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Abstract: The PM10 concentrations in the studied region (Ostravsko-karvinská agglomeration,
Czech Republic) exceed air pollution limit values in the long-term and pose a significant problem for
human health, quality of life and the environment. In order to characterize the pollution in the region
and identify the pollution origin, Instrumental Neutron Activation Analysis (INAA) was employed
for determination of 34 elements in PM10 samples collected at a height of 90 m above ground level.
From April 2018 to March 2019, 111 PM10 samples from eight basic wind directions and calm and
two smog situations were sampled. The elemental composition significantly varied depending on
season and sampling conditions. The contribution of three important industrial sources (iron and
steelworks, cement works) was identified, and the long-range cross-border transport representing
the pollution from the Polish domestic boilers confirmed the most important pollution inflow during
the winter season.

Keywords: air pollution; PM10; tower; high-volume sampler; wind-direction-dependent sampling;
neutron activation analysis; elemental composition; cross-border pollution transport; AIR BORDER;
Czech-Polish borderlands; Interreg

1. Introduction

The studied area—Ostravsko-karvinská agglomeration—is situated in the northeast
part of the Czech Republic, in the Moravian-Silesian Region. The region, together with
the adjacent cross-border Polish region of Silesia, is historically connected with the accu-
mulation of black coal mining and heavy industry, namely energetics, coking plants and
ironworks [1,2]. The particular industrial character of the region along with its topography
(basin surrounded by fairly high mountain ranges) and local meteorological conditions [3]
causes its specific air pollution problems. The strategic industrial development of the
region in the 1950s [4,5] initiated intensive population growth connected with substantial
emissions from households. This effect has persisted until the present, as coal is still
the most widely used fuel in the Polish border area [6,7]. Thus, the region is one of the
most polluted in Europe [8]. The air pollution significantly exceeds the limit values of
particulate matter (PM10, PM2.5), benzo[a]pyrene and ozone [4,8,9] according to European
legislation [10] and World Health Organization (WHO) guidelines [11,12]. Both daily and
long-term exposure to the substances mentioned above has a number of substantiated
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adverse biological effects [5,13]. Airborne particles increase mortality and morbidity, es-
pecially of the respiratory system, even at short-term exposures. The population exposed
to PM shows a higher incidence of infectious diseases [14–16], and atmospheric pollution
and PM pollution are factors classified as proven human carcinogens (category 1) [17].
Being one of the most densely populated regions in the Czech Republic (except its capital
city) [18], the air pollution here poses an essential and long-term environmental problem.

Substantial pollution in the region has challenged researchers to identify causes and
look for solutions, starting in the 1990s with the US EPA project Silesia [19,20]; later on, the
effort continued with projects AIR SILESIA [21,22] and AIR TRITIA [6,23]. Moreover, nu-
merous case studies focused on the pollution origin were performed [24–26] together with
the recently published study of the Czech Hydrometeorological Institute (CHMI) [27,28].
All the studies emphasized the role of both the industry and the transboundary pollution
from Poland (caused mainly by domestic boilers). According to these studies and state
air quality monitoring [9,29], the highest PM concentrations occur near the Czech–Polish
border (characterized by more prominent growth in the colder half of the year and during
smog events) and also close to important industrial sources where the limit values of PM
happened to be reached not only during the winter season. The air quality in the region is
significantly influenced by the rate and nature of cross-border pollution transmission along
the most frequent wind directions (typically SW/NE), together with the inverse character
of the weather with steady atmosphere and subsequently worsened dispersion conditions,
which significantly contribute to increased air pollution during the winter. According to
the available studies [6,22,27,30], the contribution of the cross-border PM pollution to the
annual average values can vary from 20–40% depending on the location in the region,
emissions and meteorological conditions in the year.

The air quality monitoring presented in this study was performed within the AIR
BORDER project focused on the cross-border pollution transport from Poland to the
Ostravsko-karvinská agglomeration (the Czech borderland) and vice versa. The aim of the
study was to run a special monitoring campaign in order to characterize the transmission
of the PM10 particles from different groups of air pollution sources specific for the region,
excluding the influence of the local sources [31]. This presumption was possible by locating
a monitoring device on the top of a tower that reaches a height of over 85 m above the
ground level. The device collects the PM10 particles depending on the wind direction, which
enables one to investigate from which directions and from which sources the pollution
comes and to more precisely quantify its transfer within the region.

2. Experiments
2.1. Sampling

The monitoring device was situated on the top of a former mining tower (90 m above
ground level) located in Horní Suchá village in the centre of the Ostravsko-karvinská
agglomeration.

(World Geodetic System 1984 coordinates 49.805166 N, 18.473954 E). The location of
the tower in the region can be seen in Figure 1, the tower in Figure 2.
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Figure 1. The location of the tower at a regional scale with plotted industrial PM10 emissions. 
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Figure 2. The tower in the operation period of the 1980s (a) and presently (b). 

