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Abstract: Following the rapid spread of COVID-19, a lockdown was imposed in Thessaloniki, Greece,
resulting in an abrupt reduction of human activities. To unravel the impact of restrictions on the
urban air quality of Thessaloniki, NO2 and O3 observations are compared against the business-as-
usual (BAU) concentrations for the lockdown period. BAU conditions are modeled, applying the
XGBoost (eXtreme Gradient Boosting) machine learning algorithm on air quality and meteorological
surface measurements, and reanalysis data. A reduction in NO2 concentrations is found during
the lockdown period due to the restriction policies at both AGSOFIA and EGNATIA stations of
−24.9 [−26.6, −23.2]% and −18.4 [−19.6, −17.1]%, respectively. A reverse effect is revealed for O3

concentrations at AGSOFIA with an increase of 12.7 [10.8, 14.8]%, reflecting the reduced O3 titration
by NOx. The implications of COVID-19 lockdowns in the urban air quality of Thessaloniki are in line
with the results of several recent studies for other urban areas around the world, highlighting the
necessity of more sophisticated emission control strategies for urban air quality management.

Keywords: COVID-19; air quality; machine learning; NO2; O3; Thessaloniki; Greece

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for coronavirus disease 2019 (COVID-19) [1], was first reported in Wuhan, China [2] in
late December 2019. Its high contagiousness [3] and the substantial early undocumented
infections [4] facilitated the rapid worldwide spread of COVID-19, which was confirmed
as a pandemic by the World Health Organization (WHO) in March 2020 [5]. In the absence
of vaccinations, and to control the COVID-19 outbreak, several social, working, and
transportation restrictions were gradually imposed around the world [6], with the strictness
and duration of the so-called “lockdowns” varying by country.

The sharp reduction in human activities, as a result of restrictions measures, resulted
in a decrease of major air pollutants, such as carbon dioxide (CO2) [6,7] and nitrogen
dioxide (NO2) [8,9]. Assessing the impact of COVID-19-associated anthropogenic emis-
sions decline on air quality is a challenging task, as weather variability should also be
considered [10], before attributing air pollutant concentration changes to COVID-19 re-
strictions alone. Recently, several studies have investigated the potential NO2 and O3
benefits ascribed to COVID-19 related emission reductions using statistical (machine learn-
ing, multivariate regression, difference-in-difference, generalized additive models) [11–14]
and/or modeling [15–17] approaches. In particular, Keller et al. [18] and Grange et al. [11]
explored the implications of COVID-19 restrictions in NO2 and O3 concentrations around
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the globe and in Europe, respectively, while other studies were performed for individual
countries [17,19–23] and cities [24–26]. Overall, in urban environments, NOx reductions
during the COVID-19 lockdowns were followed by O3 increases [27,28]. Apart from re-
duced O3 titration by NOx, the increasing O3 pollution is also subject to variations of
volatile organic compounds (VOC) emissions [29].

Thessaloniki, located at the northern part of Greece, is the second largest city of the
country, with over one million inhabitants in its metropolitan area. In addition, the city is
located within a local pollution hot spot [30]. In accordance with the national restrictions
imposed during the COVID-19 outbreak, Thessaloniki’s residents strictly limited their
social, working, and educational activities. In particular, and after the first confirmed
COVID-19 case in Thessaloniki (first in Greece also) on 26 February 2020, the following
actions were taken:

• 11 March 2020: the operations of educational institutions, at all levels nationwide,
were suspended.

• 14 to 18 March 2020: coffee shops, restaurants, bars, markets, tourism services, and
museums were closed, and several social activities were held.

• 23 March 2020: a strict lockdown was applied with significant restrictions on the
movement of citizens throughout the territory.

The reverse process—in regard to the lifting of restrictions—was applied as follows:

• 5 May 2020: a gradual lifting of restrictions was introduced.
• 11 May 2020: reopening of markets.
• 25 May 2020: reopening of coffee shops, restaurants, and bars.
• 1 July 2020: reopening of tourism services.

As COVID-19 cases increased in late October 2020, and considering the available
epidemiological data, the government announced a second strict lockdown in Thessaloniki,
which was soon later imposed across the whole country.

