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Abstract: Future projection of drought vulnerability is vital for northern provinces of Iran, including
North Khorasan, Khorasan-Razavi, and South Khorasan, due to the highly dependent of their
economy on agriculture. The study is motivated by the fact that no research has been conducted to
project the future Drought Vulnerability Index (DVI). DVI consist of three components of exposure,
sensitivity, and adaptation capacity. More exposure levels of drought, higher sensitivity value,
and lower adaptation capacity lead to a higher amount of vulnerability. Combined ERA-Interim-
observation meteorological data, CMIP5 models under RCP4.5 and RCP8.5 scenarios, and national
census data are used to estimate DVI in the past and future periods. CanESM2, GFDL-ESM2M, and
CNRM-CM5 General Circulation Model (GCM) are selected from CMIP5 based on Taylor diagram
results. The delta-change technique was selected for statistical downscaling of GCM outputs because
it is most widely used. The study period is regarded as 1986–2005 as observation and four future
20-years periods during 2021–2100. Results indicated that the dissipation of the class of “very low”
vulnerability is eminent in the near future period of 2021–2040 under the RCP4.5 scenario, and all
provinces would experience a new worse class of “very high” vulnerability at 2081–2100, both under
RCP4.5 and RCP8.5 scenarios.

Keywords: vulnerability; drought; CMIP5; RCP scenarios; Iran

1. Introduction

Global surface temperature will continue to increase until at least the mid-century un-
der all emissions scenarios considered. Each of the last four decades has been successively
warmer than any decade that preceded it since 1850. The global surface temperature was
1.09 ◦C higher in 2011–2020 than in 1850–1900. Compared to 1850–1900, the average global
surface temperature over 2081–2100 is very likely to be 1.4 ◦C under the very low GHG
emissions scenario of SSP1-1.9, and by 4.4 ◦C under the very high Greenhouse Gas (GHG)
emissions of Shared Socioeconomic Pathway (SSP) scenario of SSP5-8.5. A key advance in
the recent Intergovernmental Panel on Climate Change (IPCC) report is the supporting the
best estimate of Equilibrium Climate Sensitivity (ECS) with a likely range of 2.5 to 4 ◦C
is narrower than the AR5 possible range of 1.5 to 4.5 ◦C [1]. In this regard, in the context
of human-induced ongoing changes in climate and environmental systems, the frequency
and severity of extreme weather and climate events such as heatwaves, heavy precipitation,
droughts, and tropical cyclones with their adverse effects are increasing almost everywhere
in the world. Climate change is already affecting every inhabited region globally [1–11]. As
global warming increases the frequency and severity of drought, vulnerability to drought
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is also expected to increase. Therefore, future projection of drought vulnerability is the
prerequisite step in any climate change impacts analysis and action plans.

Physiography of Iran can be divided into four regions: Caspian, Central Plateau
(Kavir and Lut deserts), Zagros, and the Southern coastal plain. Iran is located in the arid
belt, and more than 50 percent of the land area is mountainous, and around 30 percent
of the total land area (situated in the central plateau) receives low annual precipitation
(50–250 mm). Only the Caspian Plain in the north receives more than 1000 mm per
year. The average annual precipitation and temperature are 235 mm and 19.1 ◦C during
1988–2017, while its potential evaporation is estimated to be more than 4000 mm in the
central part of Iran [12,13]. All-weather stations of Iran with precipitation recorded in
1951–2017 have experienced at least two main periods characterized by long and extremely
severe drought. In the west and north-west, long periods of severe droughts occurred
during 1999–2017. In the Central Plateau, the stations show extremely severe drought
in the past decade. East of the Caspian Sea, an extremely severe drought condition was
indicated in 2008 and 2014. There was a severe drought in the southeast from 1999 to
2005. country’s northeast shows the change of climate type from semi-arid to arid. Over
Iran, studies show that under different climate change scenarios, the average temperature
will increase to about 2.4–4.8 ◦C over the 2071–2100 period, accompanied by a relative
decrease in precipitation by +2% to −10%, while increasing the temperature will lead to a
significant increase in annual evapotranspiration, drought frequency and severity [14–16].
The northeast of Iran has also been experiencing extreme climatic events, such as heatwaves,
droughts, flash flood rainfalls, dust storms, rising mean temperature, evapotranspiration,
and decreasing precipitation. The mean average temperature and evapotranspiration
are expected to increase by 2.4–5.8 ◦C and 9.8–18.9% in 2081–2100. Meanwhile, future
projection of precipitation is relatively uncertain and ranges from 0.1 to −14.8% during the
same period [17–21]. Many kinds of research also confirm the increasing global mean and
extreme climatic events under global warming effects [22,23].

Drought can simultaneously be a current hazard, directly and indirectly, influence
future vulnerability [24]. Drought develops slowly; its main characteristics, such as the
onset, duration, and severity, are not easily quantified [25]. Droughts can be typically
divided into four types: meteorological, hydrological, agricultural, and socioeconomic
droughts, depending on various hydrological cycle deficits [26]. The complex nature of
droughts makes them one of the most challenging climate hazards to perceive. For example,
hydrological drought is closely related to human activities, such as irrigation. Thus accurate
prediction necessitates the modeling of human activities. Other recurrent weather-related
hazards such as heatwaves, floods, and windstorms can be skillfully forecasted in some
instances [27]. Droughts are among the costliest natural hazards in the world. The severity
of the hazard is closely related to a region’s ability to cope and recover from the event, an
ability that depends on the region’s sensitivity and adaptive capacity [21]. The drought
vulnerability in each region is directly related to the region’s level of exposure, adaptation,
infrastructure, economic and social sensitivity [22]. Reducing drought vulnerability is a
basis for sustainable development in agriculture, water, and society.

