) can be used to describe nonlinear parametric instabilities of magneto-Rossby waves.

Let us consider the initial conditions when the amplitude of one interacting wave (pump wave)
is much higher than the amplitudes of two other waves χ = χ0 >> φ, ψ. Then the influence of two
other waves is much less than the influence of the pump wave and the set of Equations (11)–(13) can
be linearized. It has an increasing solution for the amplitudes of two other waves φ, ψ with the growth
rate Γ = χ0

√
|s1s2|/

√
|a1a2|. Thus, the parent magneto-Rossby wave with a frequency ω3 and the

wave vector k3 decays into two magneto-Rossby waves with frequencies ω1, ω2 and wave vectors k1,
k2 in magnetohydrodynamics of astrophysical plasma both in an external vertical magnetic field and
in horizontal magnetic field. The decay instability corresponds to the energy transfer from one wave
to two other waves.

The reverse process of parametric amplification corresponds to the energy transfer from two waves
to the third wave. Then the initial amplitudes of interacting waves are χ = χ0, φ = φ0, ψ << χ0, φ0.
It leads to the solution of a linearized set of equations in a form of an increasing amplitude of the
third wave ψ with the growth rate Γ = |s3|/|a3||φ0χ0|. Thus two waves with the frequencies ω3, ω2

and the wave vectors k3, k2 amplify third wave with the frequency ω1 and the wave vector k1 in
magnetohydrodynamics of astrophysical plasma both in an external vertical magnetic field and in a
horizontal magnetic field.

3. Magnetohydrodynamic Two-Layer Shallow Water Equations with an External Field in Rotating
Frame: Magneto-Rossby Waves

In this section we extend the discussion from Section 2 to the case of stratified rotating flows of
plasma in the two-layer shallow water MHD model. Magnetohydrodynamic equations in the external
vertical magnetic field in two-layer shallow water approximation are obtained from the full set of
three-dimensional MHD equations with Coriolis force for the layer of plasma with a free surface in the
gravitational field. The layer is divided into two thin layers with different densities. For magnetic field
normalized by the factor (4πρi)

− 1
2 , in which ρ1,2 are the (assumed constant for each layer) densities of

the bottom and top layers the equations take the form:

∂hi
∂t

+
∂hivxi

∂x
+

∂hivyi

∂y
= 0 (14)

∂(hivxi )

∂t
+

∂(hi(v2
xi
− B2

xi
))

∂x
+ ghi

(
∂hi
∂x

+
ρ2

ρi

∂hj

∂x

)
+

∂( hi(vxi vyi − Bxi Byi ))

∂y
+ B0Bxi = f hivyi (15)

∂(hivyi )

∂t
+

∂(hi(v2
yi
− B2

yi
))

∂y
+ ghi

(
∂hi
∂y

+
ρ2

ρi

∂hj

∂y

)
+

∂(hi(vxi vyi − Bxi Byi ))

∂x
+ B0Byi = − f hivxi (16)

∂(hiBxi )

∂t
+

∂(hi(Bxi vyi − Byi vxi ))

∂y
− B0vxi = 0 (17)

∂(hiByi )

∂t
+

∂(hi(Byi vxi − Bxi vyi ))

∂x
− B0vyi = 0. (18)
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In Equations (14)–(18) indexes i, j = 1 correspond to the bottom layer and indexes i, j = 2
correspond to the top layer, hi,j are layers heights (when index i = 1 index j = 2, when index
i = 2 index j = 1), vxi , vyi are height-averaged horizontal velocities in two-layer shallow water
approximation in the xy-plane, Bxi , Byi are horizontal components of height-averaged magnetic fields
in two-layer shallow water approximation in the x and y directions respectively, B0 is an external
magnetic field which is normal to the xy-plane, and f is the Coriolis parameter of the flow. In Equations

(15) and (16) terms ρ2
ρi

∂hj
∂x arise from equation for pressure in the bottom layer, which includes densities

of both the bottom (ρ1) and the top (ρ2) layers. When heights and densities of the layers are equal,
Equations (14)–(18) are transformed into magnetohydrodynamic equations in the single-layer shallow
water model of Equations (1)–(5). Thus, two-layer MHD shallow water system contains all properties
of the single-layer system, including the three-dimensional nature of the magnetic field and additional
equations due to this. Equations for bottom and top layers can not be separated from each other

because of terms with heights of top and bottom layers (
∂hj
∂x,y ) respectively.