The present study assesses the impacts of COVID-19 restriction policies on the ur-
ban air quality (NO2 and O3) of Thessaloniki, Greece, using NO2 and O3 measurements
from two ground-based stations, meteorological observations from one meteorological
station, high-resolution meteorological reanalysis data, and the so-called XGBoost (eXtreme
Gradient Boosting) machine learning algorithm. Section 2 presents the observational and
reanalysis data used in the analysis, providing also a description of the applied XGBoost
algorithm and the overall methodological approach. In Section 3, the main results are pre-
sented and discussed, in regard to recent research findings. Finally, Section 4 summarizes
the key findings of the study.

2. Materials and Methods
2.1. Data Description

Air quality data from two ground-based stations located in the urban area of Thessa-
loniki are used in the analysis. NO2 and O3 hourly concentration measurements from the
Agia Sofia Square station (hereafter called AGSOFIA) (40.634° N, 22.945° E), from 2018 to
2020, were provided by the Department of Environment and Hydroeconomy of the Region
of Central Macedonia. AGSOFIA is a low altitude (27 m) station located in Thessaloniki city
center and is characterized as an urban-traffic station. The NOx (NO-NO2-NOx) analyzer
is the HORIBA Ltd. (Kyoto, Japan) model APNA-360, based on the chemiluminescence
measurement technique, with a detection limit of 0.5 ppb, while the calibration of the
instrument is performed according to the technical standards. The O3 analyzer is the
HORIBA Ltd. model APOA-360, using the principle of UV fluorescence, with a detection
limit of 0.5 ppb and a calibration according to the technical standards.

In addition, NO2 hourly concentrations from the Egnatia station (hereafter called
EGNATIA) (40.638° N, 22.941° E), from 2018 to 2020, were provided by the Environmental
Department of the Municipality of Thessaloniki. EGNATIA station is an urban-traffic
station in the city center of Thessaloniki with an elevation of 11 m. The NOx (NO-NO2-
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NOx) analyzer is the Envea (environment s.a.) model AC32M, which is in compliance with;
EN 14211 (2012); U.S. EPA approved as compliant, no. RFNA-0202-146; certified by the
TÜV report N° 936/21205818/C; and ISO 7996, VDI4202. The measurement technique
is based on chemiluminescence, with a detection limit of 0.4 ppb. The calibration of the
instrument is performed on a monthly basis with the gas phase titration technique and
calibration gas cylinders. Descriptive statistics for NO2 and O3 concentrations at AGSOFIA
station, and NO2 concentrations at EGNATIA station, from 1 January 2018 to 31 December
2019, are provided in Table S1 of the Supplementary Materials.

Hourly meteorological data from the meteorological station of the Aristotle University
of Thessaloniki (hereafter called METEO-AUTH) were also used, for the time period 2018
to 2020, including temperatures at 2 m, mean sea level pressure, wind speed at 10 m,
total precipitation, relative humidity, and total radiation. METEO-AUTH is located in
the Aristotle University Campus at an altitude of 32 m, being in close proximity to the
aforementioned air quality stations (∼1 km from AGSOFIA and ∼1.5 km from EGNATIA).
The location of the air quality and meteorological stations is depicted in Figure 1.

Moreover, hourly data of boundary layer height, wind speed at 10 m, temperature at
2 m, mean sea level pressure, and total radiation for the period from 2018 to 2020, were
obtained from the state-of-the-art ERA5 reanalysis dataset [31]. ERA5 is issued by the
European Centre for Medium-Range Weather Forecasts (ECMWF) and produced with the
4D-Var data assimilation and model forecasts of the ECMWF CY41R2 Integrated Forecast
System (IFS), including 137 hybrid sigma/pressure levels in the vertical and a horizontal
resolution of 0.25° × 0.25°. The ERA5 data were extracted for the grid cell (22.95° E,
40.65° N) that includes the air quality and meteorological stations.

Figure 1. Location of air-quality (cyan) and meteorological (yellow) measurement stations in Thessa-
loniki, Greece. Map data ©2019 Google.