Many drought vulnerability methods have been used worldwide, ranging from simple
equal weighting to more sophisticated weighting techniques. From 1978 to 2018, agricul-
tural drought vulnerability using the entropy weight method showed a decreasing trend in
China, with less vulnerable to mildly vulnerable cities and less highly vulnerable cities. At
the same time, there is a trend where highly vulnerable cities have been converted to mildly
vulnerable cities, whereas mildly vulnerable cities have been converted to less vulnerable
cities [28]. Investigation of spatial characteristics of drought vulnerability in China showed
that the level of vulnerability in southern and eastern China would be in the low to medium
range on a regional scale, while the highest vulnerability level is expected in northern and
western China [29]. The most important factor on drought vulnerability in Greece using the
Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas
Index (ESAI) is the deficits in water resources, either due to lower than usually expected
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rainfall or to higher societal water demand [30]. Drought vulnerability over Mexican was
computed based on a set of socioeconomic and environmental indicators that the method
combines using an objective analytic procedure that identifies the most vulnerable states
and municipalities from social, economic, and environmental perspectives, all of which con-
verge in overall vulnerability to drought. The results indicated that 38.9% of the Mexican
population inhabits municipalities with high and very high degrees of overall vulnerability
to drought. In this regard, it is necessary to continue implementing actions and preventive
and mitigation strategies via public policies and social programs to decrease the country’s
vulnerability to the occurrence of drought events [31]. The vulnerability to the drought
of each state within the contiguous U.S. is assessed as a function of exposure, sensitivity,
and adaptive capacity, using socio-economic, climatic, and environmental indicators. The
resulting geographic distribution of relative vulnerability of the states is partially a reflec-
tion of their heterogeneous climates. It highlights the importance of sustainable adaptation
of the local economy to water availability to reduce sensitivity and limit the impact of
drought. As such, the study at handovers insights to local and regional planners on how to
effectively distribute funds and plan accordingly to reduce state-level drought vulnerability
today and in the future [22]. Socioeconomic factors over 81 provinces of Turkey were also
used to estimate Drought Vulnerability Index (DVI) [32].

There is abundant literature on the future projection of weather and climate extremes,
with less emphasis on how climate change alters future drought vulnerability over Iran
and especially over the northeast part, which consists of three provinces of north, south,
and central Khorasan. The projected increases in dry days and precipitation over short
durations throughout a year under future climate scenarios would produce changes in
drought and flood periods and ultimately impact the frequency and severity of hydrological
droughts in the Central Desert Basin of Iran. Under RCP4.5, an increase in the frequencies of
moderate and severe meteorological/hydrological droughts would further affect the basin.
Under RCP2.6 and RCP8.5, the frequencies of severe and extreme droughts would increase,
but the drought area would be smaller than that under RCP4.5, demonstrating less severe
drought conditions [33]. Zarafshan et al. [34] provided a conceptual framework for drought
vulnerability and modeled pre- and post-drought vulnerabilities. The results showed that
farmers’ vulnerability in western Iran is related to their socioeconomic structures and
infrastructure. To develop the Climate Vulnerability Index (VCI), a five-year VCI was
calculated by Ahmadi et al. [35] on a county scale over Sistan- Baluchistan province in
the east of Iran. The results showed that although the province’s adaptation capacity has
increased compared to before, the vulnerability rate has increased by 16.3% due to increased
exposure and climate sensitivity. The number of very vulnerable areas has increased from
57.5% to 100% of the whole province, indicating the spatial expansion of vulnerability.

In future climate change, prolonged and intense drought will affect more expansive
areas in Iran. Consequently, steps must be taken to monitor, predict, and adapt to drought in
the region. A comprehensive drought management system requires sufficient information
from different parts of the region and sufficient knowledge of the dangers and harmful
effects of drought and the vulnerability of the study area to appropriate reactions and
decisions to reduce the risks and damages. Understanding drought vulnerability is the first
step in implementing comprehensive drought management [36–38]. Due to the economy
being mainly dependent on agriculture in the northeastern provinces of Iran and the
region’s increasing migration from neighboring areas inside Iran and neighboring countries
due to widespread drought and political tensions, understanding current and future
drought vulnerability in the region is essential for sustainable development. This study
aims to provide a perspective of the 21st century Drought Vulnerability Index (DVI) in
the study area under IPCC-RCP scenarios. For this purpose, climatological data from
the meteorological organization and socioeconomically data from budget and planning
organizations have been used.
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2. Materials and Methods

Figure 1 illustrates the overview of the research plan and methodology used in this
study. Three input datasets describing the observed climate, future climate, and national
population census data were used. A combined observation-ERA interim database was
developed due to some counties’ lack of weather stations or missed data.
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Figure 1. Overview of research design.

Future Exposure (E) of drought calculated using observed and downscaled CMIP5
data. The national population census data were used for each county to estimate sensitivity
(S) and Adaptive Capacity (AD). All components of exposure, sensitivity and adaptive
capacity were standardized to estimate Drought Vulnerability Index. Details will be
explained in the methodology section.

2.1. Area and Period of Study

The study area covers three provinces of Iran, including Khorasan-Razavi, North
Khorasan, and South Khorasan, which is situated in the latitudes between 30.4 and
37.8 north and longitudes between 55.3 and 61.3 east in west Asia. The region has bordered
Afghanistan on the east side and Turkmenistan on the north side. The southern and eastern
border of the area is demarcated mainly by two extensive deserts of Lut and Dasht-e-Kavir
(Figure 2). This area’s southern and western parts are mainly desert land with annual
precipitation around 100 mm. The mentioned provinces have been experienced moderate-
severe drought during the past two decades. Drought and other natural disasters such as
floods, dust, and sandstorms have mainly affected agriculture, livestock, rangelands, and
soil of the region. The study period is considered 1985–2006 as observation, and 2021–2100
as the future projection period.

