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Abstract: Many viruses, such as coronaviruses, tend to spread airborne inside water microdroplets.
Evaporation of the microdroplets may result in a reduction of their contagiousness. However,
the evaporation of small droplets is a complex process involving mass and heat transfer, diffusion,
convection and solar radiation absorption. Virological studies indicate that airborne virus survival
is very sensitive to air humidity and temperature. We employ a model of droplet evaporation
with the account for the Knudsen layer. This model suggests that evaporation is sensitive to both
temperature and the relative humidity (RH) of the ambient air. We also discuss various mechanisms
such as the effect of solar irradiation, the dynamic relaxation of moving droplets in ambient air and
the gravitational sedimentation of the droplets. the maximum estimate for the spectral radiative
flux in the case of cloudless sky showed that the radiation contribution to evaporation of single
water droplets is insignificant. We conclude that at small and even at moderately high levels of RH,
microdroplets evaporate within dozens of seconds with the convective heat flux from the air being
the dominant mechanism in every case. the numerical results obtained in the paper are in good
qualitative agreement with both the published laboratory experiments and seasonal nature of many
viral infections. Sophisticated experimental techniques may be needed for in situ observation of
interaction of viruses with organic particles and living cells within microdroplets. the novel controlled
droplet cluster technology is suggested as a promising candidate for such experimental methodology.

Keywords: water droplets; evaporation; modeling; coronavirus survival; airborne transmission;
droplet cluster

1. Introduction

The recent outbreak of the COVID-19 disease caused by the human coronavirus SARS-CoV-2 has
attracted the attention of the research community to the mechanisms of virus transmission. It is widely
accepted that coronavirus particles are transmitted not only by the so-called contact transmission (direct
or indirect) or by large droplets generated by a close expiratory event (coughing, sneezing). As large
droplets fall quickly due to gravity, this droplet transmission mode takes place upon close contact only.
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On the contrary, small microdroplets with sizes on the order of dozens of microns are responsible for
the airborne transmission (also referred to aerosol transmission) [1–4]. When a respiratory virus of
concern only leads to disease with low severity, airborne precautions are not likely to be justified [5].
However, this is not the case for dangerous SARS-CoV-2. the observations confirm that there is a
substantial probability that even normal speaking causes airborne virus transmission in confined
environments [6]. At the same time, the conditions of virus infection outdoors are not obvious and
should be studied in detail. the effect of environmental factors of the airborne transmission of viruses
is sometimes underestimated [7]. Some experimental studies have demonstrated that transmission of
viruses is strongly modulated by temperature and humidity of ambient air. However, the mechanism
by which temperature and humidity alter transmission outcomes remains unclear [8,9].

It is interesting that numerous microdroplets in the atmosphere can transport microorganisms and
viruses and play an important role in many biological processes including the long-distance migration
of biological material and disease transmission. In natural environments, bioaerosols can be created by
raindrops or sea sprays transferring bacteria and viruses from soil surface or sea water. Note that some
metabolically active bacteria can survive airborne for many hours, and they have been detected in air
at elevations as high as 20–70 km [10–12].

Viruses also use atmospheric aerosol particles to migrate for significant distances. Virus particles
(virions) typically have submicron-scale size, therefore, they are much smaller than bacteria,
which makes it difficult to observe them with the optical microscopy resolution. Thus, coronavirus
particles have a spherical shape with the diameter of about 80 nm, and they are surrounded by a virus
envelope made of a lipid bilayer, to which structural proteins of the membrane, envelope, and spikes
are attached [13]. the coronavirus also has protein spikes up to 20 nm long, whose scanning electron
microscope (SEM) images resemble a solar corona (hence the name “coronavirus”). the diameter of
the virus particle, including the spikes is about 0.12 µm [14] (Figure 1).

Figure 1. Schematic of an enveloped coronavirus and a liposome with a lipid bilayer membrane.
Adopted from https://en.wikipedia.org/wiki/Coronavirus and https://es.wikipedia.org/wiki/Liposoma.

A major factor complicating the study of bioaerosols is that it is extremely difficult to observe
airborne bacteria, and even more so, virus particles, in situ, because it is impossible to trace individual
microdroplets in aerosols. However, we have recently suggested the droplet cluster technology,
which allows the observation of isolated aerosol droplets for extended time spans (hours) and studying
them with fluorescence microscopy [15]. Of course, direct observation of viruses and even assembles
of viruses [16] using conventional optics rather than an electron microscope is impossible. Therefore,
we are talking about observing the transformation of proteins, as well as relatively large microorganisms
under the influence of viruses in droplets with a diameter of several tens of microns.