2.2. Machine Learning Approach
2.2.1. Business as Usual (BAU) Model

Here, we apply the XGBoost machine learning algorithm [32] to model NO2 and
O3 hourly concentrations at the air quality stations, in order to unravel the impact of
COVID-19 restrictions on the observed air quality. XGBoost is a supervised learning
technique based on the ensemble of gradient boosting decision trees, which is nowadays
widely used in data science due to its scalability, speed, and performance [32]. Detailed
information on the XGBoost algorithm, hyperparameters, and implementation can be
found at https://xgboost.readthedocs.io/en/latest/index.html (accessed on 11 November
2021). Here, the python XGBoost library is used.

https://xgboost.readthedocs.io/en/latest/index.html
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For each air quality monitoring station and species, we built an XGBoost model using
meteorological and time explanatory variables (so-called features) to explain the observed
time-varying concentrations of the examined species. A past period was used for the
training of the models, which represents a business-as-usual (BAU) situation. Subsequently,
we applied the BAU model for the COVID-19 period in order to predict what would be
the expected species hourly concentrations during this period in BAU conditions (absence
of restriction policies). The residuals of the observations and BAU during the COVID-19
period reveal the impact of COVID-19 restrictions on the observed air quality. The benefit of
the applied approach is that natural meteorological variability is consider before extracting
the implications for air quality, unlike simply subtracting species concentrations during
past periods from the respective concentrations during the COVID-19 period. Similar
XGBoost-based machine learning approaches for the same scientific purpose were also
applied recently by Keller et al. [18] and Granella et al. [33].

The air quality data (target variables) at both examined stations exhibit a data complete-
ness ≥70% for the train period (1 January 2018 to 31 December 2019). The meteorological
features include observations of air temperature at 2 m, total precipitation, mean sea level
pressure, relative humidity, wind speed at 10 m, and total radiation, as well as ERA5
boundary layer height. Missing data of air temperature at 2 m (∼0.4%), mean sea level
pressure (∼0.4%), total radiation (∼5.3%), and wind speed at 10 m (∼8%) are filled by
the ERA5 reanalysis. The correlation coefficients between observations and ERA5 hourly
values for temperature at 2 m, mean sea level pressure, total radiation, and wind speed are
0.97, 0.98, 0.93, and 0.65, respectively. The wind direction was initially included in the BAU
model, but as it had no significant contribution, it was excluded. The time explanatory
variables include hour of the day, day of week, and month, and were created using the
one-hot encoding method.

2.2.2. Hyperparameter Tuning

Prior to the creation of the XGBoost machine learning model for prediction, two basic
processes are essential; the hyperparameters tuning and testing of the model performance
on unseen data. The hyperparameters are a set of parameters that shape the learning pro-
cess and, thus, control the overall behavior of the XGBoost model. To this end, we perform
a tuning of the hyperparameters max_depth, n_estimators, min_child_weight, sub_sample,
eta, reg_alpha, reg_lambda, and gamma using the Hyperopt Python library [34] that uses a
form of Bayesian optimization, providing the hyperparameters that minimize/maximize a
specified metric (R2 here) for the given model. For as fair as possible tuning, and to avoid
overfitting, we apply an 8-fold cross-validation with shuffle split to the dataset that ex-
tended from 1 January 2018 to 31 December 2019. The mean (out of eight cross validations)
R2 values during the tuning process for NO2 at AGSOFIA, O3 at AGSOFIA, and NO2 at
EGNATIA, are 0.67, 0.82, and 0.57, respectively. With the selected hyperparameters (see
Table S2 in the Supplementary Materials) applied, the XGBoost model (BAU) is trained
over the period from 1 January 2018 to 31 December 2019, applying the “early stopping”
technique that terminates training at the point where performance on the test dataset starts
to decrease while performance on the training dataset continues to improve, in order to
avoid overfitting.