2.2. Data

Four types of data were used in this study, including: (1) meteorological observation
from weather counties, (2) ERA-Interim reanalysis data, (3) socioeconomic data prepared by
the National Planning and Budget Organization, and (4) The output of CMIP5 model under
RCP4.5 and RCP8.5 scenarios. Meteorological data for cities without meteorological stations
or substantial gaps were estimated using a bias-corrected ERA-Interim 0.125 × 0.125-
degree resolution dataset. ERA-interim were used for those counties which have no
meteorological stations. Performance of ERA-Interim data has already been confirmed over
Iran [39]. CMIP5 global climate models of CanESM2, GFDL-ESM2M, and CNRM-CM5,
shown in Table 1, are considered for future precipitation and temperature projection over
the region. CMIP5 data were prepared for the historical period of 1986–2005 and the future
period of 2021–2100 under RCP4.5 and RCP8.5 scenarios. Socioeconomic data needed to
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estimate adaptation capacity and sensitivity were received from the National Planning
and Budget Organization (NPBO) based on the two most recent national censuses. The
socioeconomic data covers per capita income, percentage of people covered by insurance,
percentage of unemployed people, percentage of people working in the agriculture sector,
area of agriculture land, water demand, number of hospital beds, length of highways, and
railways, so on.
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Table 1. Summary of CMIP5 climate models used in this study.

Model Institute Resolution
(Longitude × Latitude)

CanESM2 Canadian Centre for Climate
Modelling and Analysis (CCCMA) 2.77 × 2.8125

GFDL-ESM2M NOAA Geophysical Fluid Dynamics
Laboratory (GFDL) 2.02 × 2.5

CNRM-CM5
Centre National de Recherches

Météorologiques/Centre Européen
de Recherche et Formation

1.40 × 1.40

2.3. Statistical Downscaling

The delta-change technique was selected for statistical downscaling of GCM outputs
because it is most widely used [40,41]. The delta change technique is easy to apply (one
needs to apply a coefficient to historical time series) and preserve important statistical
characteristics (spatial correlations, interdependence) in downscaled time series. Its main
limitation is that it does not allow for a change in variance in the future and misses the
risk generated by a possible change in climate variables distributions in the future [42].
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However, in this method, the variance of future data is at least equal to the observation
period. The delta change method applies differences (relative changes) of simulated current
and future climate conditions from a GCM added to observed time series of temperature
(precipitation), using the following equations [43–45].

∆pi =

[
pGCM,Fut,i

pGCM,bais,i

]
(1)

∆Ti =
(

TGCM,fut,i − TGCM,bais,i
)

(2)

T = Tobs + ∆T (3)

p = pobs × ∆p (4)

where ∆Ti and ∆pi represent the delta change scenario, which is additive for temperature
and multiplicative for precipitation, respectively. pGCM,Fut,i. and TGCM,fut,i indicate the
precipitation and temperature output of the GCM model for the future period, pGCM,bais,i
is the precipitation corresponding to the historical period of the same model. Tobs and
pobs are the mean observed monthly temperature and precipitation from 1986 to 2005, re-
spectively, P and T are the downscaled precipitation and temperature for the future period.

2.4. Exposure (E)

Exposure is the level of drought intensity in the region measured by the Standard
Precipitation Evapotranspiration Index (SPEI), as a meteorological drought index. This is
determined using monthly precipitation and temperature from 1986 to 2005. Procedure
computing SPEI is explained by which was introduced by Vicente Serrano et. al. [46]
as bellow:

The water balance equation is defined as the following equation:

Di = Pi − PETi (5)

where P and PET are the precipitation and Evapotranspiration, respectively, D is their
difference, and i is the desired month number. After calculating the D values, an approach
like the Standard Precipitation Index (SPI) calculates the SPEI. For this purpose, D’s
sequential values in different windows are first calculated; If x is the cumulative series of D
in a given window, a suitable probability distribution fits on the x series in the next step.
The log-logistic distribution can well model x-series [46]. The distribution form density
function is expressed as follows:

f(x)
β

α

(
x− Y
α

)β−1
[1 +

(
x− Y
α

)β
]−2

(6)

where α, β, and Υ are scale, shape and origin, and, x is the cumulative series D in a given
window. Drought thresholds are shown in Table 2. In this study, classifications were
divided into sub-classes to capture county’s exposure in detail.

Table 2. SPEI drought classification for dry and wet grades [5].

Category SPEI Classification

Extremely Dry ≤2
Severely Dry −1.99 to −1.5

Moderately Dry −1.49 to −1.0
Near Normal −0.99 o 0.99
Moderate Wet 1.0 to 1.49
Severely Wet 1.5 to 1.99

Extremely Wet ≥2
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2.5. Sensitivity (S)

Sensitivity is the socioeconomic frailty of society, represented by indicators such as
human insecurity, dependence, illiteracy, social inequality, unemployment, inflation, debt,
and environmental degradation. These indicators reflect relative weaknesses or deteriora-
tion conditions that aggravate the direct effects of dangerous phenomena. Even if these
effects are not necessarily cumulative and could sometimes be considered redundant or
correlated, they are important in the economic and social context [47]. Table 3 presents main
sensitivity indicators, related sub-indicators with a simple expression of their relationship
to the vulnerability index. For example, the number of vulnerable people with age less
than 15 and older than 64-year-old is increasing, which causes the sensitivity component
to increase. At the same time, a higher amount of employment is a factor decreasing
sensitivity to drought.

Table 3. Sensitivity indicators and sub-indicators and their functional relationship with
drought vulnerability.