The droplet cluster is a 2D array of microdroplets (10–100 µm diameter) levitating in an ascending
gas (air mixed with vapor) flow over a locally heated layer of water. This fascinating phenomenon was
discovered by Fedorets [17] and studied extensively not only by the authors of the present paper but
also by other research groups. the milestones of this study include stabilization of the cluster managing
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the cluster parameters that is important for the laboratory observations of biochemical processes in
single droplets. In addition to [15,17], we refer to several basic publications [18–23] related to cluster
management as applied to the observation of processes in the droplets. the droplets levitate at a height
comparable with their radii, where the vertical component of the drag force is equilibrated by their
own weight [24]. A cluster with any number (from one to hundreds) of monodisperse droplets can be
generated and it tends to self-assemble into a hexagonally-ordered structure. the technology to control
the number and size of droplets has been suggested and demonstrated by our group earlier including
the ability to stabilize the cluster at relatively low temperatures (from 25 ◦C) [20], trace individual
droplets for extended periods of time (hours), and observe micron-sized particles in droplets using
the fluorescent microscopy [15].

In the present paper, we discuss the factors which affect the survival of airborne coronaviruses in
small water droplets. the respiratory droplets contain dissolved salt with a mass fraction of about 0.01
as well as a small amount of proteins and pathogens [25]. However, it is assumed that the effect of this
impurity and very small viruses or their aggregates on evaporation of water droplets is insignificant in
contrast to that observed by evaporation of sea water droplets [26].

One can suggest that the virus do not survive if the droplet of water that carries it evaporates
before the droplet contacts a potential victim of the virus. At least, this virus activity is expected
to decrease strongly after complete evaporation of the droplet. Therefore, we focus on the effect of
environmental conditions on the rates of evaporation and drying of droplets which carry the virus
particles. the perspectives of studying bioaerosols in situ using the droplet cluster technology are also
briefly discussed.

We consider only one aspect of the problem associated with the spread of a viral infection through
the air. This study raises the important question of whether personal protective equipment (medical
masks or respirators, and safety glasses) should be used outdoors. You can just sit on a park bench and
people around you can be more than social distance. But this does not mean that you are completely
safe, since viruses can be carried by micro-droplets of water. the gravitational settling of small droplets
is very slow. These droplets can also evaporate slowly, especially in humid air and in cool weather.
It is expected that understanding the settling and evaporation of small airborne water droplets will be
helpful in some general guidelines for preventing dangerous outdoor behavior. As far as we know,
there are no publications on this specific issue.

2. Evaporation of Airborne Microdroplets Carrying Viruses

Most viruses of respiratory diseases are transmitted by aerosol microdroplets. the effective control
and prevention of these infectious diseases depends on the ability to prevent the airborne spreading,
and in particular, to understand how microdroplet evaporation depends on the environmental
conditions, such as the temperature and humidity of ambient air.

2.1. Environmental Factors Affecting Airborne Viruses

While it remains debated whether virus particles can survive on dry surfaces or in dry air,
they clearly prefer water environment (Agranovski et al. [27] and Lewis [3]). the recent study of
the SARS-CoV-2 stability in aerosols and on various surfaces [4,28,29] showed that the virus remained
stable in aerosols for an extended time during the duration of the experiment. As far as surfaces
of different materials, the virus was more stable on plastic and stainless steel than on copper and
cardboard. This result is understandable from the notion that the virus needs moisture to survive,
which can condense on the surface of some materials [30]. Note that viruses can survive on human
skin and some household and contaminated surfaces [31–33]. At the same time, the virus does not
survive, for example, on the surface of ordinary woven materials from cotton fibers. This is because
viruses need moisture to survive. That is why we assume that the evaporation of microdroplets of
water containing the virus implies the cessation of their activity.
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Earlier studies have suggested that lipid-containing viruses (i.e., those covered by a lipid bilayer
envelope membrane, which is the case with coronaviruses) are also more viable in moist air than in dry
air [34]. the lipid bilayer is a self-assembled spherical structure made of amphiphilic lipid molecules
due to hydrophobic interactions between these molecules in water environment. A lipid bilayer is
formed by molecules which have hydrophilic heads and hydrophobic tales. When subjected to water
environment, these molecules can self-assemble into complex structures such as micelles and liposomes
(Figure 1). They are also known for complex thermodynamic behavior with liposomes undergoing
phase transition between gel and liquid states and micelles subject to spontaneous micellization at
concentrations and temperatures above critical values. It is not surprising that lipid-containing viruses
prefer water environments.

