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Abstract: We derive a hierarchy of evolution equations for multi-point probability density functions in
magneto-hydrodynamic (MHD) turbulence. We discuss the relation to the moment hierarchy in MHD
turbulence formulated by Chandrasekhar (S. Chandrasekhar, Proc. R. Soc. Lond. A 1951, 204, 435–449)
and derive a functional equation for a joint characteristic functional, which can be considered as the
analogon to the Hopf functional in hydrodynamic turbulence. Furthermore, we develop a closure
method for the evolution equation of the single-point magnetic field probability density function,
which is based on a joint Gaussian assumption for unclosed terms. It is explicitly shown that this
closure, together with the assumptions of homogeneity and isotropy, leads to vanishing nonlinear
terms. We discuss the implications of this finding for magnetic field generation and give a brief
outlook on an axisymmetric theory, which includes a mean magnetic field.

Keywords: magneto-hydrodynamic turbulence; magnetic field generation

1. Introduction

The investigation of magneto-hydrodynamic (MHD) turbulence by statistical methods has a
longstanding tradition, which can be traced back to the works of Chandrasekhar [1] and Batchelor [2],
as well as to the subdivision of mean field electrodynamics put forth by Steenbeck, Krause, and Rädler [3]
(for further references, see [4,5]). Recent developments in statistical magnetohydrodynamics include
an analytical treatment of weak MHD turbulence [6], a phenomenological description for the energy
spectrum based on the dynamical alignment of velocity and magnetic field fluctuations [7,8], and the
derivation of relations between longitudinal and transverse structure functions [9] similar to the
ones of hydrodynamic turbulence [10–12]. On the other hand, improved measurements in the solar
wind [13,14] along with an ever-growing number of experiments, which operate with liquid sodium
under turbulent conditions in order to study the dynamo effect [15–17], are of great importance for the
direct assessment of certain statistical quantities.

Therefore, a comprehensive statistical formulation of MHD turbulence will also lead to
considerable advances in the modeling of these astrophysical and experimental MHD flows.
Nonetheless, similar to the case of hydrodynamic turbulence, such a statistical description of MHD
turbulence is complicated by the occurrence of anomalous statistics of velocity and magnetic field
fluctuations at small scales, which is commonly referred to as intermittency [18]. To some degree,
intermittency effects in fully developed MHD turbulence are even more pronounced than in ordinary
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turbulence, a fact that is commonly attributed to the geometrical structures observed in MHD
turbulence, i.e., nearly singular current and vortex sheets [19,20]. Moreover, the Alfvén effect [21]
introduces additional nonlocalities in the multi-point hierarchy of MHD flows, which will be discussed
in more detail in Section 2. Therefore, due to pronounced deviations from Gaussianity and additional
nonlocalities in the multi-point hierarchy of MHD turbulence, finding appropriate methods or
assumptions to close the hierarchy at a certain stage [22,23] might prove to be even more difficult than
in ordinary turbulence.

However, the presence of the magnetic field in conducting turbulent flows can also have a
regularizing effect on the nonlinearities of the MHD equations. For instance, as shown by direct numerical
simulations of MHD turbulence [9], the additional possibility for the velocity field to align with the magnetic
field leads to depleted pressure contributions in regions with preferred alignment (anti-alignment).

In the following, we derive evolution equations for multi-point velocity and magnetic field
probability density functions (PDFs) directly from the MHD equations. The emerging hierarchy can
be considered as the counterpart to the hierarchy in hydrodynamic turbulence by Lundgren [24],
Monin [25], and Novikov [26] (we also refer the reader to [27] for further reviews) and is similar to the
BBGKY hierarchy of statistical mechanics. We will then proceed to discuss a possible closure method
on the basis of a joint Gaussian assumption for velocity and magnetic field statistics.

2. Derivation of a Hierarchy of PDF Equations

The purpose of this section is to derive evolution equations for multi-point velocity and magnetic
field PDFs in an analogous manner to the hydrodynamic case discussed in the seminal work by
Lundgren [24]. To this end, we consider the MHD equations in the following form:

∂

∂t
u(x, t) + u(x, t) · ∇xu(x, t)− h(x, t) · ∇xh(x, t) = −∇x p(x, t) + ν∇2

xu(x, t) , (1)

∂

∂t
h(x, t) + u(x, t) · ∇xh(x, t)− h(x, t) · ∇xu(x, t) = λ∇2

xh(x, t) , (2)

where ν denotes the kinematic viscosity, λ the magnetic diffusivity, and p(x, t) the total pressure, i.e.,
hydrodynamic and magnetic pressure. Furthermore, it should be stressed that in this particular form
of the MHD equations, the magnetic field has the dimensions of a velocity. The MHD equations are
completed by the incompressibility conditions ∇ · u(x, t) and ∇ · h(x, t).
We define single-point magnetic and velocity field PDFs according to:

f u(v, x, t) = 〈δ(v− u(x, t))〉 , (3)

f h(b, x, t) = 〈δ(b− h(x, t))〉 , (4)

where the brackets 〈. . .〉 denote ensemble averages over all possible realizations of the velocity field
u(x, t) and magnetic field h(x, t). In principle, the following treatment could also be carried out in terms
of Elsässer fields z± = u± h. However, due to the different transformation behavior of h (axial vector)
and u (polar vector) under reflexions, it will be more appropriate to work in the original fields,
especially with regard to the tensor calculus of isotropic and homogeneous MHD turbulence [1,9,28]
that will be used in Section 4. For later convenience, we also define the two-point PDFs:

f uu(v, x; v′, x′, t) = 〈δ(v− u(x, t))δ(v′ − u(x′, t))〉 , (5)

f uh(v, x; b, x′, t) = 〈δ(v− u(x, t))δ(b− h(x′, t))〉 , (6)

f hh(b, x; b′, x′, t) = 〈δ(b− h(x, t))δ(b′ − h(x′, t))〉 . (7)
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The evolution equation for the single-point velocity field can be obtained by deriving the
single-point velocity PDF (3) with respect to time:

∂

∂t
f u(v, x, t) = −∇v ·

〈
∂u(x, t)

∂t
δ(v− u(x, t))

〉
. (8)

Here, we have to insert the temporal evolution of the velocity field, which is given by Equation (1),
and treat the corresponding terms separately. The treatment is similar to the hydrodynamic case [24]
and is discussed in Appendix A.1. The evolution equation for the single-point velocity PDF thus reads:[

∂

∂t
+ v · ∇x

]
f u(v, x, t)

= −∇v ·
∫

dx′δ(x− x′)
∫

db (b · ∇x′ ) b f uh(v, x; b, x′, t)

+ 1
4π∇v ·

∫
dx′

[
∇x

1
|x−x′ |

] ∫
dv′ (v′ · ∇x′ )

2 f uu(v, x; v′, x′, t)

− 1
4π∇v ·

∫
dx′

[
∇x

1
|x−x′ |

] ∫
db (b · ∇x′ )

2 f uh(v, x; b, x′, t)

−ν∇v ·
∫

dx′δ(x− x′)∇2
x′
∫

dv′v′ f uu(v, x; v′, x′, t) ,

(9)

and therefore couples to the two-point PDFs (5) and (6). By the same token, we can derive the
single-point magnetic field PDF (4) with respect to time:

∂

∂t
f h(b, x, t) = −∇b ·

〈
∂h(x, t)

∂t
δ(b− h(x, t))

〉
, (10)

insert the evolution Equation (2), and relate the corresponding terms to the two-point PDFs (6) and (7),
which are discussed in Appendix A.2. The counterpart to the single-point velocity PDF Equation (9), i.e.,
the evolution equation for the single-point magnetic field PDF, thus reads:

∂

∂t
f h(b, x, t) +

∫
dvv · ∇x f uh(v, x; b, x, t)

= −∇b ·
∫

dx′δ(x− x′)
∫

dv (b · ∇x′ ) v f uh(v, x′; b, x, t)
−λ∇b ·

∫
dx′δ(x− x′)∇2

x′
∫

db′b′ f hh(b, x; b′, x′, t) ,

(11)

which, again, is an unclosed equation since it couples to the two-point quantities (6) and (7).
Equations (9) and (11) are the first equations in an infinite chain of evolution equations, e.g.,
the two-point PDFs (5)–(7) will couple to three-point PDFs, and so forth. Typical assumptions that are
used in order to close such hierarchies include the assumption of statistical independence, as well as
Gaussian assumptions [27] and will be further discussed in Section 3.2.

In comparison to ordinary turbulence where unclosed terms are due to nonlocal pressure
contributions and the viscous term, the Alfvén effect introduces additional nonlocalities in the
multi-point hierarchy. Indeed, it can readily be seen that both l.h.s. of Equations (9) and (11) are
Galilei invariant, i.e., they are unchanged under the transformation v→ v + V, b→ b, and x→ x−Vt,
whereas for v → v and b → b + B, B cannot be removed by a Galilei transformation due to the first
terms on the r.h.s. of Equations (9) and (11). Obviously, the latter transformation behavior is inherited
from the basic MHD Equations (1) and (2).

In order to generalize the results for the one-point magnetic and velocity field PDF to an arbitrary
number of points, we define the (n + m)-point joint velocity-magnetic field PDF:

f nu,mh({vi, xi}; {bj, yj}, t) =
n

∏
i=1

m

∏
j=1

〈
δ(vi − u(xi, t))δ(bj − h(yj, t))

〉
. (12)
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A treatment similar to the one described in Appendix A yields the following evolution equation
for the (n + m)-point joint velocity-magnetic field PDF:[

∂

∂t
+

n

∑
i=1

vi · ∇xi

]
f nu,mh({vi, xi}, {bj, yj}, t)

+∑m
j=1
∫

dvv · ∇yj f (n+1)u,mh(v, yj; {vi, xi}; {bj, yj}, t)

= −∑n
i=1∇vi ·

∫
dxδ(xi − x)

∫
db (b · ∇x) b f nu,(m+1)h({vi, xi}; b, x; {bj, yj}, t)

−∑m
j=1∇bj ·

∫
dyδ(yj − y)

∫
dv
(

bj · ∇y

)
v f (n+1)u,mh(v, y; {vi, xi}; {bj, yj}, t)

+ 1
4π ∑n

i=1∇vi ·
∫

dx
[
∇xi

1
|xi−x|

] ∫
dv (v · ∇x)

2 f (n+1)u,mh(v, x; {vi, xi}; {bj, yj}, t)

− 1
4π ∑n

i=1∇vi ·
∫

dy
[
∇xi

1
|xi−y|

] ∫
db
(
b · ∇y

)2 f nu,(m+1)h({vi, xi}; b, y; {bj, yj}, t)

−ν ∑n
i=1∇vi ·

∫
dxδ(xi − x)∇2

x
∫

dvv f (n+1)u,mh(v, x; {vi, xi}; {bj, yj}, t)
−λ ∑m

j=1∇bj ·
∫

dyδ(yj − y)∇2
y
∫

dbb f nu,(m+1)h({vi, xi}; b, y; {bj, yj}, t) .