Indicator Sub-Indicator Relationship

Population

Vulnerable peoples (age ≥ 64 or age ≤ 15) ↑
Population of female-headed households ↑

Illiterate population ↑
people working in agriculture ↑

Residential
Population living in villages ↑

Population living on the outskirts of megacities ↑
Households with dirt floor ↑

Employment
Employment rate ↓

Number of industrial workshops ↓
Number of technical and vocational centers ↓

2.6. Adaptive Capacity (AC)

The Adaptive Capacity (AC) component reflects the ability of a county/province and
its population to adapt to and recover from drought when it occurs. Indicators include
both the economic strength of the county, but also regional policies and private mitigation
strategies [22]. Vulnerability varies from one region to another due to diverse economic and
social influences [34]. Thus, some groups suffer more than other groups in the community.
This difference in vulnerability is due to different individuals (e.g., gender, age, education,
attitude), socioeconomic (e.g., social class, access to resources, income diversification,
availability of social insurance, education, infrastructural constraints, poor technology,
water resource, and access to infrastructural sources and public services). To take into
account the maximum indicators affecting adaptive capacity over three regions under
study, and by considering the limitations of the types of data available from the national
department of Management and Planning Organization (MPO) of Iran, the most important
indicators expressing socioeconomic conditions and infrastructure of each county are listed
in Table 4. The table shows the simple relationship of each indicator to vulnerability; for
example, the amount of forecast area and water withdrawal from groundwater increases the
total vulnerability. The strong economy, income, and robust infrastructure such as having
an airport and more railway transportation make a county less vulnerable to drought. It is
more likely to have the infrastructure and financial muscles to mitigate and recover from
the drought hazard than a county with limited infrastructure financial means-the lower
the literate population, the lower the society’s degree of adaptation. In Table 4, the arrow
direction in the last column shows each indicator’s increasing or decreasing effect.
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Table 4. Adaptive capacity indicators and their functional relationship with vulnerability to drought.

Indicator Sub-Indicator Relationship

Vegetation Cover

Forest area ↑
Rangland area ↑

Poor rangeland area ↑
Desert area ↑

Water resources Water withdrawal from deep and semi-deep wells ↑

Infrastructure

Railway length ↓
Metro length ↓

Freeway length ↓
Length of the main road ↓

Airports ↓

Education
Literate population ↓

Ratio of higher education to total literacy ↓

Health
Availability of health insurance ↓

Per capita treatment bed ↓
Per capita health care centers ↓

Economy

Per capita general income ↓
Revenue to urban cost ratio ↓
Revenue to rural cost ratio ↓

Inactive population percentage ↑
Percentage of unemployed population ↑
Percentage of public sector employees ↓

Public services
Household without heat source (gas and electricity) ↑

Household without drinking water network ↑

2.7. Drought Vulnerability Index (DVI)

While there are numerous definitions for vulnerability, a specific definition of vulnera-
bility may not be justified. The scientific use of “vulnerability” has roots in geography and
natural hazards research. Still, this term is now a central concept in various other research
contexts such as agriculture, ecology, public health, poverty and development, secure
livelihoods and famine, sustainability science, land change, climate impacts, and adap-
tation [34]. The relative Drought Vulnerability Index (DVI) consists of three components
of Exposure (E), Sensitivity (S), and Adaptation Capacity (AC). E is the level of exposure
shown here by the SPEI drought index, S and AC are the degree of sensitivity and potential
of adaptation capacity of each county, respectively. All three components were explained
before. The total vulnerability caused by drought is shown in the following equation [29].
Based on Equation (7), exposure and sensitivity are directly related to vulnerability, while
adaptive capacity reduces it.

DVI =
E + S + (1−AC)

3
(7)

Each county’s 12-monthly SPEI drought index is considered the level of drought expo-
sure, both in the historical period of 1986–2005 and future projected periods of 2021–2040,
2041–2060, 2061–2080, and 2081–2100. The indicators of exposure, sensitivity and adaptive
capacity have different scales. Once their positive or negative impact on vulnerability to
drought was identified, values were scaled to 0–100 standards using the United Nations
Development Program method [47]. For those indicators having a direct relationship with
vulnerability, the following equation is used:

Xi = 100×
(

xi − xmax

mmax − xmin

)
(8)
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However, for the indicators having an inverse relationship with vulnerability, the
following equation is used:

Xi = 100×
(

xmax − xi
mmax − xmin

)
(9)

Both equations are the scaled value of the variable and are the minimum and maximum
values of the dataset, respectively [31]. Vulnerability indices were classified into five equally
sized categories, which defined five degrees of vulnerability, as shown in Table 5.

Table 5. Degree and values of vulnerability [31].

Degree of Vulnerability Values of Vulnerability

Very low 0 < V ≤ 20
Low 20 < V ≤ 40

Moderate 40 < V ≤ 60
High 60 < V ≤ 80

Very high 80 < V ≤ 100

3. Results

As shown in Figure 3, 19 model data were downloaded from Erath System Grid Federation
(ESGF) portal, which is available at: https://esgf-node.llnl.gov, accessed on 10 March 2019.
Performance of the models mentioned above in simulation of precipitation (temperature)
during the past period as shown in the left (right) panel of Figure 3 using the Taylor
diagram. Results showed that the variability of precipitation data in most models is less
than the observation, while in the case of temperature, the variability of most models
is closer to the observational variability. Among all GCMs with available data, three
GCMs of CanESM2, GFDL-ESM2M, and CNRM-CM5, which had a higher rank in Taylor
diagrams of precipitation and temperature, were selected for this study. The ranks of GCMs
were estimated by comparing historical outputs of GCMs with ERA-Interim data during
1979–2005.

The amount of exposure, represented by SPEI drought index, has an important role
in estimating drought vulnerability. In this regard, individual weight for each GCM is
calculated by incorporating their inverse RMSE error in the historical period. Then, a
multi-model weighting averaging has been applied to calibrate the historical SPEI index
by considering the weight of each model. It was observed that the correlation obtained
from the weighting method is higher than the individual models, and the root mean square
error of multi-model weighting is the smallest among all individual models (Table 6).

Table 6. Comparison of individual SPEI drought index and weighted SPEI during period of
1986–2005.