The effect of environmental factors on the survival of airborne virus which can result to disease
transmission via air has been studied by many groups. Harper [35] investigated survival of several
viruses including influenza at different temperatures and relative humidity (RH) levels and concluded
that the best survival was at low temperatures and low RH. Schaffer et al. [36] studied the effect of
the relative humidity (RH) on the survival of airborne influenza and found maximum stability at
low levels of RH. Zhao et al. [37] studied the survival of an aerosolized Gumboro virus at different
temperatures and RH. They found that the long-distance transmission of airborne virus is more
likely to occur at 20 ◦C than at 10 ◦C or 30 ◦C. Ijaz et al. [38] studied survival of airborne human
coronavirus 229E under different temperatures and RH levels. the trends which they found were
somewhat contradictory. Best survival conditions were at RH = 50% (half-life about 67.3 h at 20 ◦C
and 102.5 h at 6 ◦C). At higher RH = 80% virus half-life was shortest at 20 ◦C and longest at 6 ◦C with
the opposite trend at lower RH = 30%. They concluded that the rule that “lipid-containing viruses more
viable in moist air (above 50% RH) than in dry air” is invalid for the coronavirus at low temperatures.
Pyankov et al. [39] studied survival of the aerosolized MERS coronavirus in the ambient air under
controlled laboratory conditions. the results obtained demonstrate that the virus decay was much
stronger for hot and dry air scenario with only 4.7% survival over 60 min procedure. the effect of
atmospheric conditions such as relative humidity and temperature of air on spreading of different
influenza viruses was studied also by Kormuth et al. [40]. It was emphasized that, according to [41]
seasonal influenza viruses cause yearly infection cycles that tend to peak in the winter in temperature
regions during raining periods in tropical climates. Reche et al. [42] studied deposition rates of viruses
and bacteria traveling for long distances with aerosols created by sea spray. They found that even in
pristine environments, the downward flux of viruses was on the order of 109 per m2 per day and two
orders of magnitude higher than the rates for bacteria. the highest relative deposition rates for viruses
were associated with atmospheric transport from marine sources, while the deposition of bacteria was
correlated with rains and Saharan dust intrusions. Virus deposition was correlated with aerosols of size
less than 0.7 µm, which could travel longer distances, as opposed to larger aerosols typical for bacteria.

As far as the mechanisms of airborne virus inactivation, these are still not well understood. It has
been suggested that droplet evaporation (dependent on both the temperature and humidity of ambient
air) is the major factor affecting droplet viability, with a possible effect of increasing salts concentrations
as droplet evaporates [26,43,44]. It has been also suggested that temperature is a factor in virus
stability because rates of protein and nucleic acid inactivation increase with temperature, while RH
controls evaporation, and, eventually droplet’s size and concentration of chemical substances [45].
Coronaviruses are inactivated with heating at temperatures of 55–60 ◦C [46,47]. Viruses particles
are mesoscale objects with molecular masses on the order of 106–109 Da, which is much larger
than the atomic mass, but much smaller than the Avogadro number, NA = 6.022 × 1023 mol−1.
Thermal fluctuations play a significant role for the mesoscale objects, and it is not surprising that
viruses prefer water environment, which serves at a thermal reservoir stabilizing their temperature
and preventing denaturation of proteins.

The experimental data suggest that the humidity and temperature play a key role in the viability
of airborne viruses, likely due to drying of microdroplets which bear these viruses. To evaluate factors
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and mechanisms responsible for drying of microdroplets, we employed a model for the droplet motion
and evaporation. According to [48], the droplets of initial diameter up to 50 µm have the highest
infection probability. This will be taken into account in subsequent calculations.