(13)

Equation (13) is the most general evolution equation for multi-point PDFs in MHD turbulence.
In the following section, we will discuss a more compact statistical description of MHD turbulence
in terms of functional equations. Here, we briefly want to relate the PDF hierarchy Equation (13)
to the moment hierarchy in MHD turbulence in the example of two-point correlation functions.
To this end, we take the moments of the two-point PDFs (5)–(7), which result in the well-known
two-point correlation functions of MHD turbulence:

Cuu
i j (x; x′, t) =

∫
dvvi

∫
dv′v′j f uu(v, x; v′, x′, t) =

〈
ui(x, t)uj(x′, t)

〉
, (14)

Cuh
i j (x; x′, t) =

∫
dvvi

∫
dbbj f uh(v, x; b, x′, t) =

〈
ui(x, t)hj(x′, t)

〉
, (15)

Chh
i j (x; x′, t) =

∫
dbbi

∫
db′b′j f hh(b, x; b′, x′, t) =

〈
hi(x, t)hj(x′, t)

〉
, (16)

where the indices i and j now denote vector components. It can be shown (see Appendix B) that
in taking the moments (14)–(16) of the evolution Equation (13) for (5)–(7), one indeed obtains
equations relating moments of second order to moments of third order. This moment hierarchy can
be considered as the MHD analogon to the Friedmann–Keller hierarchy [29] and was first derived by
Chandrasekhar [1], who also addressed the implications of homogeneity and isotropy in an invariant
theory of MHD turbulence. We will make use of this invariant theory in Section 4, which discusses a
closure method for the single-point magnetic field PDF Equation (11).

We will end this section with some general comments on the multi-point PDF Equation (13).
First, fusing different points of the velocity and the magnetic field yl → xk in the evolution Equation (13)
can be achieved by the integration:

f nu,mh(v1, x1; . . . ; vk, xk; . . . ; vn, xn; b1, y1; . . . ; bl , xk; . . . ; bm, ym, t)
=
∫

dylδ(yl − xk) f nu,mh({vi, xi}; {bj, yj}, t) .
(17)

This integration can be carried out directly for all terms in Equation (13) except for the third term
for j = l of the l.h.s., which yields:

∫
dylδ(yl − xk)

∫
dvv · ∇yl f (n+1)u,mh(v, yl ; {vi, xi}; {bj, yj}, t)

= −
∫

dyl(∇yl δ(yl − xk)︸ ︷︷ ︸
−∇xk δ(yl−xk)

) ·
∫

dvv f (n+1)u,mh(v, yl ; {vi, xi}; {bj, yj}, t)

=
∫

dvv · ∇xk

∫
dylδ(yl − xk) f (n+1)u,mh(v, yl ; {vi, xi}; {bj, yj}, t)

=
∫

dvv · ∇xk f (n+1)u,mh(v, xk; v1, x1; . . . ; vk, xk; . . . ; vn, xn; b1, y1; . . . ; bl , xk, . . . ; bm, ym, t)︸ ︷︷ ︸
δ(v−vk) f nu,mh(v1,x1;...;vk ,xk ;...;vn ,xn ;b1,y1;...;bl ,xk ;...;bm ,ym ,t)

= vk · ∇xk f nu,mh(v1, x1; . . . ; vk, xk; . . . ; vn, xn; b1, y1; . . . ; bl , xk; . . . ; bm, ym, t) ,

(18)
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where we made use of the so-called coincidence property of the multi-point PDF (12). Further points
can be fused by the same procedure, which thus allows access to the evolution equations of mixed
PDFs with a single point of reference as given, for instance, by Equation (6) for x′ = x. Latter statistical
quantities are frequently encountered in spacecraft measurements, such as those in the solar wind by
Ulysses, where oftentimes, Taylor’s hypothesis (with respect to the bulk wind speed in the laboratory
frame) is invoked in order to characterize spatial fluctuations of velocity and magnetic fields with the
same point of reference [30,31]. Moreover, bridging to velocity and magnetic field increment PDFs
can be achieved by similar procedures to the ones described by Ulinich and Lyubimov for the case of
hydrodynamic turbulence [32]. Similarly to the derivation of the correlation function hierarchy from
the multi-point hierarchy (13) discussed in Appendix B, the latter multi-increment evolution equations
can also be used in order to derive a hierarchy of structure functions in MHD turbulence [9].

3. Functional Formulation of MHD Turbulence

In the previous section, we derived a hierarchy of evolution equations for PDFs in MHD turbulence,
which culminated in the generalized evolution equation for the (n+m)-point PDF Equation (13). Owing to
the fact that the MHD Equations (1) and (2) form a classical field theory, a complete description of the
Eulerian statistics is contained in the joint characteristic functional [33]:

φ[α(x), β(x), t] =
〈

ei
∫

dx[α(x)·u(x,t)+β(x)·h(x,t)]
〉

. (19)

This functional can be used in order to project on both multi-point PDF Equation (12) and multi-point
correlations such as Equations (14)–(16). In a more general way, the ordinary characteristic function:

ϕ({αi, xi}; {βj, yj}, t) =

〈
exp

[
i

n

∑
i=1

αi · u(xi, t)

]
exp

[
i

m

∑
j=1

βj · h(yj, t)

]〉
, (20)

coincides with the characteristic functional Equation (19) evaluated at discrete points of the real-valued
fields α(x) and β(x), namely for:

α(x) =
n

∑
i=1

αiδ(x− xi) , and β(x) =
m

∑
j=1

βjδ(x− yj) . (21)

Accordingly, by Fourier transforming Equation (20), it can be seen that the (n + m)-point PDF
Equation (12) is related to the joint characteristic functional by:

f nu,mh({vi, xi}; {bj, yj}, t)

= ∏n
i=1

(∫ dαi
(2π)3

)
∏m

j=1

(∫ dβi
(2π)3

)
e−i ∑n

i=1 αi ·vi e−i ∑m
j=1 αj ·bj φ

[
∑n

i=1 αiδ(x− xi), ∑m
j=1 βjδ(x− yj), t

]
.

(22)

In the following section, we briefly derive an evolution equation for the joint characteristic
functional (19), whereas Section 3.2 describes its Gaussian approximation.