CanESM CNRM-CM5 GFDL-ESM2M Multi-Model

SPEI 0.63 0.59 0.58 0.59

Correlation 0.14 0.36 0.26 0.41

Bias 0.12 0.08 0.08 0.09

RMSE 14.9 10.38 12.18 7.48

Weighs − 0.35 0.47 0.18

3.1. Observed Vulnerability

Figure 4 shows the histogram of relative sensitivity and adaptive capacity over all
the counties located in three provinces of North-Khorasan, Khorasan-Razavi, and South-
Khorasan. The figure shows that, on average, most cities in the three northeastern provinces
of Iran are sensitive to drought. Various socioeconomic factors are involved in estimating

https://esgf-node.llnl.gov
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a county’s sensitivity to drought. Due to the limitations in recording socioeconomic data
in the study region, an attempt was made to use the maximum available common socioe-
conomic factors among all counties in estimating the sensitivity. Normalized sensitivity
indices show that the three counties of Mashhad, Kashmar, and Taybad have very high
sensitivity, while Sarayan, Dargaz, and Bajestan have very low sensitivity. According
to the MPO data, Mashhad, the capital of the Khorasan-Razavi province, has a higher
unemployed population than other counties due to its migratory capacity and high popu-
lation. A higher amount of water consumption has made Mashhad has a higher amount
of sensitivity. Kashmar also has a high amount of sensitivity to drought. It may be due to
the high ratio of agricultural area to the county’s total area among all counties. In Sarayan,
Chenaran, and Dargaz, the ratio of agricultural lands is low, and the social insurance index
for pensioners is low compared to the county’s population, so the sensitivity index is
estimated to be also low. Adaptive capacity is another factor incorporated in estimating
drought vulnerability, indicating the degree of drought resistance. Higher adaptive ca-
pacity may reduce drought-related damage to the region, while lower adaptive capacity
makes the region more vulnerable to drought [35]. It can be inferred from Figure 4 that
Taybad, Garmeh, Sarayan counties have the minimum adaptive capacity, while Kashmar,
Mashhad, and Birjand have higher adaptive capacity among all counties under study. The
higher adaptive capacity of Kashmar is a relatively higher per capita hospital beds and
health centers than other counties. However, the most deprived counties, such as Taybad,
Jajarm, and Sarayan have unfavorable adaptive capacity. Three counties of Kalat, Farooj,
and Bajestan have no long_term socioeconomic data to estimate sensitivity and adaptive
capacity due to their new established.

Atmosphere 2021, 12, x FOR PEER REVIEW 10 of 23 
 

 

 

Figure 3. Taylor diagram showing performance of 19 GCMs (listed in the bottom of the figure) for precipitation (left) and 
temperature (right) during 1979–2005 with comparing ERA-interim data (blue-colored dot on the horizontal axis) with his-
torical data of GCMs. 

The amount of exposure, represented by SPEI drought index, has an important role 
in estimating drought vulnerability. In this regard, individual weight for each GCM is 
calculated by incorporating their inverse RMSE error in the historical period. Then, a 
multi-model weighting averaging has been applied to calibrate the historical SPEI index 
by considering the weight of each model. It was observed that the correlation obtained 
from the weighting method is higher than the individual models, and the root mean square 
error of multi-model weighting is the smallest among all individual models (Table 6). 

Table 6. Comparison of individual SPEI drought index and weighted SPEI during period of 1986–
2005. 

 CanESM CNRM-CM5 GFDL-ESM2M Multi-Model 
SPEI 0.63 0.59 0.58 0.59 

Correlation 0.14 0.36 0.26 0.41 
Bias 0.12 0.08 0.08 0.09 

RMSE 14.9 10.38 12.18 7.48 
Weighs − 0.35 0.47 0.18 

  

Figure 3. Taylor diagram showing performance of 19 GCMs (listed in the bottom of the figure) for precipitation (left) and
temperature (right) during 1979–2005 with comparing ERA-interim data (blue-colored dot on the horizontal axis) with
historical data of GCMs.



Atmosphere 2021, 12, 1704 11 of 22

Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 23 
 

 

3.1. Observed Vulnerability 
Figure 4 shows the histogram of relative sensitivity and adaptive capacity over all 

the counties located in three provinces of North-Khorasan, Khorasan-Razavi, and South-
Khorasan. The figure shows that, on average, most cities in the three northeastern prov-
inces of Iran are sensitive to drought. Various socioeconomic factors are involved in esti-
mating a county’s sensitivity to drought. Due to the limitations in recording socioeco-
nomic data in the study region, an attempt was made to use the maximum available com-
mon socioeconomic factors among all counties in estimating the sensitivity. Normalized 
sensitivity indices show that the three counties of Mashhad, Kashmar, and Taybad have 
very high sensitivity, while Sarayan, Dargaz, and Bajestan have very low sensitivity. Ac-
cording to the MPO data, Mashhad, the capital of the Khorasan-Razavi province, has a 
higher unemployed population than other counties due to its migratory capacity and high 
population. A higher amount of water consumption has made Mashhad has a higher 
amount of sensitivity. Kashmar also has a high amount of sensitivity to drought. It may 
be due to the high ratio of agricultural area to the county’s total area among all counties. 
In Sarayan, Chenaran, and Dargaz, the ratio of agricultural lands is low, and the social 
insurance index for pensioners is low compared to the county’s population, so the sensi-
tivity index is estimated to be also low. Adaptive capacity is another factor incorporated 
in estimating drought vulnerability, indicating the degree of drought resistance. Higher 
adaptive capacity may reduce drought-related damage to the region, while lower adap-
tive capacity makes the region more vulnerable to drought [35]. It can be inferred from 
Figure 4 that Taybad, Garmeh, Sarayan counties have the minimum adaptive capacity, 
while Kashmar, Mashhad, and Birjand have higher adaptive capacity among all counties 
under study. The higher adaptive capacity of Kashmar is a relatively higher per capita 
hospital beds and health centers than other counties. However, the most deprived coun-
ties, such as Taybad, Jajarm, and Sarayan have unfavorable adaptive capacity. Three coun-
ties of Kalat, Farooj, and Bajestan have no long_term socioeconomic data to estimate sen-
sitivity and adaptive capacity due to their new established.  