2.2.3. Evaluation of BAU Model

To gain confidence in the BAU model use, we evaluate its prediction performance
from 1 January to 15 February 2020 (1 January to 10 February 2020, for the EGNATIA
station due to missing data), a period which was not included in the train process and,
thus, is suitable for an independent evaluation. For brevity, we present evaluation results
only for the AGSOFIA station, while for the EGNATIA station, the respective results are
included as Supplementary Materials (Figure S1). Figure 2a presents the observed and BAU
(predicted) time series of NO2 hourly concentrations at the AGSOFIA station, indicating a
good agreement between observations and BAU during the test period, with a Pearson
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correlation coefficient (R) of 0.83, a mean bias (MB) of −0.19 µg m−3, and a normalized
root mean squared error (NRMSE) of 0.28. The former is also confirmed by the scatter plot
of the observed and BAU NO2 hourly concentrations shown in Figure 2b. Noteworthy
are the normally distributed NO2 concentration residuals (Figure 2c), revealing that the
BAU model over- and underpredicts with a relatively equal probability, underestimat-
ing/overestimating high/low observed NO2 concentrations. As for O3, Figure 3a shows a
good comparison between the observed and BAU time series of O3 hourly concentrations
at AGSOFIA, with an R of 0.83, a MB of −3.17 µg m−3, and an NRMSE of 0.45. Similar
to NO2, the O3 concentration residuals follow a bell-shaped pattern allowing for valid
inferences. Regarding NO2 at EGNATIA station, the observed and BAU time series exhibit
an R of 0.7, a MB of 2.99 µg m−3, and an RMSE of 0.23, with normally distributed residuals
(Figure S1 of the Supplementary Materials). For the train period the BAU model for NO2
at AGSOFIA, O3 at AGSOFIA, and NO2 at EGNATIA, exhibit skill scores of R = 0.96/MB
= 0 µg m−3/RMSE = 0.14, R = 0.98/MB = 0 µg m−3/RMSE = 0.13, and R = 0.93/MB =
0 µg m−3/RMSE = 0.12, respectively, as also depicted in Figure S2 of the Supplementary
Materials. The evaluation results for both train and test periods are in line with the respective
results of the recent COVID-19-related studies by Grange et al. [11], Keller et al. [18], Petetin
et al. [21].

2.2.4. Estimation of Uncertainty

For a more robust interpretation of the results, estimation of the uncertainty in the
BAU model predictions is essential. To this end, two methodologies are applied to estimate
the uncertainty of BAU predictions following Petetin et al. [21] and Keller et al. [18]. At
first, the 2018–2019 period was randomly split in eight sub-periods, and subsequently, the
BAU model was applied using seven sub-periods for train and the remaining for test, in an
iterative process of eight steps. The hourly residuals (BAU–OBS) were then calculated and
the following two methodologies were applied to estimate the uncertainty.

• Method1: following Petetin et al. [21], the 5th and 95th percentiles of the hourly
residuals are found forming a fixed asymmetric 90% confidence interval for the hourly
predictions. As our results are presented as a 1-month moving average, the 1-month
moving average of the hourly residuals are calculated, and the respective 5th and 95th
percentiles are used for the 90% confidence interval.

• Method 2: following Keller et al. [18], the standard deviation of the hourly residuals is
used as the uncertainty of the hourly predictions. The temporal (monthly) average of
the uncertainty is then calculated as follows:

σ̄2 =
N

∑
i=1

(
σi
N
)

2
(1)

where σ the mean uncertainty, σi the hourly uncertainty, and N the sample size. Here
we use the 2σ interval corresponding to an approximately 95% confidence interval.

The resulting uncertainties of each BAU model predictions are presented in Table 1.

Table 1. Uncertainty estimations (µg m−3) for BAU models predictions.

AGSOFIA NO2 AGSOFIA O3 EGNATIA NO2

5th percentile of hourly residuals −11.84 −20.73 −23.79
95th percentile of hourly residuals 10.25 20.99 22.47

standard deviation of hourly residuals 6.81 12.56 14.09
monthly uncertainty interval (method 1) [−0.44, +0.55] [−0.69, +0.74] [−0.92, +1.44]
monthly uncertainty interval (method 2) [−0.51, +0.51] [−0.94, +0.94] [−1.05, +1.05]
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Figure 2. (a) Observed (black) and BAU (green) time series of NO2 hourly concentrations at AGSOFIA
station from 1 January to 15 February 2020. (b) Scatter plot of observed and BAU NO2 hourly
concentrations at AGSOFIA station from 1 January to 15 February 2020. The solid green line
represents the regression line of the observed and BAU NO2 concentrations, while the dashed black
line is the 1:1 line. (c) Histogram of NO2 residual concentrations (BAU-observation) at AGSOFIA
station during the time period from 1 January to 15 February 2020.