2.2. Motion of Microdroplets in Ambient Air

Consider first the model problem for dynamic relaxation of a non-evaporating spherical droplet
in the viscous air. In the case of immovable air, the droplet velocity is given by the following equation:

du
dt

= −
3CD

8a
ρair

ρw
u2

u(0) = u0 (1)

where u0 is the initial velocity of the droplet, a is the droplet radius, and CD is the drag coefficient.
the droplet radius is suggested to be much smaller than the capillary length; thus, a droplet is considered
as perfectly spherical. For the microdroplets under consideration, the Stokes flow regime takes place
(when the Reynolds number Re = 2ρairua/ηair << 1, ηair is the dynamic viscosity of air). In this case,
CD = 24/Re and Equation (1) is reduced to τ

.
u = −u and immediately solved as u = u0 exp(−t/τ),

with the relaxation time given by:

τ =
2
9
ρwa2

ηair
(2)

Substituting the values of droplet radius a = 20 µm and air viscosity ηair = 1.85 · 10−5 Pa·s to
Equation (2) yields τ = 5 ms. the coordinate of the droplet along the droplet trajectory is obtained by
integrating the velocity as:

z = u0τ(1− exp(−t/τ)) (3)

According to Equation (3), at t = 2τ the droplet is almost in dynamic equilibrium with air
environment. In the case of u0 = 1 m/s, this equilibrium occurs at the very small distance of
z∗ = uoτ = 5 mm. the solution obtained indicates that the dynamic equilibrium takes place for
the horizontal motion of a microdroplet in ambient air.

As to the vertical component of the droplet velocity, one should take into account the gravity,
and the droplet will fall down even in the immovable air. It can be easily shown that the vertical
velocity of the droplet increases with time as follows:

v(t) = gτ(1− exp(−t/τ)) (4)

It is assumed here that the initial velocity v(0) = 0. Obviously, at a small relaxation time we obtain
the constant “equilibrium” velocity v = gτ from Equation (4), and the total time of falling the droplet
from the height h is equal to t∗ = h/(gτ). This time may be comparable with the characteristic time of
the droplet evaporation. Therefore, the vertical motion of evaporating water droplets should be taken
into account in the general problem solution.

2.3. Modeling of Evaporation of Microdroplets

When a water droplet is placed in air not saturated by water vapor, evaporation prevails over
condensation. However, droplet evaporation is a complicated process governed by interplay of
combined mass and heat transfer, surface tension and other thermal effects. In order to calculate
the time for droplet evaporation and temperature of the droplets, we use an evaporation model,
based on the assumption that the Knudsen layer exists at the surface of the droplet. This allows
coupling the kinetic theory of gases and the diffusion approach outside the Knudsen layer [49–52].
the evaporation model has shown a good agreement with the experimental data [53]. This model
has been also successfully employed in recently published studies [23,26]. Note that the thickness of
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the Knudsen layer is on the order of the mean free path of gas molecules (about 0.2 µm under ambient
conditions), and the model is applicable for droplets of larger radii.

First, we assume that the temperature difference within the droplet is negligible, which is
justified for small droplet. Following [23], consider the characteristic time scale, τrel,t, of the thermal
equilibration of small water droplets. This time scale may be roughly estimated from the equation
Fo = αwτrel,t/a2 = 1, where αw = kw/(ρwcw) is the thermal diffusivity of water and Fo is the Fourier
number. Substituting αw = 1.5 · 10−7 m2/s and a = 40 µm yields τrel,t = 11 ms, which is much
smaller than the characteristic time scales of thermal processes addressed in the paper. It means that
the isothermal model for such water droplets is really applicable. In the case of some impurities, one can
also assume that the mass diffusion process will lead to the uniform composition of small droplets.

The effect of the surface curvature on droplet evaporation is also neglected, since such an effect is
significant only for submicron droplets. the dependency of the droplet temperature on time is obtained
from the transient energy balance equation for a uniform droplet suspended in air:

ρwcw
dT
dt

=
1.5Nu kair

a2
(Tair − T) − 3

.
mLev

a

T(0) = T0 (5)

where Nu = 2ah/kair is the Nusselt number for convective heat transfer from ambient air, h is
the convective heat transfer coefficient, a is the radius of a droplet,

.
m is the mass rate of evaporation

per unit of droplet’s surface, ρw and cw are the density and specific heat capacity of water, Lev is
the latent heat of water evaporation, Tair is the air temperature at a distance from the droplet (outside
the thermal boundary layer), kair is the thermal conductivity of air. the first term in the right-hand
side of Equation (5) characterizes the incoming heat flux, while the second term is the heat loss due
to the evaporation. In the Stokes flow regime the problem is simplified. In addition, we do not
take into account the effect of vapor blowing on the convective heat transfer. In this case, Nu = 2,
and Equation (5) becomes:

ρwcw
dT
dt

=
3 kair

a2
(Tair − T) − 3

.
mLev

a

T(0) = T0 (6)