As in Section 2, we take the effects of sphericity into account by the use of β-plane approximation.
With an allowance for the dependence of Equation (8) of the Coriolis parameter on the latitude, the
MHD two-layer shallow water Equations (14)–(18) describe the rotating stratified flows on a sphere in
the Cartesian system of coordinates.

The dispersion relation in two-layer shallow water approximation in the presence of the vertical
magnetic field has a form:

(ω4− b1ω2− c1ω + d1)(ω
4− b2ω2− c2ω + d2) =

ρ2

ρ1
g2k4h01h02(ω

2 + q′ω + q1)(ω
2 + q′ω + q2), (19)

with the following coefficients:

bj =
2B2

0
h2

0j
+ f 2

0 + gk2h0j,

cj = βgkxh0j

dj =
B4

0

h4
0j
+

B2
0gk2

h0j

q′ =
βkx

k2

qj =
B2

0
h2

0j
.

Strong theoretical analysis of the obtained dispersion of Equation (19) is not possible. We confine
ourselves to a qualitative consideration. The solution for this dispersion equation in the form of
magneto-Rossby wave in an external vertical magnetic field in the absence of stratification is:

ωMR1 ≈
B2

0
h01h02

(
B2

0
h01h02

+
gk2(h3

01+h3
02)

h01h02
)

βkxg(h01 + h02)
, (20)

where subscript MR1 denotes magneto-Rossby wave in an external vertical magnetic field.
Note, that the expression for ωMR1 includes the heights of both layers explicitly. For equal heights

of the layers h01 = h02 = h0/2, the expression of Equation (20) describes the Rossby wave in a
single-layer approximation Equation (10):

ω′MR1
≈

4 B2
0

h2
0

(
4 B2

0
h2

0
+ gk2h0

)
βkxgh0

.
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The modification δ1 = ω−ωMR1 (δ1 � ωMR1 ) to the magneto-Rossby wave in an external vertical
field related to the presence of stratification (ρ1 6= ρ2) has the following form:

δ1 = −
ϕ1

(
ρ2
ρ1

, ωMR1

)
(ω2

MR1
−ω2

1)(ω
2
MR1
−ω2

2)g(h01 + h02)βkx
.

Here,

ϕ1 =

(
ρ2

ρ1
− 1
)

g2k4h01h02 ·
(

ω2
MR1

+
βkx

k2 ωMR1 +
B2

0
h2

01

)(
ω2

MR1
+

βkx

k2 ωMR1 +
B2

0
h2

02

)
,

ω2
1,2 =

1
2

 f 2
0 +

B2
0

h2
01

+
B2

0
h2

02
±

√√√√( B2
0

h2
01
−

B2
0

h2
02

)2

+ f 2
0

(
f 2
0 +

2B2
0

h2
01

+
2B2

0
h2

02

) .

It should be noted, that dispersion relation for the magneto-Rossby waves in case of equal for
both layer horizontal magnetic fields is also obtained [34]:

ωMR2 ≈
(B0 · k)2((B0 · k)2 + gk2h)

βkxgh
, (21)

where subscript MR2 denotes magneto-Rossby wave in a horizontal magnetic field. Here (B0 ·
k) = (B0xkx + B0yky) is a scalar product of the wave vector and the magnetic induction vector. The
expression of Equation (21) has the form of the dispersion relation for such waves in one-layer shallow
water approximation, with the height of layer h = h01 + h02.

The modifications due to stratification for these waves are also obtained in [34].
Let us discuss the case of neutral fluid. Assuming B0 = 0 in dispersion Equation (19), we can

rewrite it in the following form:

ω
[
ω2 − f 2

0

] [
ω3 −ω( f 2

0 + gk2h0)− βkxgh0

]
=

(
ρ2

ρ1
− 1
)

g2k4h01h02

(
ω +

βkx

k2

)2
,

where h0 = h01 + h02. In the absence of any effects of stratification (ρ2 = ρ1), we get the solution in the
form of a hydrodynamic Rossby wave [34]:

ωR ≈ −
βkxgh0

f 2
0 + gk2h0

,

where subscript R denotes a Rossby wave in a neutral field.
Thanks to our developed theory, we have found the modification due to stratification to the

hydrodynamic Rossby wave [34]:

δN =
ξ( ρ2

ρ1
, ωR)

( f 2
0 + gk2h0)(ω

2
R − f 2

0 )ωR
,

where subscript N denotes modification to the Rossby wave in neutral fluid and:

ξ =

(
ρ2

ρ1
− 1
)

g2k4h01h02

(
ωR +

βkx

k2

)2
.