Figure 4. Amount of adaptation capacity and sensitivity of each county, using data retrieved from 
national MPO. 

Figure 5 shows a spatial overview of SPEI, indicative of Exposure, Adaptation Ca-
pacity, Sensitivity, and resulting Drought Vulnerability Index (DVI) during the observa-
tion period of 1986–2005. Among them, birjand, Mashhad, and Chenaran have experi-
enced a higher exposure (SPEI) index due to frequent droughts during the observation 
period.  
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national MPO.

Figure 5 shows a spatial overview of SPEI, indicative of Exposure, Adaptation Capacity,
Sensitivity, and resulting Drought Vulnerability Index (DVI) during the observation period
of 1986–2005. Among them, birjand, Mashhad, and Chenaran have experienced a higher
exposure (SPEI) index due to frequent droughts during the observation period.

After estimating the three main components determining the drought vulnerability
index, the overall vulnerability in the observed period (1986–2005) was estimated by
incorporating three components of Exposure (E), Sensitivity (S), and Adaptive Capacity
(AC), using Equation (7). The resulting relative vulnerability index of the counties in the
three provinces is shown in Figure 5. Kashmar, Chenaran, and Dargaz have the highest
Drought vulnerability among all counties in the three provinces under study. The higher
DVI index in Dargaz and Chenaran, among other cities, may be due to their much higher
exposure, the SPEI drought index. Additionally, the higher DVI index in Kashmar may be
due to its higher amount of sensitivity among other counties. Taybad city shows the least
Drought Vulnerability Index (DVI due to the medium exposure (SPEI drought index). On
the provincial scale, Khorasan-Razavi has experienced the highest drought vulnerability in
the observation period of 1986–2005.

3.2. Future Vulnerability

In order to project future drought vulnerability in the northeast of Iran, it is necessary
to estimate the level of exposure by considering the SPEI drought index and the sensitivity
and adaptation capacity. The annual (12-month running) SPEI drought index was calculated
for the next four coming periods under RCP4.5 and RCP8.5 scenarios (Figures 6 and 7).
The drought index in all three provinces under the study is expected to increase on average
compared to the observation period, and its values in the RCP8.5 scenario are higher than
RCP4.5. While in the RCP4.5 scenario, a very severe drought would occur in the last decade
of the 21st century, i.e., 2081–2100, in the RCP8.5 scenario, a very severe drought would
occur one decade earlier, i.e., in 2061–2080. Severe drought is projected at the latest decade
over the majority of cities. In the observed period, the drought class of all cities is in the
normal category, while mild drought is detected in the near future period of the 2030s. As
the projection period’s length increases, the number of cities affected by drought increases.
Although this trend is seen in both scenarios, the severity of drought in RCP8.5 is higher
than in RCP4.5. It is expected that Nehbandan, Ferdows, Neishabour, Sabzevar, Bardaskan,
and Kalat (in RCP8.5) and Bardaskan (in RCP4.5) would experience “very severe drought”
in the period of 2090s. The cities in the southern and western parts of the region under
study, including Neishabour, Bardaskan, Sabzevar, Tabas, Bashrueieh, and Nehbandan, are
expected to experience more drought in the future than in the observation period.
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Level of exposure, sensitivity, and adaptation capacity are three components to esti-
mate future drought vulnerability using Equation (7). In this research, while the future
exposure level was projected using SPEI drought index, the amount of future sensitivity
and adaptation capacity was considered the same as the base period due to the complexity
and low predictability socioeconomic variables. After estimating drought vulnerabilities,
their amount was scaled to 0–100 based on Equations (8) and (9). The overall results showed
that the region would be more vulnerable to drought than the base period (Figures 8 and 9).
We calculated the mean vulnerability class to be 20–30 in the observation period, while
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it is estimated to jump to the upper vulnerability class of 30–40 in the near future of the
2030s, with higher magnitude in the northeastern, eastern, and central part of the region.
The western half of the region, including Bardaskan, Jajarm, Sabzevar, Tabas, which are
generally in the neighborhood of the desert area, is expected to face an increase in vulnera-
bility in the near future period. In the same decade, northern counties, including Dargaz
and Sarakhs, and the eastern part of Khaf and Qaen, would experience the highest increase
in vulnerability class compared to other counties. However, the increase in vulnerability
class in the number of counties located in the west of the study region is higher than those
counties in the eastern and central regions. Both RCP scenarios indicate an increase in
drought vulnerability classes, but its severity in RCP8.5 is greater than RCP 4.5. The highest
drought vulnerability index in the observed and near-future period was estimated for
Dargaz county with 43.7 and 49.7, respectively. It seems that the higher vulnerability of
Dargaz is due to its poor infrastructure (lowest adaptive capacity), high sensitivity, and
higher exposure (projected drought class in the near future). Although the mean annual pre-
cipitation of this city is rarely 220 mm, rice is cultivated in the northern part of this county,
which negatively affects the level of sensitivity. In the 2050s, the minimum vulnerability
class is 30 in both RCP scenarios, showing an increasing trend compared to the 2030s. In the
2090s, even the vulnerability class of 90–100 was projected under the RCP8.5 scenario. In
the middle decades, the Sabzevar county vulnerability index is projected to be the highest
among all counties (58.4, 70.2, and 82.8 in 2050, 2070, and 2090, respectively). The reason for
the highest amount of DVI in Sabzevar may be due to the fact that its future drought class
is in the highest projected class. The lowest drought vulnerability both in the observed and
future periods is related to Taybad city. In the observation period, three cities of Taybad,
Neyshabur, and Razhave the minimum amount of DVI, while future projected drought in
Taybad is a lower class of drought compared to other counties.