The SAM Hi 30 AUTO WIND is a fully automatic, remote-controlled sampler intended 
for gravimetric and chemical analyses of aerosol particles. The device samples particulate 

Atmosphere 2021, 12, x FOR PEER REVIEW 3 of 20 
 

 

 

 
Figure 1. The location of the tower at a regional scale with plotted industrial PM10 emissions. 

  
(a) (b) 

Figure 2. The tower in the operation period of the 1980s (a) and presently (b). 

The SAM Hi 30 AUTO WIND is a fully automatic, remote-controlled sampler intended 
for gravimetric and chemical analyses of aerosol particles. The device samples particulate 

Figure 1. The location of the tower at a regional scale with plotted industrial PM10 emissions.

Atmosphere 2021, 12, x FOR PEER REVIEW 3 of 20 
 

 

 

 
Figure 1. The location of the tower at a regional scale with plotted industrial PM10 emissions. 

  
(a) (b) 

Figure 2. The tower in the operation period of the 1980s (a) and presently (b). 

The SAM Hi 30 AUTO WIND is a fully automatic, remote-controlled sampler intended 
for gravimetric and chemical analyses of aerosol particles. The device samples particulate 

Figure 2. The tower in the operation period of the 1980s (a) and presently (b).



Atmosphere 2021, 12, 29 4 of 19

For the particulate matter sampling, the high-volume sampler SAM Hi 30 AUTO
WIND (Baghirra Ltd., Prague, Czech Republic) was used. The sampler operates respecting
the Guidelines on high-volume sampling methods that can be found in the Compendium of
Methods for the Determination of Inorganic Compounds in Ambient Air compiled by the
United States Environmental Protection Agency (US EPA) [32]; a summary of the research
of high-volume samplers performance can be found elsewhere [33].

The SAM Hi 30 AUTO WIND is a fully automatic, remote-controlled sampler in-
tended for gravimetric and chemical analyses of aerosol particles. The device samples
particulate matter with a <10 µm diameter (PM10) using the DIGITEL DPM10/30/00
PM10 pre-separator for 30 m3/h according to EN 12341 [34]. The sampler was designed
to work depending on wind conditions. It has a magazine of 15 filters (glass microfiber,
Whatman GF/A, Ø 150 mm) stretched in filter holders that are automatically changed to
the sampling position according to actually evaluated wind conditions. Thus the sampler
was able to collect PM10 particles from eight basic wind directions (N, NE, E, SE, S, SW,
W, NW) and CALM (wind speed < 0.2 m·s−1). The sampler can be seen in Figure 3. Both
wind speed and wind direction were measured via the WindSonic™ SDI-12 anemometer
(Gill Instruments Ltd., Lymington, UK). The wind direction and wind speed for selecting
a particular sampling filter from the magazine were determined according to one-hour
moving averages calculated from 10-min data in accordance with US EPA guidance [35].
Thus, the actual wind may be different. The wind roses representing the measured wind
direction in comparison with the sampled sector can be seen in Figure 4. Moreover, a
special filter was designed for the episodes with extreme air pollution, defined as three
successive average hourly PM10 concentrations exceeding 100 µg·m−3, using 10-min data
from continuous ground monitoring.
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Employing this method, 111 PM10 samples from eight wind directions and calm (and
extreme air pollution if occurring) were collected for each month from April 2018 to March
2019 (total of 12 months).

2.2. Determination of PM10 Mass Concentrations

PM10 mass concentrations were determined following the guidelines of EN 12341 [34].
Filters were weighed using an analytical balance (Sartorius MC 210P) before and after
sampling. The filters were conditioned for ≥ 48 h under controlled relative humidity
(50% ± 5%) and temperature (20 ◦C ± 1 ◦C), then weighed for a first time, followed by a
second weighing after additional conditioning for ≥ 12 h for filters prior to the sampling
and for 24 to 72 h for filters after the sampling. In accordance with the requirements, the
difference of weighing results was ≤40 µg for filters prior to the sampling and ≤60 µg for
filters after the sampling. The filter weight was calculated as an average of the two results.
Weights for the blank filters were also recorded. The collected PM10 mass was calculated
by subtracting pre-weight from the post-weight of the filters.

2.3. Element Content Determination Using Neutron Activation Analysis

One of the premises of this study was to apply NAA at the IBR-2 reactor of the
Joint Institute for Nuclear Research (Russia) for the characterisation of sampled PM. Thus,
the testing of filters convenient for the analyses preceded the sampling campaign. Six
different filters comprising five different materials were tested (glass microfiber, quartz,
PTFE membrane, cellulose and paper). Only glass microfiber filters were determined as
being fully suitable; a quartz filter was more problematic for repacking and considering
the price, the glass microfiber filters were chosen to be used for the sampling.