Note that the mass rate of evaporation is related to the derivative of the droplet radius. This gives
us an additional differential equation for the droplet radius:

ρw
da
dt

= −
.

m

a(0) = a0 (7)

In the case of constant temperature of a droplet, Equation (6) gives the following expression for
the evaporation flow rate:

.
m = kair(Tair − T)/(aLev) (8)

This enables one to solve Equation (7) and obtain the known d-squared law (d = 2a is the droplet
diameter) [54]:

a2 = a2
0 − kairt/ρw (9)

It was shown in [55], that more realistic parabolic approximation of a quasi-steady temperature
profile in the droplet (instead of the assumption of isothermal droplet) gives the so-called elliptic
law instead of the d-squared law (9) for the time dependence of droplet size. the problem under
consideration is far from the thermal equilibrium and Equation (8) is not applicable. In the present
paper, we use much more sophisticated model for the isothermal droplet evaporation. This model is
discussed below.
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We should not also forget about the vertical motion of the droplet and calculation of the current
vertical displacement of the droplet:

H(t) = g

t∫
0

τ(t) dt (10)

The specific of the problem to be solved makes reasonable to consider the range of H < H∗, where H∗
is the maximum difference in height between the source of infection and the face of potential victim.
Under normal living conditions (indoors or outdoors), the value of H∗ is about one meter. Therefore,
in subsequent calculations, H∗ = 1 m is taken. In this case, only those droplets containing the virus
that are in the range of heights (from the source of infection) of 0 < H < 1 m are considered dangerous.

The task is to calculate the time during which a droplet with viruses does not completely evaporate
and, at the same time, is in a dangerous range of heights. In relation to the behavior of people sitting
or walking outside, this minimum time allows one to estimate the distance that should be added to
the accepted social distance in order to determine a truly safe distance between people. Of course,
the safe distance depends on the relative speed of movement of people (and in the case of wind, on its
speed and direction), since it is important not to be too early in the place of an infected person without
a respirator (alas, being on the street, people, in many cases, do not wear a medical mask or respirator).

The coupled Equations (6) and (7) should be completed by an evaporation model for a single water
droplet. According to the employed evaporation model, the vapor removal from the outer boundary of
the Knudsen layer is due to diffusion. the value of the diffusion mass flow rate is calculated as follows:

.
m =

Dpe

aRairTair
ln

(
1−ψ(Tair)ϕe

1−ψ(T)ϕK

)

ψ(T) =
psat(T)

pe

Mw

Mair
(11)

where D is the diffusion coefficient, pe is the pressure of the gas mixture far from the droplet surface,
ϕK and ϕe are the values of the RH at the outer boundary of the Knudsen layer and far from the droplet,
respectively, Rair is the gas constant of air, Mw = 18 kg/kmol and Mair = 29 kg/kmol are the molar
masses of water and air, psat is the pressure of saturated water vapor [56]. Equation (11) can be
also written using the Spalding mass transfer number [54–58]. the saturated water pressure as a
function of temperature can be obtained from the Antoine approximation [59] recommended by
the NIST WebBook:

lgpsat(T) = 4.6543−
1435.264

T − 64.848
(12)

where T is in Kelvins and psat is in bars (105 Pa). the RH at the Knudsen layer boundary is further
determined from the mass balance equation with the right-hand side taken from Equation (11):

fev
psat(T)
√

2πRwT
(1−ϕK) =

Dpe

aRairTe
ln

(
1−ψ(Tair)ϕe

1−ψ(T)ϕK

)
(13)

The dimensionless coefficient fev in Equation (13) accounts for air in the Knudsen layer, and a
numerical solution to the Boltzmann kinetic equation for evaporating of water droplets yields the value
of fev = 0.0024 [52].

2.4. Numerical Results for Evaporation of Water Droplets

The following values of physical parameters are used in subsequent calculations: D = 3 · 10−5 m2/s,
Rw = 461.7 J/(kg K), Rair = 286.5 J/(kg K), pair = 0.1 MPa, kair = 0.026 W/(m K), ρw = 103 kg/m3,
cw = 4.18 kJ/(kg K), Lev = 2.26 MJ/kg. the calculations showed a strong effect of the air humidity
on evaporation of small water droplets. For the variants of low or high RH, in which the droplets
completely evaporate, only slightly moving down (H < H∗) under the action of gravity, the numerical
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results are presented Figure 2. the same values of T0 = Tair = 27 ◦C were used for all variants.
Note that the value of the initial droplet temperature has an extremely weak effect on the calculation
results, while the ambient temperature, like the air humidity, is an important parameter of the problem.