3.1. Evolution Equation for the Characteristic Functional in MHD Turbulence

An evolution equation for the joint characteristic functional can be obtained by deriving
Equation (19) with respect to time:

∂

∂t
φ[α(x), β(x), t] = i

∫
dx′

〈[
α(x′) · ∂u(x′, t)

∂t
+ β(x′) · ∂h(x′, t)

∂t

]
ei
∫

dx[α(x)·u(x,t)+β(x)·h(x,t)]
〉

. (23)
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Inserting the MHD Equations (1) and (2) yields:

∂

∂t
φ[α(x), β(x), t]

=
∫

dx′αj(x′)
{

i ∂
∂x′k

(
δ2

δαk(x′)δαj(x′)
− δ2

δβk(x′)δβ j(x′)

)
+ ν ∂2

∂x′k∂x′k
δ

δαj(x′)

+ ∂
∂x′j

∫ dx′′
4π|x′−x′′ |

∂2

∂x′′k ∂x′′l

(
δ2

δαk(x′′)δαl(x′′)
− δ2

δβk(x′′)δβl(x′′)

)}
φ[α(x), β(x), t]

+
∫

dx′β j(x′)
{

i ∂
∂x′k

(
δ2

δαk(x′)δβ j(x′)
− δ2

δβk(x′)δαj(x′)

)
+ λ ∂2

∂x′k∂x′k
δ

δβ j(x′)

}
φ[α(x), β(x), t] .

(24)

Due to the incompressibility condition for the velocity field, the joint characteristic functional is
invariant under the transformation:

αj(x) = α̃j(x) +
∂

∂xj
ψ(x) , (25)

and the pressure term in Equation (24) can be eliminated, which yields:

∂

∂t
φ[α(x), β(x), t]

=
∫

dx′α̃j(x′)
{

i ∂
∂x′k

(
δ2

δαk(x′)δαj(x′)
− δ2

δβk(x′)δβ j(x′)

)
+ ν ∂2

∂x′k∂x′k
δ

δαj(x′)

}
φ[α(x), β(x), t]

+
∫

dx′β j(x′)
{

i ∂
∂x′k

(
δ2

δαk(x′)δβ j(x′)
− δ2

δβk(x′)δαj(x′)

)
+ λ ∂2

∂x′k∂x′k
δ

δβ j(x′)

}
φ[α(x), β(x), t] .

(26)

This linear functional equation for the joint characteristic functional can be considered as the
most compact statistical description of MHD turbulence and is the analog of Hopf’s functional
formulation of hydrodynamic turbulence [19,33,34]. Therefore, like in turbulent flows, the statistical
dynamics of MHD turbulence is a linear problem, whereas individual realizations are governed by
nonlinear partial differential equations. Moreover, the linearity of Equation (24) necessarily implies
that the joint characteristic functional (19) obeys the superposition principle: if the characteristic
functionals φ(i)[α(x), β(x), t] are solutions of Equation (24) subject to the corresponding initial conditions
φ(i)[α(x), β(x), t = 0], then φ(i)[α(x), β(x), t] is a linear combination of these solutions.

3.2. Cumulant Expansion and the Implications of Vanishing Higher Order Cumulants

In the following, we consider the implications of the vanishing of cumulants higher than second
order. Evidently, in the latter case, the velocity and magnetic field are distributed according to a
joint normal distribution. In fully developed MHD turbulence, however, such a scenario is quite
unrealistic, and empirical findings suggest strongly non-Gaussian behavior at small scales, which is
oftentimes attributed to the occurrence of nearly singular current and vortex sheets [9,35]. Nonetheless,
as described in the next sections, we are solely interested in using the joint Gaussian approximation for
mixed velocity and magnetic field conditional two-point moments in the single-point magnetic field
evolution Equation (4). Hence, as described in Appendix C, we approximate the joint characteristic
functional (19) according to:

ϕ[α(x), β(x), t] = e−
1
2
∫

dx′
∫

dx′′
[
αi(x′)Cuu

i j (x
′ ;x′′ ,t)αj(x′′)+2αi(x′ ,t)Cuh

i j (x
′ ;x′′ ,t)β j(x′′)+βi(x′)Chh

i j (x
′ ;x′′ ,t)β j(x′′)

]
, (27)

where we introduced the two-point correlation functions (14)–(16). As a consequence, the entire
multi-point statistics is determined by the correlation function Equations (14)–(16).

4. Closure of the Single-Point Magnetic Field PDF Equation and the Assumptions of Isotropy
and Homogeneity

In this section, we rely on the characteristic functional (27), which was derived under the
assumption of vanishing joint cumulants higher than order two. The closure method can thus be
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considered as a joint Gaussian closure assumption for the velocity and magnetic field. Similar closures
were discussed in the context of the multi-point vorticity statistics in two-dimensional turbulence [36],
as well as for the PDF of the velocity gradient tensor in three-dimensional turbulence [37].
We reformulate the evolution equation of the single point magnetic field PDF in terms of conditional
expectation values:

∂

∂t
f h(b, x, t) +

∂

∂xi
〈ui(x, t)|b, x, t〉 f h(b, x, t)

= − ∂
∂bi

∫
dx′δ(x− x′)bn

∂
∂x′n
〈ui(x′, t)|b, x, t〉 f h(b, x, t)

+λ ∂2

∂x2
n

f h(b, x, t)− λ ∂2

∂bi∂bj

〈
∂hi(x,t)

∂xn

∂hj(x,t)
∂xn

∣∣∣∣∣b, x, t

〉
f h(b, x, t) ,

(28)

where we imply summation over the same indices. Moreover, we defined the conditional
expectation values:

〈
u(x′, t)|b, x, t

〉
=
〈u(x′, t)δ(b− h(x, t))〉
〈δ(b− h(x, t))〉 , (29)

〈
∂hi(x, t)

∂xn

∂hj(x, t)
∂xn

∣∣∣∣∣b, x, t

〉
=

〈
∂hi(x,t)