Before subjecting the samples to NAA, the preparation of the subsamples of exposed
and blank filters was done, as the irradiation capsules of the applied pneumatic transport
system have limited volume (Ø 18 mm) and the whole filter is not able to fit in it. This also
allows putting more subsamples in one capsule so the subsamples from one month and
the corresponding blank filter can be irradiated all together under the same conditions. For
this purpose, a special automatic punching head was designed and made (used materials:
stainless steel, Teflon and surface finish synthetic rubber). Prior to cutting, filters were
folded in half to avoid the loss of collected material, and then 4 circles (Ø 16 mm) were
cut from the folded filter using the layering of subsamples. This way, one subsample of
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each filter (counting eight layers of the filter) was prepared reaching a weight of 0.06–0.07 g
depending on the exposure. The preparation of the filters took place under a relative
humidity of 50% (±5%) and temperature of 20 ◦C (±1 ◦C). After the preparation, each
subsample was vacuum-packed to be transported for NAA.

The NAA procedure started with unpacking the subsamples and weighing them under
controlled relative humidity and temperature. Then the subsamples were immediately
packed in polyethylene and aluminium cups for short-term and long-term irradiation,
respectively. Once packed, they were put into irradiation capsules and transported to the
reactor.

The employed NAA provides the activation with thermal and epithermal neutrons
at low temperatures convenient for this type of samples. Complete information about
samples irradiation, measurement and quality can be found elsewhere [36,37].

For short-term irradiation, Channel 2 (epithermal neutrons, flux density ϕepi = 2.0 ×
1011 cm−2·s−1) was used with an irradiation time of about 3 min. Samples were measured
with 3–5 min. decay after irradiation for 15 min. Al, Ca, Cl, I, Mg, Mn, Si, Ti and V isotopes
were determined in this way. For long-term irradiation, Cd screened Channel 1 (epithermal
neutrons, flux density ϕepi = 2.0 × 1011 cm−2·s−1) was used with an irradiation time of
around 4 days. After 4-days cooling, the samples were repacked and measured twice. The
first time, they were measured directly after repacking for 30 min to determine As, Br, K,
La, Na, Mo, Sm, U and W, and the second time 20 days after the end of irradiation for 1.5 h
to determine Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, Ni, Rb, Sb, Si, Sc, Se, Sr, Ta, Tb, Th, W, Zn and
Zr.

Gamma spectra of activated samples were measured on HPGe detectors (resolution of
1.9 keV for the 60Co 1332 keV line, efficiency 40%). The gamma spectra obtained were then
processed using GENIE-2K software (CANBERRA) with the verification of the peak fit in an
interactive mode. The concentrations of elements were calculated using certified reference
materials irradiated simultaneously with samples via “CalcConc” software developed in
the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research [37]. The
element concentrations were calculated by subtracting the corresponding blank filter values
from determined values of the element in the subsample and recalculating using the mass
concentrations of PM10. In cases of values below the detection limit, half of the detection
limit was used. In case of missing values (no data) caused by technical problems during the
analysis, the data imputation was employed in order to retain the information in the dataset
and allow the proper multivariate assessment [38]. The k-nearest neighbours algorithm
(knn) [39] was applied for the missing non-sub-limit data.

Recommendations of US EPA [40] were kept with respect to the workplace standard
operating procedures. The quality control of the NAA results was ensured by triplicating
standards per batch of unknown samples and carrying out simultaneous analysis. For
filter analyses, standard reference materials were used: 2709a–San Joaquin Soil Baseline
Trace Element Concentrations from the National Institute of Standards and Technology
(NIST), 2710a–Montana I Soil Highly Elevated Trace Element Concentrations (NIST), 2711a–
Montana II Soil Moderately Elevated Trace Element Concentrations (NIST), 1632c Trace
Elements in Coal (Bituminous) (NIST), 1633c Trace Elements in Coal Fly Ash (NIST), AGV-2
Andesite from the United States Geological Survey and 433 from the Institute for Reference
Materials and Measurements (IRMM). Satisfying agreement between the experimental
results and certified material was obtained. The accuracy was formulated as the percentage
deviation from the certified value amount up to 10%.

2.4. Statistical Analyses and Visualization

Pearson correlations calculation, Principal Component Analysis (PCA) and the visualiza-
tions of the results were performed in the R environment [41], package FactoMineR [42,43],
Openair [44] and ggplot2 [45]. Prior to the PCA, the data were transformed according
to the compositional data analysis (CoDa) principles [46] using the centred log-ratio (clr)
transformation [47]. Only the clr-transformed elemental concentration data were used
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for the construction of the model, and the information on the wind direction, calm and
inversion situation were added as supplementary variables.