Both obtained dispersion relations of magneto-Rossby waves (in horizontal and in vertical
magnetic fields) allow the existence of three waves satisfying phase matching condition (ω1(k1) +
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ω1(k2) = ω1(k3) and k1 + k2 = k3). It is shown in Figure 2a for magneto-Rossby waves in an external
vertical magnetic field, and in Figure 2b for magneto-Rossby waves in a horizontal magnetic field [34].

Figure 2. Intersection of two dispersion curves shifted from each other defines the satisfaction of phase
matching condition. For waves (a) in an external vertical magnetic field curve 1 is a dispersion curve
for magneto-Rossby wave with ω = ωMR1 (k3) and curve 2 is a dispersion curve for magneto-Rossby
wave with ω = ωMR1 (k3 − k2) + ωMR1 (k2). For waves (b) in horizontal magnetic field curve 3 is a
dispersion curve for magneto-Rossby wave with ω = ωMR2 (k3) and curve 4 is a dispersion curve for
magneto-Rossby wave with ω = ωMR2 (k3 − k2) + ωMR2 (k2).

By means of a multiscale asymptotic method we have obtained amplitude equations for
magneto-Rossby waves in a two-layer shallow water model in analogous form with equations in
Section 2. These equations describe parametric instabilities in both cases of an external vertical
magnetic field and a horizontal field [34]. Since the equations of three-wave interactions for a stratified
fluid in the two-layer approximation differ only in the interaction coefficients, the same parametric
instabilities that were found in Section 2 are realized in the two-layer model. The main difference in
our case is in the increments of parametric instabilities and threshold values, which now depend on
the ratio of densities.

It should be noted that the two-layer MHD shallow water equations are two-dimensional and
do not allow for vertical changes in the parameters of the system. For a more accurate study of wave
processes in a continuously and stably stratified plasma layer, we use a three-dimensional MHD
system in the Boussinesq approximation. The results can be found in [56].

4. Zonal Flows in Two-Dimensional Magnetohydrodynamic Turbulence on a Beta Plane

Below, the MHD description of the rotating plasma is used to study 2D MHD turbulence and zonal
flows origination in incompressible approximation [21]. The evolution of the vorticity ω and magnetic
potential A of a two-dimensional MHD flow of a viscous fluid (plasma) with density ρ = ρ0 = const
in the β-plane approximation is described by equations:

∂ω

∂t
= J(ψ, ω) + β

∂ψ

∂x
+

1
4πρ

J(A, ∆A) + ν∆ω, (22)

∂A
∂t

= J(ψ, A) + η∆A, (23)

where ψ is the stream function, ω = −∇2ψ, J(a, b) = ∂a
∂x

∂b
∂y −

∂a
∂y

∂b
∂x is the Jacobian of a(x, y) and b(x, y),

ν is the kinematic viscosity, and η is magnetic diffusion coefficient. The vorticity and stream function
are related to the two-dimensional velocity field (ux, uy) as:

ω =
∂uy

∂x
− ∂ux

∂y
; ux =

∂ψ

∂y
; uy = −∂ψ

∂x
. (24)
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The magnetic potential is related to the two-dimensional magnetic field (Bx, By):

Bx =
∂A
∂y

; By = −∂A
∂x

. (25)

Thus, we can reconstruct two-dimensional velocity field and two-dimensional magnetic field
using Equations (24) and (25).

In the β-plane approximation Coriolis parameter f depends on the latitude to describe spherical
effects in the Cartesian system of coordinates in Equation (8). The local two-dimensional (2π × 2π)
region on the sphere with periodic boundary conditions is considered. The x axis is directed along the
azimuth and the y axis is opposite to the latitude (colatitude).

The first results of numerical simulations of 2D MHD Equations (22) and (23) with a spatial
resolution of 1024× 1024 with different Rossby parameters β are outlined [21]. Numerical experiments
were performed for magnetohydrodynamics with equal initial kinetic and magnetic energy (E0

V =

E0
M = E0, where E0

V and E0
M are the initial kinetic energy and magnetic energy, respectively). Initial

energies are set by the parameter E0 that was chosen such that the Reynolds and magnetic Reynolds
numbers were Re = Rm ' 105. Correspondingly, the magnetic Prandtl number of the studied flows
is Prm = ν/η = 1. The initial conditions are set in the central ring of Fourier harmonics with radius
k0 = 20 which is outside the dissipative region. The Rossby parameters β are such that the Rhines scale
given by equation kβ =