Figure 3. (a) Observed (black) and BAU (green) time series of O3 hourly concentrations at AGSOFIA
station from 1 January to 15 February 2020. (b) Scatter plot of the observed and BAU O3 hourly
concentrations at AGSOFIA station from 1 January to 15 February 2020. The solid green line represents
the regression line of the observed and BAU O3 concentrations, while the dashed black line is the
1:1 line. (c) Histogram of O3 residual concentrations (BAU-observation) at AGSOFIA station from 1
January to 15 February 2020.
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3. Results

To unravel the impact of COVID-19 restrictions on urban air quality of Thessaloniki,
we compare the BAU-predicted NO2 and O3 concentrations during the COVID-19 period
with the actual observations. To obtain more robust conclusions from the results, the
MB of BAU 1-month moving average concentrations during the test period is removed
(positive/negative bias is subtracted/added) from the respective BAU values during the
lockdown period. This correction process is only applied for the reported in the text
differences and percentage differences between observations and BAU, while in all figures,
we present the original concentrations (without correction). As both uncertainty estimation
methods presented in Section 2.2.4 give quite similar intervals, hereafter, only uncertainties
obtained by method 2 are reported as 95% confidence interval enclosed in brackets.

Figure 4a presents the observed and BAU time series of NO2 1-month moving average
concentrations for the AGSOFIA station during the year 2020. Until the first lockdown at
16 March 2020, the observed NO2 time series followed closely the BAU NO2 time series, in-
dicating that the observed situation before the lockdown was a BAU one. From 16 March to
early May 2020, a distinct decrease of observed NO2 concentrations was seen in contrast to
the respective BAU time series, which remained relatively constant. From early May 2020,
and as the COVID-19 restrictions were gradually lifted, the observed NO2 concentrations
were at first stabilized, and from early June 2020, increased, approaching the NO2 BAU con-
centration levels. The residual (observation-BAU) of NO2 and O3 1-month moving average
concentrations are presented in Figure 4c, indicating a sharp decrease of the NO2 residual
concentrations, which, during the lockdown period (16 March to 5 May 2020) ranged from
−0.6 to −8.5 µg m−3 with an average value of −5.7 [−6.21, −5.19] µg m−3, reflecting the
direct effect of COVID-19 restrictions in NO2 levels at AGSOFIA. The respective 1-month
moving average NO2 percentage differences between observations and BAU depicted in
Figure 4d reveal a similar decrease for the same period ranging from −2.6 to −39.1% with
an average value of −24.9 [−26.6, −23.2]%. Recently, Keller et al. [18] examined observa-
tional data from 46 countries reporting that during the lockdowns, NO2 concentrations
were on average 18% lower than BAU. At a European scale, Grange et al. [11] estimated
a mean percentage change of −34% for NO2 based on European traffic stations, using
Bayesian inference to detect change points and subsequently the lockdown periods. As for
Greece, Grivas et al. [24] using in situ observations found an NO2 decline of 32% compared
to the pre-lockdown period in Athens, Greece, while Koukouli et al. [35] using satellite
observations and a chemical transport model, attributed a 12% decrease of tropospheric
NO2 columns at Thessaloniki during March to emissions changes.