3. Results
3.1. PM10 Mass Concentrations

The values of PM10 concentrations corresponding to wind directions, calm and in-
version situations are shown for year average, warm (from April to September) and cold
(from October to March) seasons for the period of observation (04/2018–03/2019) in
Table 1 and Figure 5a. The values recorded during inversion events are not included in the
calculation of means for respective wind directions considering the set-up function of the
sampling device (see Section 2.1). For the PM10 concentration synopsis, see Table S1 the
Supplementary materials.

Table 1. Average PM10 concentrations for the observed period (µg·m−3).

Wind
Conditions Average 1 Warm Season

Average Z-Score 2 Cold Season
Average 1 Z-Score 2

CALM 23.3 19.0 −0.35 27.6 1.16
N 22.9 14.6 −1.12 31.2 1.79

NE 21.7 16.5 −0.79 27.0 1.05
E 25.0 17.8 −0.56 32.3 1.97

SE 21.1 17.5 −0.60 24.6 0.64
S 21.9 16.9 −0.71 27.0 1.05

SW 14.8 14.5 −1.14 15.1 −1.04
W 21.3 23.6 0.45 19.0 −0.35

NW 16.8 15.9 −0.89 17.8 −0.56
Inversion - - 59.0

1 Averages calculated for the concerned period (04/2018–03/2019), the inversion values not included.
2 Z-score related to the average calculated for the concerned period (04/2018–03/2019).

Atmosphere 2021, 12, x FOR PEER REVIEW 7 of 20 
 

 

3. Results 
3.1. PM10 Mass Concentrations 

The values of PM10 concentrations corresponding to wind directions, calm and inver-
sion situations are shown for year average, warm (from April to September) and cold 
(from October to March) seasons for the period of observation (04/2018–03/2019) in Table 
1 and Figure 5a. The values recorded during inversion events are not included in the cal-
culation of means for respective wind directions considering the set-up function of the 
sampling device (see Section 2.1). For the PM10 concentration synopsis, see Table S1 the 
Supplementary materials . 

The lowest PM10 values were observed from the SW and NW directions regardless of 
the season. The concentrations were below average in the warm part of the year, with the 
exception of the west direction due to the peak concentration in August 2018 (Figure 6). 
The highest concentrations were sampled from the east and north during the cold season, 
though prevailing wind direction in the season was SW Figure 5b. This wind direction in 
the cold season was the prevailing wind direction for the whole period of observation, as 
Figure 5b shows (expressed as a sampled air volume). Calm was recorded for 12% of the 
sampling time.  

Table 1. Average PM10 concentrations for the observed period (μg·m−3). 

Wind Conditions Average 1 Warm Season Average Z-Score 2 Cold Season Average 1 Z-Score 2 
CALM 23.3 19.0 −0.35 27.6 1.16 

N 22.9 14.6 −1.12 31.2 1.79 
NE 21.7 16.5 −0.79 27.0 1.05 
E 25.0 17.8 −0.56 32.3 1.97 

SE 21.1 17.5 −0.60 24.6 0.64 
S 21.9 16.9 -0.71 27.0 1.05 

SW 14.8 14.5 −1.14 15.1 −1.04 
W 21.3 23.6 0.45 19.0 −0.35 

NW 16.8 15.9 −0.89 17.8 -0.56 
Inversion - -  59.0  

1 Averages calculated for the concerned period (04/2018–03/2019), the inversion values not included. 2 Z-score related to 
the average calculated for the concerned period (04/2018–03/2019). 

  
(a) (b) 

Figure 5. The average PM10 concentrations (a) and wind rose for the observed period (b). Figure 5. The average PM10 concentrations (a) and wind rose for the observed period (b).

The lowest PM10 values were observed from the SW and NW directions regardless of
the season. The concentrations were below average in the warm part of the year, with the
exception of the west direction due to the peak concentration in August 2018 (Figure 6).
The highest concentrations were sampled from the east and north during the cold season,
though prevailing wind direction in the season was SW Figure 5b. This wind direction in
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the cold season was the prevailing wind direction for the whole period of observation, as
Figure 5b shows (expressed as a sampled air volume). Calm was recorded for 12% of the
sampling time.
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Despite the peak concentration in August 2018, there was, in general, no directionality
of the pollution in the warm season, as the concentration rose in Figure 6a shows. The peak
August concentration originated most likely from the metallurgical complex in the west of
the sampling site (see Figure 1), as the elemental composition of this sample also suggests
(see Section 3.2). According to the meteorological data, this high concentration occurred
in the period of steady cyclonic airflow (wind speed from calm to 2 m/s) preceding an
upcoming cold front (see Figure 7). The meteorological situation for this event is illustrated
via the ICON EU model data 10 m AGL and the Skew-T diagram as the global model
(ICON, NOAA) in this situation was in total disagreement with recorded wind speed and
wind direction data on the sampling site.
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The April concentration rose has a similar course to the one for March (Figure 6).
Considering the elements found in samples of these two months and the results of PCA
(see Section 3.3), a similar origin of the pollution is expected. Thus, the April concentrations
should be considered to appertain rather to the cold-season-related pollution sources.