√
β/2U, where U is the rms velocity of the turbulent flow, did not exceed k0

(initial Fourier harmonics lie in the turbulence dominant region). All numerical experiments were
performed up to the time T = 500 expressed in dimensionless quantities, which can also be written
as T ' 17.8 · T0, where T0 = 2π/U is the eddy turnover time in the turbulent flow at the initial time.
We performed the experiments up to the time T = 500 which is much longer than the time for system
to adapt to the initial conditions (T � T0) and is much less than the time of complete dissipation
(T � Tdis). To analyze the results of the numerical simulation, the contour lines of the stream function
and magnetic field are considered. Figure 3 shows contour lines of the stream function and magnetic
field on the (latitude, longitude) plane at T = 500. White and blue regions correspond to the maximum
and minimum values of the stream function respectively.

Figure 3. Contour lines of the (a) stream function ψ(x, y) and (b) magnetic potential A(x, y) for
two-dimensional decaying magnetohydrodynamic (MHD) turbulence on the β-plane (β = 25) as
functions of x (zonal) and y (meridional). All contour lines are given for the time T = 500.

In the case of two-dimensional decaying MHD turbulence on the β-plane (β = 25), the calculations
show that zonal flows are formed after multiple merging of small eddies into large ones owing
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to the inverse energy cascade if the initial kinetic and magnetic energies are equal to each other.
The coexistence of regularly positive (white) and negative (blue) regions along longitude in Figure 3a
indicates that the velocity of flows in these regions is directed in one direction (along and against
longitude, respectively). Such regions along or against longitude limited in latitude are called zonal
flows. The shift of zonal flows along the longitude is due to the appearance of isotropic magnetic
islands (closed magnetic field lines). Thus, contour lines of the stream function have bends associated
with the magnetic field configuration. Figure 3b shows the computed contour lines of the magnetic
field. The configuration of the magnetic field has meridional anisotropy: There are field lines elongated
along the entire meridional direction. Field lines are perpendicular to zonal flows because of the
freezing of the magnetic field. The performed numerical experiments demonstrate the formation of
magnetic islands (closed field lines in Figure 3b) in the process of transition to a quasistationary state.

The time dependence of zonal flows in the case of MHD turbulence (β = 10) is also analyzed.
Figure 4 shows the time dependence of the zonally averaged field of the zonal velocity Vx(y) for the
case of MHD turbulence. The color in this figure varies from white corresponding to the maximum
value of the function Vx(y) to blue corresponding to the minimum value.

Figure 4. Latitude-time maps of the zonal velocity Vx(y) averaged over the zonal direction for
two-dimensional decaying MHD turbulence. Color varies from white corresponding to the maximum
value of the function Vx(y) to blue corresponding to the minimum value.

If the initial kinetic and magnetic energies are equal to each other and the Rossby parameter is
β = 10 zonal flows have a complex time dynamics: White and blue regions in Figure 4 are shifted
along the longitude or are merged into wider regions. The performed calculations [21] show that the
shift of zonal flows along the longitude is due to the appearance of isotropic magnetic islands (closed
magnetic field lines) in the system. A similar situation is observed for the cases of MHD turbulence
with the Rossby parameters β = 25; 50, in spite of strong anisotropy demonstrated in [21].

For the completeness of the physical picture, we present the results of the simulation of β-plane
MHD turbulence spectra in the context of comparison of two-dimensional MHD turbulence and
neutral fluid turbulence on the β-plane. We compared spectra of the kinetic energy for the case of the
neutral fluid and the total energy for the case of MHD turbulence at the Rossby parameter β = 10.
Figure 5 shows spectra at the time T = 56 ' 2T0 where the energy has already been redistributed from
the initial state to the entire spectrum. Further analysis of spectra evolution is given in [57]. The time T
is much smaller than the time of dissipation of the system T � Tdis.
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Figure 5. (a) Energy spectra of (solid line) the kinetic energy for the neutral fluid EB=0(k) and (dashed
line) the total energy for MHD turbulence EB 6=0(k) on the β-plane (β = 10). (b) Energy spectra of (solid
line) the kinetic energy and (dashed line) magnetic energy for MHD turbulence on the β-plane (β = 10).
All spectra are given for the time T ' 2T0.

Figure 5a shows the wavenumber distributions of kinetic (solid line) energy EB=0(k) in the neutral
case and the total (dashed line) energy EB 6=0(k) = EV + EM in the case of MHD turbulence for β = 10.
Figure 5b shows the wavenumber distributions of kinetic (solid line) energy EV(k) and magnetic
(dashed line) energy EM(k) in the case of MHD turbulence for β = 10.