The highest relative increase among the study region belongs to Sabzevar and Bar-
daskan, respectively. The results showed that Sabzevar DVI’s magnitude is expected to
increase by 47% in the 2050s compared to the 2030s. Its DVI in the 2090s was 82% higher
than the observed period. It is necessary to point out that its SPEI index in the 2030s and
2050s is estimated to be −0.46 and −0.97, respectively. The county’s SPEI index has been
detected to increase from −0.46 in the 2030s to −0.97 in the 2050s. In RCP8.5, the value
has been projected to be −1.54 in 2070 and −2.07 in 2090. Because of many shortcomings
or lack of socioeconomic data, it was impossible to estimate the adaptation capacity and
sensitivity in the two counties of Farouj (North Khorasan) and Kalat (Khorasan Razavi).

The region means DVI in the observation period is 33 (out of 100), while the future
projection is 67 and 78 in RCP4.5 and RCP8.5, respectively. It indicates a 2 to 3-fold increase
in the vulnerability of northeast Iran compared to the observation period. Results also
indicate an increasing trend in the mean regional amount of DVI index under RCP4.5
and RCP8.5 scenarios during the near future of 2021–2040 (the 2030s) to the far future
(2090s) periods.

Figure 10 shows the mean provincial DVI from the near future (the 2030s) to the far
future (2090s). South Khorasan is expected to experience the highest increase in drought
vulnerability index, especially in the RCP8.5 scenarios. Its province vulnerability index in
the 2030s and 2050s is 31 and 47.4, respectively. It has increased to 79 in the last decade of
the 21st century, mainly due to rising SPEI drought due to reduced rainfall and increased
temperatures when compared to two other provinces of Khorasan Razavi and North
Khorasan. in Khorasan Razavi province, the highest amount of drought vulnerability
is projected to be in the 2030s and 2050s under RCP4.5 and RCP8.5 scenarios, while in
South Khorasan, the highest amount of DVI expected to be in the 2070s and 2090s, under
both scenarios.

In the 2050s under RCP8.5 scenarios, a large area in the northeast region is more
vulnerable than RCP84.5 scenarios. However, the area of severe drought vulnerability in the
2070s under RCP8.5 is estimated to be 96.3% higher than observation. In contrast, according
to RCP4.5, 77% of the Northeast region will experience severe drought vulnerability
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compared to the observation. In order to explain the projections uncertainties, the 25th and
75th percentile of all projections retrieved from different models-scenarios were considered.
Figure 11 shows mean regional drought vulnerability arising from different model scenarios
during observation and future periods of the 2030s–2090s. The figure also shows the DVI’s
deviation from the 50th percentile (black-dashed line), which corresponds to the range of
DVI’s uncertainties across decades. It can be depicted that projection length increases the
width of uncertainty. The most uncertain projection period is the 2090s.

Atmosphere 2021, 12, x FOR PEER REVIEW 16 of 23 
 

 

2050s is estimated to be −0.46 and −0.97, respectively. The county’s SPEI index has been 
detected to increase from −0.46 in the 2030s to −0.97 in the 2050s. In RCP8.5, the value has 
been projected to be −1.54 in 2070 and −2.07 in 2090. Because of many shortcomings or lack 
of socioeconomic data, it was impossible to estimate the adaptation capacity and sensitiv-
ity in the two counties of Farouj (North Khorasan) and Kalat (Khorasan Razavi).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Drought vulnerability index for the 2030s, 250s, 2070s and 2090s under RCP4.5 scenarios. Counties with white 
hachure show lack of data. 

Figure 8. Drought vulnerability index for the 2030s, 2050s, 2070s, and 2090s under RCP4.5 scenarios. Counties with white
hachure show lack of data.



Atmosphere 2021, 12, 1704 17 of 22Atmosphere 2021, 12, x FOR PEER REVIEW 17 of 23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Drought vulnerability index for the 2030s, 250s, 2070s and 2090s under RCP8.5 scenarios. Counties with white 
hachure show lack of data. 

The region means DVI in the observation period is 33 (out of 100), while the future 
projection is 67 and 78 in RCP4.5 and RCP8.5, respectively. It indicates a 2 to 3-fold in-
crease in the vulnerability of northeast Iran compared to the observation period. Results 
also indicate an increasing trend in the mean regional amount of DVI index under RCP4.5 
and RCP8.5 scenarios during the near future of 2021–2040 (the 2030s) to the far future 
(2090s) periods. 

Figure 9. Drought vulnerability index for the 2030s, 2050s, 2070s, and 2090s under RCP8.5 scenarios. Counties with white
hachure show lack of data.



Atmosphere 2021, 12, 1704 18 of 22

Atmosphere 2021, 12, x FOR PEER REVIEW 18 of 23 
 

 

Figure 10 shows the mean provincial DVI from the near future (the 2030s) to the far 
future (2090s). South Khorasan is expected to experience the highest increase in drought 
vulnerability index, especially in the RCP8.5 scenarios. Its province vulnerability index in 
the 2030s and 2050s is 31 and 47.4, respectively. It has increased to 79 in the last decade of 
the 21st century, mainly due to rising SPEI drought due to reduced rainfall and increased 
temperatures when compared to two other provinces of Khorasan Razavi and North 
Khorasan. in Khorasan Razavi province, the highest amount of drought vulnerability is 
projected to be in the 2030s and 2050s under RCP4.5 and RCP8.5 scenarios, while in South 
Khorasan, the highest amount of DVI expected to be in the 2070s and 2090s, under both 
scenarios. 

   

   
Figure 10. Maps showing the projected level of Drought Vulnerability Index (DVI) over North Khorasan, Khorasan-Ra-
zavi, and South Khorasan provinces under RCP4.5 (above) and RCP8.5 (below). 