During the winter season, the pollution came predominantly from the north, northeast
and east directions, as the monthly average PM10 concentrations show in Figure 6b. This
clearly confirms the importance of the PM inflow from the Polish borderland. The increase
of PM10 concentrations from these directions in the winter season average 14 µg·m−3

though the prevailing airflow in winter is from the inverse direction (Figure 5b).
High PM10 concentration was sampled in this season also from the south direction in

February 2019. As there is no important pollution source in this direction (mountainous
rural area), this peak was investigated closer. According to the meteorological data, the
airflow was steady (wind speed 1–2 m/s), coming from the southwest via the Moravian
Gate for more than one day, accompanied by a radiation inversion (see Figure 8). This
indicates that the peak concentration originated from an important pollution source in the
south part of the Moravian Gate, directing to the cement works near the city of Hranice
(about 50 km from the sampling site), as the elemental composition of this sample confirms
(see below in Section 3.2).
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During the winter season, there were two smog events sampled, the first on 19 and
23 November 2018 (sampled on the same filter), with the PM10 concentration reaching
60.5 µg·m−3, and the second on 23 March 2019, with a PM10 concentration of 57.4 µg·m−3.
In both cases, there was a temperature inversion connected with a steady airflow (measured
wind speed < 1 m/s). In November, the prevailing airflow was from the NE, E and SE
directions. Most likely representing the inflow of the pollution from the metallurgical
complex on the southeast of the sampling site as confirmed by models (see Figure 9). For
the March smog situation, the modelled airflow indicates the direction from the NE and E,
suggesting the origin of pollution in the Polish borderland (see Figure 10). The elemental
composition of these samples is stated in the next chapter.
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3.2. Element Content Characterization

The basis of the study was to characterise the sampled PM10 using NAA. Though this
method enables the determination of a wide range of elements, it has specific limitations.
Therefore, some of the important markers that would facilitate the source identification are
lacking in the obtained dataset of element composition. Thus, the data of Pb (impossible to
determine), Cd, Cu, Ni and Ti (determinable only if high concentrations are present) are
absent. However, Cd, Ni and Ti were determined in a few samples, but the concentrations
were below the minimal detectable concentrations and hence not included in further
assessment.

Minimum and maximum levels, mean concentration values, medians and standard
deviations of the elements determined in the PM10 are shown in Table 2; the correlation of
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the analysed elements can be found in Table 3. Element contents and concentrations vary
depending on the season; thus, the data were investigated separately. To see the element
concentrations for the respective directions and seasons, see Table S2 and Figures S1 and S2
in the Supplementary Materials.

The correlation between the analysed element contents was also season-dependent,
thus confirming the variability of the sources and the different origin of the pollution. A
strong positive correlation (R > 0.7) was determined between As and Cr, Mn, Br and I in the
warm season, and As correlated with La, Sm, Sr and U in winter. This suggests—together
with the directionality of the concentrations of these elements—that As occurrence in the
warm season is connected to the metallurgical processes [52–54], while in winter samples,
its source appears to be black coal burning [52,55–57].

Table 2. Synoptic table (minimum, maximum value, mean, median and standard deviation) of
elements concentration (ng·m−3) determined in the PM10 using INAA.

Element Min Max Mean Median Stand. Dev.

Al 1.15 × 10−2 873.83 15.35 0.73 83.97
As 5.84 × 10−4 5.17 0.34 0.04 0.94
Ba 4.63 × 10−2 350.98 18.76 0.52 45.96
Br 3.08 × 10−4 1.72 0.18 0.12 0.22
Ca 8.78 × 10−1 87.38 13.47 7.33 15.53
Ce 6.47 × 10−3 1.01 0.12 0.07 0.15
Cl 5.39 × 10−2 150.66 15.73 2.12 29.37
Co 1.71 × 10−4 0.247 0.019 0.011 0.029
Cr 4.30 × 10−3 3.22 0.39 0.25 0.49
Cs 9.64 × 10−5 0.023 0.005 0.003 0.004
Eu 3.39 × 10−5 1.90 × 10−2 3.26 × 10−3 1.60 × 10−3 3.67 × 10−3