According to Figure 5a, the wavenumber range consists of two regions: (i) The region of low
wavenumbers where the energy spectra increase with k and (ii) the region of high wavenumbers where
the energy spectra decrease with increasing k. The kinetic energy in the region of low wavenumbers in
the neutral case is higher than the total energy in the case of MHD turbulence. The maximum of the
kinetic energy spectrum in the neutral case is observed at k = 4.5 in agreement with the theoretical
Rhines scale kβ = 4.7. The energy is concentrated at the boundary between wave and turbulent
dynamics, the inverse energy cascade terminates at the Rhines scale and zonal flows are formed.
The maximum of the total energy spectrum in the case of MHD turbulence is observed at k = 6.5 and
is due to the formation of magnetic islands in the system. In the region of high wavenumbers, the total
energy in the case of MHD turbulence decreases more slowly than the kinetic energy in neutral fluid
turbulence, similar to the case without rotation [20].

Furthermore, we compared the spectra of the kinetic and magnetic energies for the case of MHD
turbulence at the Rossby parameter β = 10. It is seen in Figure 5b that the magnetic energy is much
higher than the kinetic energy. At equal initial kinetic and magnetic energies, the adaptation of the
system to the initial conditions occurs at the beginning of the experiment: The kinetic energy is
transformed to the magnetic energy and the ratio of the energies is established at the value EM/EV '
1.5 as in the case without rotation [20]. The maximum of the kinetic energy spectrum in the case of
MHD turbulence is observed at k = 3.5 in agreement with the theoretical scale estimate kM

β = 3.7
obtained in [21]. As a result, the region of wave vectors of zonal flows for decaying MHD turbulence
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is smaller than that for neutral turbulence. Our calculations confirm that the proposed scale specifies
the lower bound of the inertial interval of turbulence at which the inverse energy cascade terminates.
The detailed study of spectra of two-dimensional MHD turbulence on the β-plane is outlined in [57].

5. Conclusions

A number of new applications in astrophysics and recent space observations have actualized
the problem of study and description of rotating plasma behavior. Here, we briefly reviewed
recent achievements in studies of large-scale magnetohydrodynamic flows in plasma astrophysics.
We focused on magnetohydrodynamic shallow water approximation for rotating plasma and on
two-dimensional magnetohydrodynamic flows on a beta-plane.

The MHD shallow-water equations in the presence of rotation with an external magnetic field
were revised by supplementing them with equations derived from the magnetic field divergence-free
condition. New system revealed the existence of the third component of magnetic field in this
approximation and provided its relation with the horizontal magnetic field. The presence of a vertical
magnetic field significantly changed the dynamics of wave processes in astrophysical plasma compared
to the neutral fluid and plasma layer in a horizontal magnetic field. Moreover, we considered effects
of stratification in two-layer MHD shallow water model with rotation and external magnetic field,
dividing a thin layer of plasma into two layers with different densities. The new system was reduced
to the obtained one-layer MHD shallow water system in an external field by equating the heights and
densities of the layers. Through the use of the developed two-layer model, we derived modifications
for magneto-Rossby waves, related to stratification.

The shallow-water approximation (one-layer and two-layer models) have been used for the
development of the weakly nonlinear theory of magneto-Rossby waves both in external vertical
magnetic field and in the absence of magnetic field, as well as for stationary states with the presence of
a horizontal field (poloidal, toroidal, and their sum). A qualitative analysis of the dispersion curves for
the Rossby waves in magnetohydrodynamics revealed the possibility of three-wave interactions in the
weak nonlinearity approximation. The weakly nonlinear theory of magneto-Rossby waves developed
using the method of multiscale asymptotic expansions and three-wave equations for slowly varying
amplitudes were briefly outlined. An approximate analysis of the resultant systems of equations
revealed that two types of parametric instability could evolve in the system: Parametric decay and
parametric amplification of magneto-Rossby waves.

The first results of the numerical simulation of two-dimensional decaying MHD turbulence on the
β-plane were discussed. Numerical simulations demonstrated the formation of zonal flows in MHD
turbulence on the β-plane. Zonal flows in MHD turbulence on the β-plane significantly differed from
flows in the neutral fluid. Zonal flows in MHD turbulence were unsteady because of the presence of
isotropic magnetic islands in the system. The inverse energy cascade in decaying MHD turbulence on
the β-plane terminated at the scale that differed from the Rhines scale but was consistent with our new
criterion of the boundary between wave dynamics and MHD turbulence.
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