As regards O3, prior to the lockdown, the observed and BAU concentrations varied
similarly, while from the lockdown onset, the observed O3 levels started to diverge incre-
mentally from the respective BAU levels up to early May 2020, returning close to BAU levels
in mid-June 2020 (Figure 4b). The aforementioned NO2 decline was accompanied with a
synchronous increase of O3 residual (observation-BAU) concentrations of an average value
of 7 [6.06, 7.94] µg m−3 (range from 3 to 12.9 µg m−3) (Figure 4c) and percentage differences
of an average value of 12.7 [10.8, 14.8]% (range from 7 to 21%) (Figure 4d). The clear anti-
correlation (R of −0.74) between NO2 and O3 residuals during the lockdown period (grey
shaded areas in Figure 4c,d) reflects the link between NOx and O3 chemistry, with reduced
NOx resulting in reduced O3 titration by NO and thus in enhanced O3 levels. Moreover, in
a likely VOC-limited environment, a decline in NOx leads in enhanced O3 production. The
mean European percentage changes of O3 for traffic sites during the lockdowns was reported
30% by Grange et al. [11], mainly attributed to decreased O3 destruction via the titration cycle.
Similar increases in European O3 concentrations during the lockdowns were also reported by
Gualtieri et al. [20], Higham et al. [22], Tobías et al. [26], Sicard et al. [27], Putaud et al. [36].
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Figure 4. Observed (black) and BAU (green) time series of NO2 (a) and O3 (b) 1-month moving
average concentrations at AGSOFIA station during the year 2020. Residual (observation-BAU) (c) and
percentage differences (d) of NO2 (purple) and O3 (pink) 1-month moving average concentrations
at AGSOFIA station during the year 2020. The gray shaded areas represent the lockdown periods.
The blue/red shaded areas represent the decrease/increase of observed NO2 and O3 concentrations
relative to the BAU conditions.
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The same behavior is revealed from the observed and BAU diurnal cycles of NO2 and
O3 concentrations at AGSOFIA during the period from 16 March to 31 May 2020, shown in
Figure 5. Both BAU and observed NO2 diurnal cycles exhibit two distinct peaks; an early
morning due to rush–hour vehicle traffic and a late evening resulting from both emissions
and accumulation, due to absence of sunlight inhibiting NO2 photolysis. The respective O3
diurnal cycles are characterized by a broad afternoon maximum owing to its photochemical
production. Lower/higher NO2/O3 concentrations are observed throughout the day and
night compared to BAU as depicted in Figure 5a,b. In particular, the diurnal cycles of NO2
and O3 residuals shown in Figure 5c indicate a reverse response (R = −0.88) of the two
pollutants to the COVID-19 restrictions policies within the day. These are in line with the
diurnal variations of NO2 and O3 anomalies during the lockdowns at several European
megacities, such as Berlin, London, Brussels, Paris, Milan, and Madrid [37].

Figure 5. Observed (black) and BAU (green) diurnal cycles of NO2 (a) and O3 (b) concentrations at
AGSOFIA station. The blue/red shaded areas represent the decrease/increase of observed NO2 and
O3 concentrations relative to the BAU conditions. (c) Diurnal cycle of NO2 (purple) and O3 (pink)
residual (observation-BAU) concentrations at AGSOFIA station. The examined period is from 16
March to 31 May 2020. Hours are in UTC.

Regarding the second lockdown imposed in early November 2020, although a de-
crease/increase of NO2/O3 levels is seen at AGSOFIA station as shown in Figure 4, these
are not as pronounced as in the first lockdown, reflecting the greater intensity of the first
lockdown. During the intermediate period between the two lockdowns, the observed
NO2 and O3 concentrations are more close to BAU values compared to that during the
lockdown periods.
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As for the second examined station, Figure 6 presents both the time series and diurnal
cycles of observed and BAU NO2 concentrations at the EGNATIA station. In agreement
with the AGSOFIA station, a decrease of observed NO2 1-month moving average concentra-
tions was seen from early March 2020 relative to BAU concentrations with an average value
of −13.1 [−14.2, −12] µg m−3 (Figure 6a), while the percentage difference between obser-
vations and BAU during the lockdown (16 March 2020 to 5 May 2020) ranged from −7.3%
to −24.1% with an average value of −18.4 [−19.6, −17.1]% (Figure 6b). From early May
2020, and as the restrictions started to relax, the observed NO2 levels gradually increased,
reaching near BAU values from mid-June 2020 onward. Regarding the second lockdown
in early November 2020, this was not clearly reflected in the observed and residual NO2
concentrations. The diurnal cycle of the observed and BAU NO2 concentrations at the
EGNATIA station from 16 March to 31 May 2020, shown in Figure 6c, exhibits the same
two-peak shape as that of the AGSOFIA station, revealing a clear decline of NO2 levels
throughout the day and night during the first lockdown period.