Figure 2. Time-dependency of the droplet radius and temperature (a,b) at low RH of air (A—20%,
B—40%; 1— a0 = 30 µm, 2—40 µm) and (c,d) at high RH of air (C—70%, D—80%; 1—a0 = 20 µm,
2—25 µm); Tair = 27 ◦C.

One can see in Figure 2b,d that at the beginning of the evaporation, when a droplet’s radius
decreases slowly, the evaporation results in a sharp decrease of droplet’s temperature and this effect is
especially pronounced in the case of low air humidity. After that the droplet is heated due to convective
heat flux from ambient air. Such time dependences of temperature are explained by the large value of
the latent heat of evaporation and are observed not only for small droplets, but also (and even to a
greater extent) for thin films of polymer solutions [60].
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At the beginning of evaporation, there is no effect of convective heat transfer on the droplet
temperature and the time variation of the droplet radius is relatively slow. It means that one can use
the following reduced equation for the droplet temperature:

ρwcw
dT
dt

= −3
.

m0Lev

a0

T(0) = T0 (14)

Obviously, the linear initial decrease of temperature T with time can be obtained using Equation (14)
as it was done in [60]. the ambient temperature also has a significant effect on the evaporation of
micro-droplets of water. To quantify this effect, it is sufficient to carry out calculations at a lower
air temperature than those shown in Figure 2. the numerical results obtained at air temperature of
Tair = 17 ◦C are shown in Figure 3.

Figure 3. Time-dependency of the droplet radius and temperature (a,b) at low RH of air (A—20%,
B—40%; 1— a0 = 30 µm, 2—40 µm) and (c,d) at high RH of air (C—70%, D—80%; 1— a0 = 20 µm,
2—25 µm); Tair = 17 ◦C.
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As expected, at lower air temperatures and the same relative humidity, water droplets evaporate
much more slowly. As a result, water droplets with the same initial radius fall much faster. In particular,
at RH = 40%, droplets with a0 = 40 µm pass the “critical height” without being able to completely
evaporate (Figure 3a,b). At RH = 80%, water droplets with a0 = 25 µm behave in a similar way. Thus,
gravitational settling partially compensates for the increase in the residence time of slowly evaporating
droplets with viruses in a potentially dangerous zone.

It is of interest to generalize the numerical data for evaporating water droplets with an initial
radii in the range from 10 to 40 µm in the form of the dependence of the maximum residence time,
tmax, of water droplets (possibly containing viruses) at a dangerous altitude on two key parameters:
temperature and relative humidity of ambient air. the calculated values of tmax for moderately warm
and hot weather with not too high relative humidity of air are presented in Figure 4.

Figure 4. The maximum residence time of levitating microdroplets which may contain viruses.

It can be seen that the most dangerous infectious situation on the street, both for pedestrians and
for people sitting on benches, for example, in squares or parks, occurs in the case of cool weather
and high relative humidity of air. Of course, even at tmax = 15 − 20 s social distancing is clearly
insufficient and it is highly desirable to use personal protective equipment such as medical masks and
protective glasses.

Note that Figure 4 does not show the most dangerous areas of parameters, which are typical for
summer in the Arctic regions (low temperature and very high humidity), as well as for the rainy season
in tropical regions. the latter circumstance only reinforces the above conclusion regarding the use of
personal protective equipment in cities and even small towns (not necessarily with a high density of
crowds on the streets or in the parks).

It should be recalled that the above computational results are in good qualitative agreement with
numerous observations and a typical seasonal nature of different viral infections. Some additional
physical estimates confirming the possibility of applying the above-proposed relatively simple approach
to solving the problem are given below.
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It should be noted that the above calculations in some respects complement recent experimental
studies related to prolonged exposure of virus-laden small droplets in air indoors, especially in hospitals
where SARS-CoV-2 infected patients are treated [61,62]. It turns out that not only in a hospital setting,
but also outdoors, especially when a large number of people are gathered, even simple medical masks,
strongly recommended in [62], can significantly reduce the spread of infection.

As was found in recent work [63], aerosol air pollution increases the risk of infection and severe
disease. Of course, as noted in [63], this may be due to the influence of polluted air on lung damage
and a decrease in the body’s resistance. At the same time, the influence of the conditions of the airborne
transmission of dangerous viruses cannot be ruled out. This question, like many other poorly studied
effects of the ambient air properties, requires further research.