∂xn

∂hj(x,t)
∂xn

δ(b− h(x, t))
〉

〈δ(b− h(x, t))〉 , (30)

and made use of the relation:

∂2

∂x2
n

f h(b, x, t) = − ∂

∂bi

〈
∂2hi(x, t)

∂x2
n

δ(b− h(x, t))
〉
+

∂2

∂bi∂bj

〈
∂hi(x, t)

∂xn

∂hj(x, t)
∂xn

δ(b− h(x, t))
〉

. (31)

As shown in Appendix C, the first conditional expectation value (29) can be calculated from the
joint Gaussian characteristic functional according to:〈

ui(x′, t)|b, x, t
〉
= Cuh

i j (x
′; x, t)Chh

j k (x; x, t)−1bk , (32)

where Chh
j k (x; x′, t)−1 denotes the inverse of the two-point tensor (16). Furthermore, under the

assumption of translational invariance of the fields, we can neglect derivatives of single-point quantities
∇x · 〈. . .〉, such as the second term on the l.h.s. of Equation (28). In addition, two-point correlations
will only depend on the separation vector r = x− x′. Next to homogeneity, we also want to impose
isotropy, i.e., rotational invariance. Here, special attention has to be paid to the fact that unlike u, h is
an axial vector. Therefore, correlations that contain an odd number of magnetic field components such
as Equation (32) are skew tensors [1,28,38]. Hence, the correlation tensors that enter the conditional
expectation values in Equation (32) read:

Cuh
i j (r, t) = Cuh(r, t)εijkrk (33)

Chh
i j (0, t) = h2

rmsδij , (34)

where hrms denotes the root mean square magnetic field
√
〈h2〉. Furthermore, the assumption of

isotropy implies that the single-point PDF solely depends on the absolute of the magnetic field b = |b|.
This PDF is related to the PDF of the absolute value of the magnetic field f h(b, t) according to [39]:

f h(b, t) = 4πb2 f h(b, x, t) . (35)
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Therefore, the remaining nonlinear term, i.e., the first term on the r.h.s. of Equation (28), yields:

−∇b ·
∫

drδ(r) (b · ∇r) 〈u(x + r, t)|b, x, t〉 f h(b, x, t)

= −h−2
rms

∂
∂bi

∫
drδ(r)bn

∂
∂rn

Cuh(r, t)εijlrlδjkbk f h(b, x, t)

= −h−2
rms
∫

drδ(r)
(

∂Cuh(r,t)
∂r

rn
r εijlrl + Cuh(r, t)εijn

)
×
(

δinbj f h(b, x, t) + δijbn f h(b, x, t) + bjbn
bi
b

∂ f h(b,x,t)
∂b

)
= 0 .

(36)

where we made use of the general relation ∂
∂rn

g(r) = ∂g(r)
∂r

rn
r and used the properties of the Levi–Civita

tensor, e.g., εijlrlri = 0 and εiil = 0. Remarkably, the joint Gaussian approximation combined with
the assumptions of homogeneity and isotropy leads to vanishing nonlinear transfer terms in the
single-point PDF equation. In other words, the growth of magnetic field fluctuations (in a setting with
translational invariance and no preferred direction) requires non-vanishing higher-order cumulants,
e.g., generated by non-vanishing third order moments.

The remaining term involves the conditional expectation value (30), which simplifies to:〈
∂hi(x, t)

∂xn

∂hj(x, t)
∂xn

∣∣∣∣∣b, x, t

〉
= −

〈
εhh〉
3λ

δij , (37)

where we have introduced the average of the local magnetic energy dissipation rate according to:

〈
εhh
〉
=

λ

2

〈[
∂hi(x, t)

∂xj
+

∂hj(x, t)
∂xi

]2〉
. (38)

Consequently, Equation (28) reduces to:

∂

∂t
f̃ h(b, t) = − ∂

∂b
2
〈
εhh〉
3b

f̃ h(b, t) +
∂2

∂b2

〈
εhh〉
3

f̃ h(b, t) , (39)

Accordingly, taking the second moment of this equation yields the temporal evolution for the
magnetic energy:

∂

∂t
Emag(t) =

1
2

∫
dbb2 ∂

∂t
f h(b, t) = −

〈
εhh
〉

. (40)

Due to the vanishing of the nonlinear term in Equation (36), Equation (39) possesses no transfer
term, which again is a direct consequence of the isotropy/homogeneity assumption and the neglect
of higher order cumulants in the joint characteristic functional (19). A possible way of restoring this
missing term within the same joint Gaussian approximation consists of allowing for a mean magnetic
field H(t) = 〈h(x, t)〉, which fluctuates about the mean direction λ = 〈H(t)/H(t)〉t. In this case,
we necessarily have to deal with axisymmetric MHD turbulence, and the skew symmetric tensor (33)
gets modified to [38]:

Cuh
i j (r, t) = C(1)(r, t)εijkrk + C(2)(r, t)λjεilmλlrm + C(3)(r, t)rjεilmλlrm , (41)

which allows for a non-vanishing transfer term in Equation (28). As has been reported in numerical [40],
theoretical [41] and experimental studies [42] alike, MHD flows can develop strong anisotropies in the
presence of a mean magnetic field. This is all the more important as symmetry breaking, e.g., due to
shear, apparently is a crucial ingredient for dynamo action in MHD flows [43,44]. The implications of
the presence of such mean magnetic fields in the PDF equations, especially in the context of dynamo
theory, will be discussed in a forthcoming publication.
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5. Discussion

We presented a comprehensive statistical description of MHD turbulence. First, we formulated a
hierarchy of evolution equations for multi-point probability density functions that can be considered
as the analogon to the multi-point PDF hierarchy derived by Lundgren [24]. In comparison to the
latter hierarchy of hydrodynamic turbulence, where unclosed terms are due to pressure and viscous
contributions, the Alfvén effect introduces additional unclosed terms. Furthermore, we discussed the
relation of the PDF hierarchy to the moment hierarchy of Chandrasekhar [1] and presented a compact
formulation on the basis of a joint characteristic functional in MHD turbulence [33]. A joint Gaussian
approximation for this characteristic functional has been used in order to close two-point terms in the
evolution equation for the single-point magnetic field PDF.