Fe 2.15 × 10−1 92.77 19.32 13.42 21.12
Hf 5.49 × 10−4 0.121 0.013 0.004 0.020
I 7.19 × 10−4 0.64 0.09 0.05 0.11
K 5.42 524.77 74.20 46.06 84.08
La 4.37 × 10−4 0.67 0.04 0.01 0.12
Mg 3.65 × 10−1 163.72 9.54 5.77 17.61
Mn 1.18 × 10−3 11.77 1.18 0.62 1.67
Na 1.30 × 10−1 1074.73 62.80 1.58 139.69
Rb 3.02 × 10−3 0.666 0.057 0.028 0.085
Sb 4.73 × 10−5 0.198 0.050 0.035 0.047
Sc 3.18 × 10−4 0.021 0.003 0.002 0.004
Se 1.80 × 10−4 0.176 0.022 0.012 0.027
Si 1.69 × 101 6423.41 1529.79 1077.04 1418.16

Sm 2.51 × 10−5 6.35 × 10−2 2.65 × 10−3 7.44 × 10−4 7.21 × 10−3

Sr 6.01 × 10−2 5.428 0.847 0.486 0.967
Ta 1.55 × 10−6 1.94 × 10−3 2.36 × 10−4 1.23 × 10−4 3.21 × 10−4

Tb 3.06 × 10−5 6.54 × 10−3 8.90 × 10−4 5.75 × 10−4 1.03 × 10−3

Th 2.57 × 10−4 2.90 × 10−2 3.67 × 10−3 1.97 × 10−3 4.81 × 10−3

U 9.78 × 10−5 1.51 × 10−1 4.96 × 10−3 7.31 × 10−4 1.74 × 10−2

V 2.42 × 10−4 0.191 0.027 0.018 0.030
W 8.41 × 10−4 0.202 0.012 0.007 0.022
Zn 1.39 × 10−2 729.39 40.84 0.16 99.27
Zr 2.28 × 10−2 7.14 1.04 0.80 1.03
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Table 3. Elements with Pearson correlation coefficients >0.7 determined for the respective seasons.

Warm Season Cold Season

As Cl Cr I Mg As La Sm Sr U
Ba Zn Ba Ce Rb Sc Sm Ta U
Br Fe La Mn Sm Th Br I
Ca K Ce Rb Sc Ta Th U Zr
Ce K Rb Th Fe Sc
Cl Cr I Mg I Sb Se
Cr I Mg K Na
Fe Sm Th La Sr
Hf Si Rb Sc Ta U
I Mg Sb Se

La Sm Th Sc Ta
Rb Sm Sm U
Sm Th Ta U
Ta V

The element content of coal combustion products, or more precisely, fly ash plays
an important role in this study for the determination of pollution origin mainly during
the cold season. The distribution of elements during this process is well described in
many works [56,58–60], and numerous factors need to be taken into account. First are
the element content and its bonding in coal, as well as boiling points of elements and
their compounds (in connection to a combustion temperature). Other important factors
affecting the resulting emissions are also the type of furnace, rated capacity, combustion
temperature, exposure time, the type of separator and its operating temperature, physic-
chemical reactions with other substances (additives, sulphur or halogens) and others.
Depending on these conditions, different elemental compositions of fly ash emission are
described in the literature [56,61–64]. The elements presented in bituminous coal fly ash
in the majority of information sources are As, Cd, Se, Pb and Hg; other elements vary.
Thus, named elements can be considered as strong markers of this process. Regarding
the limitations of NAA mentioned above, other less common elements also need to be
investigated. Consequently, while determining the main sources of pollution depending on
weaker element markers, the element composition of emissions appertaining to particular
sources in the region was taken into consideration [52,57]. Thus, a presence or absence of
an element can indicate or exclude an origin in a certain source.

In the warm season, Fe was strongly correlated with Br, Sm and Th, while in winter, it
was correlated only with Sc. Considering the direction where the highest concentrations of
these elements originated (E, NE), it can be assumed that their occurrence is associated with
the primary metallurgy [52,53]. Cr correlated with As, I and Mg in the warm season, while
in the winter samples, no significant correlation was found. The highest concentrations of
these elements in the warm season came from the west direction, suggesting the relation
with a steel and iron production [54,65,66] as a relatively high concentration of Br and I
was found also in a local coking plant emission [52]. For more correlations, see Table 3. It
should be noted that the Rare Earth Element (REE) levels were in good correlation, which
is important for both evaluating the data quality and understanding the mass transport
events [67,68].

Special attention was paid to the samples with the PM10 peak concentrations above
those mentioned. The sample collected in August 2018 from the west sector was character-
ized by high concentrations of Cr, Mg and I (the highest of all the set) and relatively high
concentrations of Mn and Co. Cr and Co are important solutes for steel alloying in order to
obtain special properties of steel; both Cr and Mg form important refractories used as lining
in metallurgical facilities [65,69]. Moreover, Mg (with Ca) constitutes a base additive used
in almost every step of the steel-making process from agglomeration and blast furnaces
(dolomitic limestone, dolomite) to final steel-making (magnesite). Mn is a common element
in austenitic steels produced in local steelworks [52,54,65,69]. The presence of iodine can
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be also connected with steel alloying as it is used for the production of certain transition
metals, among them Co, Cr or Ti. Another possible source is coking [52]. Considering all
these facts, the steelworks west of the sampling site are the most likely origin of the peak
PM10 concentration (see Figure 1 above).