2.5. Effect of Solar Radiation

Many bioaerosols exist in the outside environment, where they can be subject to solar radiation.
Here we consider small (almost transparent) groups of droplets, so the single scattering approximation
can be used instead of the general problem of radiative heat transfer in a scattering medium [64].
This is different from the situation of a water mist, when the solar radiation is strongly absorbed due to
the multiple scattering by weakly absorbing droplets, at least near the irradiated side of the water mist
containing small droplets [65].

With the solar irradiation is taken into account, the energy balance equation for a single suspended
droplet should include an additional term:

ρwcw
dT
dt

= 0.75
Qa

a
qrad +

3 kair

a2
(Tair − T) − 3

.
mLev

a

T(0) = T0 (15)

Here qrad is the solar radiative flux at the earth surface integrated over the spectrum and Qa(a) is
the average efficiency factor of absorption for the droplet [64].

In order to estimate the contribution of the solar radiation relative to the convective heating
of the droplet from air, we compare the first two terms in the right-hand part of Equation (15).
For the upper estimate, we will consider the averaged spectrum of the solar radiation, similar to that of
the blackbody at Tsol = 6000 K, assuming qrad = 1 kW/m2 at the Earth surface. the average efficiency
factor of absorption is calculated as:

Qa(a) =

λ2∫
λ1

Qa(a,λ)Iλ,b(Tsol)dλ
/ λ2∫
λ1

Iλ,b(Tsol)dλ (16)

where Iλ,b is the Planck’s function, and the limits of integration can be at the wavelengths λ1 = 0.3 µm
and λ2 = 6 µm. Following [26], instead of the exact Mie theory [64–67] we use the following
approximation for a semi-transparent droplet:

Qa =
4n

(n + 1)2
[1− exp(−4κx)] (17)

where n and κ are the spectral indices of refraction and absorption for water, and x = 2πa/λ is
the diffraction parameter of a droplet. the dependency of Qa on the droplet radius is presented in
Figure 5. Small values obtained are due to water droplets transparency, which is caused by a very small
value of the water absorption index in the visible spectral range [68]. For the same reason, the degree
of the exponent in Equation (17) is significant only in the infrared part of the spectrum, which makes
the dependency of Qa on the droplet radius almost linear.
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Figure 5. The average efficiency factor of absorption vs. the droplet radius.

As shown in Figure 5, the average efficiency factor of absorption is small, Qa < 0.05, for relevant
droplet radii values. Assuming a = 30 µm and for Qa = 0.038, we obtain the radiation term of
the energy equation as 0.75Qaqrad/a = 0.95 MW/m3. This value is independent of the droplet
temperature. Note that for a contaminated (non-transparent) droplet Qa ≈ 4n/(n + 1)2 = 0.98 and
the absorbed radiation power per volume is 24.5 MW/m3. To estimate the convective term in
Equation (15), we assume the temperature difference between the droplet and air Tair − T = 5 K (see
Figure 2b). In this case, we obtain 3kair(Tair − T)/a2 = 156 MW/m3. A comparison with the radiation
term shows that the contribution of the solar radiation is negligible.

3. A Promising Technology for Tracing Submicron Scaled Particles in Bioaerosols

In this section, we will describe the droplet cluster technology which can be used to trace individual
aerosol droplets and which has already been discussed in [15]. In order to generate a levitating droplet
cluster, a water layer with the thickness of 0.4 mm is typically used. A small area on the surface of
the layer can be heated by a laser beam (Figure 6a).

This results in an air-water upward flow above the heated spot. There is an oversaturation
of water vapor in the upward vapor-air flow. the oversaturation results in condensation of water
droplets, often monodisperse (with the same size) usually with the diameters between 10 µm and
100 µm. Since the vertical component of the aerodynamic drag force decreases with the distance from
the water surface, the droplets tend to levitate at a low height (comparable with their radii) above
the water surface, where their weight is equilibrated by the drag force. Besides the vertical component
of the drag force, there is also a horizontal component directed towards the center of the heated spot,
where the temperature is highest and the gas flow is most intense. Suspended droplets are driven
towards the center. However, they do not coalesce, because there is also a repulsion force between
the droplets, which is also aerodynamic in nature [23]. Consequently, droplets approach each other and
settle (while levitating all at same height forming a monolayer) at a certain equilibrium distance from
each other, where the drag towards the center is equilibrated by aerodynamic repulsion (Figure 6b).
the droplets pack into a certain structure, and the most effective packing of many droplets is provided
by a hexagonal (honeycomb) configuration (Figure 6c). the droplet cluster can be observed with an
optical microscope.
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Figure 6. (a) the schematic of experimental setup for the droplet cluster (adopter from [19]), (b) side
view of a cluster (adopted from [21]) and top views of a (c) large [15] and (d) small cluster.