It will be a task for the future to assess these conditional averages by direct numerical simulations,
similarly to the case of hydrodynamic turbulence [36,37] and further quantify deviations from
Gaussianity and their origin in the dynamics of MHD turbulence. Moreover, it might also be interesting
to investigate the implications of Alfvén waves within the PDF framework and to enlarge it possibly in
order to account for the effects of stratification. The latter treatment starts directly from the Boussinesq
equation and could enhance our current understanding of non-Gaussian features found empirically at
the scale of the mean stratified flow [45].
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Moreover, I benefited from financial support through the Project IDEXLYONof the University of Lyon in the
framework of the French program “Programme Investissements d’Avenir” (ANR-16-IDEX-0005).
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Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of the PDF Hierarchy

This Appendix discusses the derivation of the evolution equations for the single-point velocity
Equation (9) and magnetic field PDF Equation (11).

Appendix A.1. Terms of the Evolution Equation for the Single-Point Velocity PDF

The first nonlinear term in Equation (1) can be related to the single-point PDF by the
following manipulation:

∇v · 〈[u(x, t) · ∇xu(x, t)] δ(v− u(x, t))〉
= − 〈u(x, t) · ∇xδ(v− u(x, t))〉 = −∇x · 〈u(x, t)δ(v− u(x, t))〉 = −v · ∇x 〈δ(v− u(x, t))〉︸ ︷︷ ︸

= f u(v,x,t)

, (A1)

where we made use of the incompressibility of the velocity field after the second equality and used
the so-called sifting property of the δ-distribution, u(x, t)δ(v− u(x, t)) = vδ(v− u(x, t)), after the last
equality. The second nonlinear term, however, involves the magnetic field and has to be related to a
two-point quantity:

−∇v · 〈[h(x, t) · ∇xh(x, t)] δ(v− u(x, t))〉
= − ∂

∂vi

〈[
hn(x, t) ∂

∂xn
hi(x, t)

]
δ(v− u(x, t))

〉
= − ∂

∂vi

∫
dx′δ(x− x′) ∂

∂x′n
〈hn(x′, t)hi(x′, t)δ(v− u(x, t))〉

= − ∂
∂vi

∫
dx′δ(x− x′) ∂

∂x′n

∫
db bnbi

〈
δ(v− u(x, t))δ(b− h(x′, t))

〉︸ ︷︷ ︸
f uh(v,x;b,x′ ,t)

= −∇v ·
∫

dx′δ(x− x′)
∫

db b · ∇x′b f uh(v, x; b, x′, t) ,

(A2)
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where we implied summation over equal indices. The next term involves nonlocal pressure contributions
and, therefore, again, two-point quantities. The total pressure field can be obtained by taking the
divergence of Equation (1), which yields the Poisson equation:

−∇2
x p(x, t) = ∇x · [u(x, t) · ∇xu(x, t)− h(x, t) · ∇xh(x, t)] , (A3)

which can be solved by the usual Green’s function method according to:

p(x, t) =
1

4π

∫
dx′

1
|x− x′|∇x′ · [u(x′, t) · ∇x′u(x

′, t)− h(x′, t) · ∇x′h(x
′, t)] , (A4)

where we assumed an infinite domain without further boundary conditions. Accordingly, the pressure
term that enters Equation (9) reads:

∇v · 〈[∇x p(x, t)] δ(v− u(x, t))〉
= 1

4π∇v ·
∫

dx′
[
∇x

1
|x−x′ |

]
∂2

∂x′i∂x′n
〈[un(x′, t)ui(x′, t)− hn(x′, t)hi(x′, t)] δ(v− u(x, t))〉

= 1
4π∇v ·

∫
dx′

[
∇x

1
|x−x′ |

]
∂2

∂x′i∂x′n

∫
dv′v′nv′i 〈δ(v− u(x, t))δ(v′ − u(x′, t))〉

− 1
4π∇v ·

∫
dx′

[
∇x

1
|x−x′ |

]
∂2

∂x′i∂x′n

∫
dbbnbi 〈δ(v− u(x, t))δ(b− h(x′, t))〉

= 1
4π∇v ·

∫
dx′

[
∇x

1
|x−x′ |

] ∫
dv′ (v′ · ∇x′)

2 f uu(v, x; v′, x′, t)

− 1
4π∇v ·

∫
dx′

[
∇x

1
|x−x′ |

] ∫
db (b · ∇x′)

2 f uh(v, x; b, x′, t) .

(A5)

Finally, the viscous term reads:

−ν∇v ·
〈[
∇2

xu(x, t)
]

δ(v− u(x, t))
〉

= −ν∇v ·
∫

dx′δ(x− x′)∇2
x′ 〈u(x

′, t))δ(v− u(x, t))〉
= −ν∇v ·

∫
dx′δ(x− x′)∇2

x′
∫

dv′v′
〈
δ(v− u(x, t))δ(v′ − u(x′, t))

〉︸ ︷︷ ︸
f uu(v,x;v′ ,x′ ,t)

,
(A6)

Inserting the terms (A1), (A2), (A5), and (A6) into Equation (8) yields the evolution equation for
the single-point velocity PDF (9).