The elemental composition of the south sample in February 2019 was characterized
by high concentrations of Ca, Se and V (the highest of all the set) and relatively high
concentrations of I and Sb. The high concentration of Ca is, in all probability, connected
with a cement plant [52,70–72], and regarding the meteorological conditions discussed
above, this peak concentration most likely originated from the cement plant quite far
(about 50 km) to the southwest of the sampling tower. This hypothesis can be confirmed
by the fact that, in this factory, alternative fuels based on waste and tar are used during
the process of clinker firing besides coal, explaining the high concentrations of the other
elements determined.

The two samples collected during the smog events significantly differed in their el-
emental composition. The PM10 sampled in November 2018 was characterized by high
concentrations of Ba, Ce, Fe, Hf, Rb, Sc, Ta, Th, U and Zr (the highest of all the set), while
the sample in March 2019 by high concentrations of Si, Sr, Zn and Eu. The elemental
composition of the first sample indicates two sources of pollution: coal burning and metal-
lurgy [28,52,54,57]. These high concentrations were sampled during steady airflow from the
NE, E and SE directions, suggesting the origin of the pollution in the steel plant southeast
to the sampling site (see Figure 1 above) together with residential coal burning. The origin
of the pollution in the case of the second inversion situation is not as clear; nevertheless,
the modelled airflow points to the Polish borderland (see Figure 10) [52,54,65,69].

3.3. Principal Component Analysis (PCA)

The samples were investigated using a PCA (see Section 2.4) to understand the vari-
ability of the element composition and thus also the pollution origin. The results of PCA
performed on the untransformed dataset with the variables season and sector taken as
supplementary qualitative variables indicate that the factor season separates the plane
and the individual measurements distinctively. This separation of the plane was con-
firmed by the Wilks test (p-value of 9.108346 × 10−11). Similar separation also occurs
when PCA is performed on the whole dataset with the clr-transformed concentration data
(p-value of 5.219250 × 10−8), only it is realized alongside the second dimension. Thus,
PCA results confirm that the season is a determining factor both for the elemental com-
position of the entirety of the measurements and for the directionality of the elements ex-
pressed as the change in the sectors with similar analysed concentrations. For more details,
see Sections 3.3.1 and 3.3.2. According to the analysis (chi-squared goodness-of-fit test),
the elements varying the most depending on the season are Sr (p < 0.001), Cl (p < 0.001),
Th (p < 0.001), Na (p = 0.001), Zn (p = 0.01), Cs (p = 0.015), Rb (p = 0.02) and Co (p = 0.04) with
higher concentrations in the cold season and Mg (p < 0.001), Hf (p < 0.001), Sm (p < 0.001)
and Ba (p = 0.015) in the warm season.

3.3.1. PCA of The Warm Season Measurements

According to the PCA results, the first two dimensions express over 81% of the dataset
inertia, meaning that the first factor plane represents a major part of the total variability and
that no other dimensions need to be considered. Moreover, the first axis itself represents
almost 75% of the data; hence, it can be concluded that only this axis carries real information.
The variability explained by this axis alone exceeds the reference value of 10.26%; this
value is equal to 0.95-quantile of inertia percentages derived from the simulation of 10,000
data tables of equivalent size (normal distribution). The percentages of explained variance
of the first five axes were 74.93, 6.52, 4.74, 2.46 and 2.1, respectively. A visualization of the
PCA results of the warm season data is presented in Figure 11.
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The elements most positively correlated with this dimension were Ba, Zn, Ca, Rb,
La, Sm, Na, Hf and Al (Pearson correlation coefficient of 0.98, 0.98, 0.98, 0.98, 0.98, 0.98,
0.97, 0.97 and 0.96, respectively), while Ce was negatively correlated (Pearson correlation
coefficient of −0.98). Thus, can be assumed that these elements describe this dimension
well. Figure 8b shows that the sectors (from where the particulate matter was sampled) are
divided alongside this axis mostly to the east and south group on its right and west and
north group on its left. The calm has a high score on this axis, while having a high score
also on the second axis.

3.3.2. PCA of the Cold Season Measurements

In the case of the cold season measurements, the PCA results show that the first
dimensions express over 66% of the dataset inertia, meaning that while the first-factor
plane represents a significant part of the total variability. The variability explained by this
plane is higher than the reference value of 18.75%, and the increase in explained inertia
for the second axis is also higher than the reference value for this axis (8.61%); hence, both
dimensions carry real information. The percentages of explained variance of the first five
axes were 54.87, 11.67, 7.2, 5.8 and 3.3, respectively. A visualization of the PCA results of
the cold season data is presented in Figure 12.