Since the discovery of the droplet cluster, various methods to control their size and the distance
between them have been developed. Clusters with any desired number of droplets, from a single
droplet to hundreds of droplet can be generated (Figure 6d). While the condensation of droplets
continues, their diameters increase, and eventually they will coalesce with the underlying water
layer. Consequently, a typical life span of a droplet cluster is on the order of a minute. However,
by irradiating and heating the droplets with the infrared radiation, the condensational growth can
be suppressed [18,23]. It has been recently demonstrated in [23] that completely equilibrium small
clusters containing several identical droplets can be produced and these clusters are stable during
the extended periods of time sufficient for the laboratory biological study.

While high temperatures are not appropriate for experiments with biological materials, the droplet
cluster can also be generated at much lower temperatures [20]. This makes the cluster suitable for
biochemical analysis of living objects. A modified experimental setup to generate the room temperature
droplet cluster included a separate volume of cold air just above the central part of water layer.
Even moderate local heating of water surface is the most important factor to produce sufficiently
large self-assembled levitating clusters of water droplets which are similar to those observed at
higher temperatures.

In the past, we conducted an investigation of bioaerosols in stabilized droplet clusters with an Axio
Zoom V16 fluorescence microscope (light source HXP 200C, filter set 38 HE, camera pso.edge 5.5, Zeiss,
Jena, Germany) [15]. Microorganism cells (a green microalgae, Chlorella vulgaris, and of non-pathogenic
Escherichia coli) bacteria were encapsulated into the droplets by ultrasound spreading (Figure 7).
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We visualized treated bacterial cells with a permeabilized membrane employing a commercial staining
kit containing DNA-intercalating dyes. the dyes allow to distinguish between the living and dead
cells. the lightweight green fluorescence SYTO 9 (~400 Da) freely penetrates even through integral
bacterial membrane, in contrast heavier red fluorescence PI (668 Da) is accumulated inside only through
disordered plasma membrane. Membrane disordering was spectroscopically recorded as quenching of
the green fluorescence since the SYTO 9 replaces by PI. the cells with undamaged membranes emit
green light, while breaking of the cell membrane causes a chemical reaction and the color changes
for red.

Figure 7. Photographs taken during bioaerosol experiments with the droplet cluster.

These results confirm that the droplet cluster is a feasible tool for the study of bioaerosols.
However, the studies so far were conducted with cells. Virus particles are much smaller, and the direct
in situ study of their behavior inside the suspended cluster droplets is not possible. At the same time,
the observation of the transformation of some organic particles or cells under the influence of viruses
attacking the larger particles seems to be quite real. These studies could provide an additional light on
virus survival and their activity in microdroplets at various temperatures and other conditions.

4. Conclusions

Many viruses, such as the coronaviruses, tend to spread airborne inside water microdroplets.
the disease transmission depends strongly on evaporation of microdroplets in ambient air. Drying of
a small droplet is a complex process involving a combination of heat and mass transfer. the model
suggested in the paper takes into account the interaction of different modes of heat transfer considering
kinetics of evaporation. the computational study of the problem showed that the evaporation time
of a small droplet is very sensitive to both the temperature and the relative humidity of ambient air.
the sedimentation of evaporating particles under the action of gravity is also taken into account in
the developed computational model. In some cases, it is the deposition of the droplets that determines
the time of their presence in the layer of air that can pose a danger of airborne contamination.
the results obtained enabled us to determine the most dangerous weather conditions for the virus
outbreak. It was shown that low temperature and high humidity of air slow the evaporation of
microdroplets and contribute to the long-term survival of the airborne virus. These findings are in
good qualitative agreement with the experimental studies in laboratory conditions and also with
the known seasonal nature of many viral infections. Sophisticated experimental techniques are needed
for in situ observation of interaction of virus particles with relatively large micron-sized targets in
microdroplets. the controlled droplet cluster is considered by the authors as a promising technology
for such experimental studies.
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