Figure 6. (a) Observed (black) and BAU (green) time series of NO2 1-month moving average
concentrations at the EGNATIA station during 2020. (b) Percentage differences of NO2 1-month
moving average concentrations between observations and BAU at EGNATIA station during 2020. (c)
Observed (black) and BAU (green) diurnal cycle of NO2 concentrations at EGNATIA station from 16
March to 31 May 2020. Hours are in UTC. The blue/red shaded areas represent the decrease/increase
of observed NO2 concentrations relative to the BAU conditions.
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4. Conclusions

This study investigated the impact of COVID-19 restriction policies on the urban air
quality of Thessaloniki, Greece, using air quality and meteorological observations, ERA5
reanalysis data, and the XGBoost machine learning algorithm. Modeling NO2 and O3 BAU
concentrations and comparing with observations for the lockdown period, allowed the
assessment of COVID-19 restriction footprints on the urban air quality of Thessaloniki.
With the applied approach, the impact of weather variability was also considered.

Both AGSOFIA and EGNATIA urban-traffic stations exhibited an NO2 drop during
the lockdown period (from 16 March to 5 May 2020) led by the COVID-19 restrictions,
of −24.9 [−26.6, −23.2]% and −18.4 [−19.6, −17.1]%, respectively, accompanied by an
12.7 [10.8, 14.8]% increase of O3 at AGSOFIA. Similar conclusions arose from the diurnal
variation of the pollutants during the lockdown, indicating lower/higher NO2/O3 levels
relative to BAU throughout the day and night at both stations/AGSOFIA. The mirroring
pattern of NO2 and O3 residuals during the lockdown in both time series and diurnal
cycles back the view that a decline in NOx results in O3 increase through a decrease of O3
titration, and presumably the enhanced O3 production in a likely VOC-limited regime. It
should be noted that the aforementioned O3 increase at AGSOFIA, due to the COVID-19
restrictions, should not be generalized for other locations in Thessaloniki, where O3 might
be governed by different photochemical regimes.

Consistent with recent studies on other urban areas worldwide, the NO2 decrease at
Thessaloniki during the COVID-19 lockdown was associated with an O3 increase. Such real-
life modeling scenarios, like the COVID-19 pandemic, provide tangible evidence that, for a
better future air quality management in urban environments, a more sophisticated emis-
sions control is required. To mitigate O3 pollution, NOx reductions should be accompanied
by VOC-targeted control strategies specifically designed for each urban environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12111500/s1. Table S1: Descriptive statistics (mean, 10th percentile, 25th percentile,
median, 75th percentile, 90th percentile, and standard deviation) for NO2 (µg m−3) and O3 (µg m−3)
at AGSOFIA station, and NO2 (µg m−3) at EGNATIA station, for the time period from 1 January
2018 to 31 December 2019. Table S2: XGBoost hyperparameters used for the BAU models. Figure
S1: (a) Observed (black) and BAU (green) timeseries of NO2 hourly concentrations at EGNATIA
station during the time period from 1 January to 10 February 2020. (b) Scatter plot of observed
and BAU NO2 hourly concentrations at EGNATIA station during the time period from 1 January
to 10 February 2020. The solid green line represents the regression line of the observed and BAU
NO2 concentrations, while the dashed black line is the 1:1 line. (c) Histogram of NO2 residual
concentrations (BAU-observation) at EGNATIA station during the time period from 1 January to 10
February 2020. Figure S2: Observed (black) and BAU (green) 1-month moving average concentrations
during the train (left of the blue dashed line) and test (right of the blue dashed line) periods, along
with the correlation coefficient (R), mean bias (MB), and normalized root mean square error (NRMSE)
for the train period for AGSOFIA NO2 (a), AGSOFIA O3 (b), and EGNATIA NO2 (c).
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