The elements most positively correlated with the first dimension are Ca, Al, Sr, Ba,
Zn, Rb, Na, Hf and Th (Pearson correlation coefficient of 0.98, 0.98, 0.97, 0.97, 0.96, 0.95,
0.93, 0.92 and 0.84, respectively), while concentrations of Ce are, once again, correlated
negatively with this dimension (Pearson correlation coefficient of −0.95). As and Sm are
the elements most positively correlated with the second dimension (Pearson correlation
coefficients of 0.88 and 0.75, respectively). Figure 9b shows that the sectors are divided
alongside these axes in a different manner than in the case of the warm season. Samples
from the southeast, south, and southwest directions form a cluster with calm on the right of
the first axis and the northwest, west, east and northeast located on its left. The inversion
event (INV) measurements simultaneously have a high positive score on the first and high
negative scores on the second axis.
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4. Discussion

Within the study, the elemental composition of sampled PM10 was determined with
NAA, and the origin of the pollution was interpreted using specific pollutants as markers
of pollution sources, multivariate statistics and meteorological models. More commonly,
the pollution origin is investigated by means of receptor modelling [25,28,71,73,74]. How-
ever, specifics of the dataset concerned (long sampling period, small number of samples
within each sector), an irregular time resolution of samples and a questionable construc-
tion of uncertainty matrix (different weights of respective samples) make this method
inappropriate.

Despite the limitations of the methods used, the study confirmed that the region
has specific types of pollution sources, including two metallurgical complexes (west and
southeast to the sampling site), which, in specific meteorological conditions, increase
the pollution load in the region and contribute to the pollution transfer in the higher
atmospheric levels. However, in certain situations, this transfer is not detected by the
ground pollution monitoring stations (in comparison to [9]). This corroborates locating the
sampling device at 90 m AGL. By sampling in such height, the contribution of the local
sources (residential emission, transport, constructions, autumnal waste biomass burning
and others) [28,75] is excluded from the sampling, and the pollution transfer within the
region can be more properly investigated.

The other specific type of pollution in the region is the pollution connected to the
trans-boundary transfer coming from Poland during the winter season originating from
coal burning in domestic boilers. In the cold part of the year, the PM10 concentrations
originating in the Polish borderland (the north, northeast and east direction) increased by
almost 50%, despite the prevailing wind in this season blowing in the opposite direction.
This fact has already been stated in many previous studies [3,21,26,27,29] and confirms
once again the importance of the cross-border PM pollution in this region, emphasizing
that it is not just a problem of directly adjacent areas but of the region as a whole.

For the determination of elemental content in the samples, neutron activation analysis
was applied, and a wide spectrum of elements was analysed. This, on the one hand,
brought specific limitations, but on the other hand, helped to identify the origin of element
concentrations in samples using data on less commonly determined elements. Though it



Atmosphere 2021, 12, 29 16 of 19

should be noted that NAA does not provide information on important elements such as
Cd, Cu, Hg or Pb, the obtained information is, in the majority of cases, sufficient to identify
the pollution source.

To collect more data on the pollution transfer in the region during meteorologically
different years and to render the assessment more precise, the monitoring on the tower con-
tinues. In addition to the sampling device used in this study, the PM continual monitoring
is now operated both on the top of the tower and on the ground level.

5. Conclusions

A specially designed high-volume sampler (SAM Hi 30 AUTO WIND) was used to
collect PM10 samples depending on airflow conditions. The sampler was located on the
top of a former mining tower in 90 m AGL. This allowed the elimination of the influence of
local sources and investigation of the regional pollution transport. The sampled particulate
matter was analysed using the neutron activation analysis, which provided information
on the content of 34 elements. This information—together with the PM10 concentrations
and meteorological data (measured and modelled)—was used to characterize the pollution
origin in the region. A significant difference in the element composition was observed:
elemental concentrations were dependent on both the season and the sampling direction.
Contribution of three industrial sources, two ironworks (in the west and in the southeast)
and a cement plant (southwest from the sampling site) was identified, showing that—
though not detected by ground air pollution monitoring—these sources have a significant
impact on the pollution transfer in the region. The measurements also confirmed that the
PM10 cross-border pollution inflow from Poland plays a crucial role during the winter
season and contributes significantly to the air pollution in the whole studied region.

Currently, the air quality management and decision-making in the region are per-
formed just on a local level without considering the cross-border impacts. However, to
assure that the air quality meets the air pollution limit values, international cooperation
and the legitimacy of the joint interregional approach to the air quality management is
imperative, as proven herein [9].
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