Appendix A.2. Terms of the Evolution Equation for the Single-Point Velocity PDF

The first nonlinear term from the induction Equation (2) can be related to a single-point mixed quantity:

∇b · 〈[u(x, t) · ∇xh(x, t)] δ(b− h(x, t))〉
= − 〈u(x, t) · ∇xδ(b− h(x, t))〉 = −∇x · 〈u(x, t)δ(b− h(x, t))〉
= −∇x ·

∫
dvv 〈δ(v− u(x, t))δ(b− h(x, t))〉 =

∫
dvv · ∇x f uh(v, x; b, x, t) .

(A7)

The second term, however, has to be related to the two-point PDF Equation (6) according to:

−∇b · 〈[h(x, t) · ∇xu(x, t)] δ(b− h(x, t))〉
= − ∂

∂bi

〈[
hn(x, t) ∂

∂xn
ui(x, t)

]
δ(b− h(x, t))

〉
= − ∂

∂bi

∫
dx′δ(x− x′) ∂

∂x′n
〈hn(x, t)ui(x′, t)δ(b− h(x, t))〉

= − ∂
∂bi

∫
dx′δ(x− x′) ∂

∂x′n

∫
dv bnvi 〈δ(v− u(x′, t))δ(b− h(x, t))〉

= −∇b ·
∫

dx′δ(x− x′)
∫

dv (b · ∇x′) v f uh(v, x′; b, x, t) .

(A8)

Finally, the viscous term that enters the evolution equation for the one-point magnetic field PDF
can be treated in the same way as Equation (A6).
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Appendix B. Relation to the Moment Hierarchy Derived by Chandrasekhar

In this section, we want to derive the evolution equation for the moments (14)–(16) directly from
the PDF equations.

Appendix B.1. Evolution Equation for the Two-Point Velocity Field Correlation Tensor

The evolution equation for the two-point velocity PDF (5) can be obtained from the generalized
Equation (13) according to:[

∂

∂t
+ v · ∇x + v′ · ∇x′

]
f uu(v, x; v′, x′, t)

= − [∇v ·
∫

dx′′δ(x′′ − x) +∇v′ ·
∫

dx′′δ(x′′ − x′)]
∫

db (b · ∇x′′) b f uuh(v, x; v′, x′; b, x′′, t)
−ν [∇v ·

∫
dx′′δ(x′′ − x) +∇v′ ·

∫
dx′′δ(x′′ − x′)]∇2

x′′
∫

dv′′v′′ f uuu(v′′, x′′; v, x; v′, x′, t) ,

(A9)

where we already neglected pressure contributions due to the fact that they vanish on the basis of
homogeneity at this stage of the moment hierarchy discussed in the following (nonetheless, they do
not vanish for higher order correlations [9]). Taking the moments:

〈vi(x, t)vj(x′, t)〉 =
∫

dvvi

∫
dv′v′j f uu(v, x; v′, x′, t) , (A10)

of Equation (A9) yields:

∂

∂t
〈ui(x, t)uj(x

′, t)〉+ ∂

∂xn
〈un(x, t)ui(x, t)uj(x

′, t)〉+ ∂

∂x′n
〈un(x′, t)ui(x, t)uj(x

′, t)〉

= ∂
∂xn
〈hn(x, t)hi(x, t)uj(x′, t)〉+ ∂

∂x′n
〈hn(x′, t)ui(x, t)hj(x′, t)〉+ ν[∇2

x +∇2
x′ ]〈ui(x, t)uj(x′, t)〉 .

(A11)

where we performed partial integration with respect to v and v′ on the r.h.s. of Equation (A9).

Appendix B.2. Evolution Equation for the Two-Point Cross Helicity Correlation Tensor

The evolution equation for the two-point PDF (6) reads:[
∂

∂t
+ v · ∇x

]
f uh(v, x; b, x′, t) +

∫
dv′v′ · ∇x′ f

uuh(v′, x′; v, x; b, x′, t)

= −∇v ·
∫

dx′′δ(x− x′′)
∫

db′ (b′ · ∇x′′) b′ f uhh(v, x; b′, x′′; b, x′, t)
−∇b ·

∫
dx′′δ(x′ − x′′)

∫
dv′ (b · ∇x′′) v′ f uuh(v′, x′′; v, x; b, x′, t)

−ν∇v ·
∫

dx′′δ(x− x′′)∇2
x′′
∫

dv′v′ f uuh(v′, x′′; v, x; b, x′, t)
−λ∇b ·

∫
dx′′δ(x′ − x′′)∇2

x′′
∫

db′b′ f uhh(v, x; b′, x′′; b, x′, t) ,

(A12)

where we again dropped the pressure contributions. Taking the moments:

〈ui(x, t)hj(x′, t)〉 =
∫

dvvi

∫
dbbj f uh(v, x; b, x′, t) , (A13)

of Equation (A12) yields:

∂

∂t
〈ui(x, t)hj(x

′, t)〉+ ∂

∂xn
〈un(x, t)ui(x, t)hj(x

′, t)〉+ ∂

∂x′n
〈un(x′, t)ui(x, t)hj(x

′, t)〉

= ∂
∂xn
〈hn(x, t)hi(x, t)hj(x′, t)〉+ ∂

∂x′n
〈hn(x′, t)ui(x, t)uj(x′, t)〉+ [ν∇2

x + λ∇2
x′ ]〈ui(x, t)hj(x′, t)〉 .

(A14)
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Appendix B.3. Evolution Equation for the Two-Point Magnetic Field Correlation Tensor

Finally, the evolution equation for the two-point magnetic field PDF (7) reads:

∂

∂t
f hh(b, x; b′, x′, t) +

∫
dvv · ∇x f uhh(v, x; b, x; b′, x′, t) +

∫
dvv · ∇x′ f uhh(v, x′; b, x, b′, x′, t)

= −∇b ·
∫

dx′′δ(x− x′′)
∫

dv (b · ∇x′′ ) v f uhh(v, x′′; b, x; b′, x′, t)
−∇b′ ·

∫
dx′′δ(x′ − x′′)

∫
dv (b′ · ∇x′′ ) v f uhh(v, x′′; b, x; b′, x′, t)

−λ
[
∇b ·

∫
dxδ(x′′ − x) +∇b′ ·

∫
dxδ(x′′ − x′)

]
∇2

x′′
∫

db′′b′′ f hhh(b′′, x′′; b, x; b′, x′, t) .

(A15)

Taking the moments:

〈hi(x, t)hj(x′, t)〉 =
∫

dbbi

∫
db′b′j f hh(b, x; b′, x′, t) , (A16)

of Equation (A15) yields:

∂

∂t
〈hi(x, t)hj(x

′, t)〉+ ∂

∂xn
〈un(x, t)hi(x, t)hj(x

′, t)〉+ ∂

∂x′n
〈un(x′, t)hi(x, t)hj(x

′, t)〉

= ∂
∂xn
〈hn(x, t)ui(x, t)hj(x′, t)〉+ ∂

∂x′n
〈hn(x′, t)hi(x, t)uj(x′, t)〉+ λ[∇2

x +∇2
x′ ]〈hi(x, t)hj(x′, t)〉 .

(A17)

Appendix C. Gaussian Approximation for the Joint Characteristic Functional of the MHD Equations

In this Appendix, we derive a cumulant expansion for the joint characteristic functional (19) and
consider the implications of the vanishing of cumulants higher than order two. In order to expand the
joint characteristic functional (19) in powers of the fields α(x) and β(x), it is convenient to introduce the

six-dimensional fields U(x, t) =

(
u(x, t)
h(x, t)

)
and γ(x) =

(
α(x)
β(x)

)
. We can now expand the characteristic

functional (19) in a power series:

φ[γ(x), t] =
〈

ei
∫

dxγ(x)·U(x,t)
〉

= φ[0] +
∫

dx′ δφ[γ(x),t]
δγI (x′)

∣∣∣
γ(x)=0

γI(x′) + 1
2!
∫

dx′
∫

dx′′ δ2φ[γ(x),t]
δγI (x′)δγJ(x′′)

∣∣∣
γ(x)=0

γI(x)γJ(x′′) + h.o.t.

= 1 + i
∫

dx′ 〈UI(x′, t)〉 γI(x′) + i2

2!
∫

dx′
∫

dx′′
〈
UI(x′, t)UJ(x′′, t)

〉
γI(x′)γJ(x′′) + h.o.t.

= 1 + ∑∞
n=1

∫
dx1 . . .

∫
dxn

in

n! γI1 (x1) . . . γIn (xn)CI1 ...In (x1, . . . , xn, t) ,

(A18)

where capital indices indicate I = 1, . . . , 6 and where we implied summation over equal indices.
Moreover, we defined the correlation function:

CI1 ...In(x1, . . . , xn, t) =
〈
UI1(x1, t)UI2(x2, t) . . . UIn(xn, t)

〉
. (A19)

On the other hand, we can cast Equation (A18) in terms of the cumulants according to:

φ[γ(x), t] = exp

(
∞

∑
n=1

∫
dx1 . . .

∫
dxn

in

n!
γI1(x1) . . . γIn(xn)KI1 ...In(x1, . . . , xn, t)

)
, (A20)

which suggests that the first four cumulants K are related to the correlations functions C according to:

KI =CI , (A21)

KI J =CI J − CICJ , (A22)

KI JL =CI JL − CI JCL − CILCJ − CJLCI + 2CICJCL , (A23)

KI JLM =CI JLM − CI JCLM − CILCJM − CIMCJL − CI JLCM − CI JMCL − CIMLCJ − CJLMCI

+ 2CI JCLCM + 2CILCJCM + 2CIMCJCL + 2CMLCICJ + 2CJLCICM + 2CJMCICL

− 6CICJCLCM . (A24)
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Under the assumption that there are no mean fields, i.e., Ki = 0, and neglecting higher order
cumulants (A23) and (A24), etc., we obtain:

φ[γ(x), t] = e−
1
2
∫

dx′
∫

dx′′γI(x′)KI J(x′ ;x′′ ,t)γJ(x′′) (A25)

Inserting the original fields u(x, t) and h(x, t), as well as the correlation functions (14)–(16)
thus yields:

ϕ[α(x), β(x), t] = e−
1
2

∫
dx′
∫

dx′′
[
αi(x′)Cuu

i j (x
′ ;x′′ ,t)αj(x′′)+2αi(x′ ,t)Cuh

i j (x
′ ;x′′ ,t)β j(x′′)+βi(x′)Chh

i j (x
′ ;x′′ ,t)β j(x′′)

]
. (A26)

In order to calculate the conditional expectation value that enters the evolution equation for the
single-point magnetic field, we consider the following relation:

〈
ui(x′, t)δ(b− h(x, t))

〉
=

1
(2π)3

∫
dwe−iw·b δφ[α(x), β(x), t]

δ(iαi(x′))

∣∣∣∣α(x′′)=0

β(x′′)=wδ(x′′−x)
. (A27)

Inserting the Gaussian approximation of the characteristic functional Equation (A26) yields:

〈ui(x′, t)δ(b− h(x, t))〉 = i
(2π)3

∫
dwe−iw·bCuh

i j (x
′; x, t)wj

〈
eiw·h(x,t)

〉
= −Cuh

i j (x
′; x, t) ∂

∂bj
1

(2π)3

∫
dwe−iw·b

〈
eiw·h(x,t)

〉
= −Cuh

i j (x
′; x, t) ∂

∂bj
f h(b, x, t) .

(A28)

Accordingly, the conditional moment (32) can be expressed as:〈
ui(x′, t)|b, x, t

〉
= Cuh

i j (x
′; x, t)Chh

j k (x; x, t)−1bk , (A29)

where Chh
j k (x; x′, t)−1 denotes the inverse of the two-point tensor (16).
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