In the 2050s under RCP8.5 scenarios, a large area in the northeast region is more vul-
nerable than RCP84.5 scenarios. However, the area of severe drought vulnerability in the 
2070s under RCP8.5 is estimated to be 96.3% higher than observation. In contrast, accord-
ing to RCP4.5, 77% of the Northeast region will experience severe drought vulnerability 
compared to the observation. In order to explain the projections uncertainties, the 25th 
and 75th percentile of all projections retrieved from different models-scenarios were con-
sidered. Figure 11 shows mean regional drought vulnerability arising from different 
model scenarios during observation and future periods of the 2030s–2090s. The figure also 
shows the DVI’s deviation from the 50th percentile (black-dashed line), which corre-
sponds to the range of DVI’s uncertainties across decades. It can be depicted that projec-
tion length increases the width of uncertainty. The most uncertain projection period is the 
2090s. 

Figure 10. Maps showing the projected level of Drought Vulnerability Index (DVI) over North Khorasan, Khorasan-Razavi,
and South Khorasan provinces under RCP4.5 (above) and RCP8.5 (below).

Atmosphere 2021, 12, x FOR PEER REVIEW 19 of 23 
 

 

 

Figure 11. DVI’s mean regional uncertainty over northeast of Iran. 

4. Discussion 
Several methods have been proposed to estimate drought vulnerability as a basis for 

preparing future regional drought policies. These methods range from simple equal 
weighting methods such as Ahmadi et al. [35] to rather more sophisticated entropy 
weighted methods such as Guo et al. [28]. In this study, a simple equal weighting ap-
proach was used. 

4.1. Observation Vulnerability 
The observed DVI is calculated by having exposure (SPEI drought index), sensitivity, 

and adaptive capacity. Values of sensitivity and adaptive capacity of each county were 
estimated using scaled socioeconomic data from two national censuses. Results showed 
that most cities in the study region are sensitive to drought. The highest amount of sensi-
tivity belongs to Mashhad, Kashmar, and Taybad. In contrast, the lowest amount of vul-
nerability belongs to Sarayan, Dargaz, and Bajestan, which are consistent with their soci-
oeconomic conditions, i.e., the population of migrants, the ratio of agricultural land to the 
county’s total area, social insurance, and the list goes on. Adaptive capacity, which is the 
degree of resistance of each county to drought, may reduce vulnerability. Results show 
that Taybad, Garmeh, Sarayan counties have the minimum adaptive capacity, while Kash-
mar, Mashhad, and Birjand have higher adaptive capacity among all counties under 
study. Almost most counties with low adaptation capacity are located in less developed 
areas. During the observation period (1986–2005), Birjand, Mashhad, and Chenaran had a 
higher exposure (drought) among all counties. The highest exposure (droughts) caused 
Dargaz and Mashhad to suffer the most vulnerability during the observation. Addition-
ally, the lower amount of exposure caused Taybad to have a minimum amount of baseline 
vulnerability. We found that Khorasan-Razavi had the highest vulnerability among the 
three study provinces. Our finding is inconsistent with the results of Ahmadi et al. [35] over 
Sistan and Baluchistan province, a neighboring province to the current study region, and Pur-
taheri et al., Masoudi et al. over all provinces of Iran and Carrao et al. over all countries [48–
50]. 

4.2. Future Vulnerability 
It seems that there are no significant studies related to future drought vulnerability 

projection over Iran. In this regard, comparing the current study’s findings with other 
studies is very hard. However, when considering the exposure component of DVI, many 

Figure 11. DVI’s mean regional uncertainty over northeast of Iran.

4. Discussion

Several methods have been proposed to estimate drought vulnerability as a basis for
preparing future regional drought policies. These methods range from simple equal weight-
ing methods such as Ahmadi et al. [35] to rather more sophisticated entropy weighted
methods such as Guo et al. [28]. In this study, a simple equal weighting approach was used.

4.1. Observation Vulnerability

The observed DVI is calculated by having exposure (SPEI drought index), sensitivity,
and adaptive capacity. Values of sensitivity and adaptive capacity of each county were
estimated using scaled socioeconomic data from two national censuses. Results showed
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that most cities in the study region are sensitive to drought. The highest amount of
sensitivity belongs to Mashhad, Kashmar, and Taybad. In contrast, the lowest amount of
vulnerability belongs to Sarayan, Dargaz, and Bajestan, which are consistent with their
socioeconomic conditions, i.e., the population of migrants, the ratio of agricultural land
to the county’s total area, social insurance, and the list goes on. Adaptive capacity, which
is the degree of resistance of each county to drought, may reduce vulnerability. Results
show that Taybad, Garmeh, Sarayan counties have the minimum adaptive capacity, while
Kashmar, Mashhad, and Birjand have higher adaptive capacity among all counties under
study. Almost most counties with low adaptation capacity are located in less developed
areas. During the observation period (1986–2005), Birjand, Mashhad, and Chenaran had a
higher exposure (drought) among all counties. The highest exposure (droughts) caused
Dargaz and Mashhad to suffer the most vulnerability during the observation. Additionally,
the lower amount of exposure caused Taybad to have a minimum amount of baseline
vulnerability. We found that Khorasan-Razavi had the highest vulnerability among the
three study provinces. Our finding is inconsistent with the results of Ahmadi et al. [35]
over Sistan and Baluchistan province, a neighboring province to the current study region,
and Purtaheri et al., Masoudi et al. over all provinces of Iran and Carrao et al. over all
countries [48–50].

4.2. Future Vulnerability

It seems that there are no significant studies related to future drought vulnerability
projection over Iran. In this regard, comparing the current study’s findings with other
studies is very hard. However, when considering the exposure component of DVI, many
studies have indicated the increase of drought events and intensity over Iran, including
IPCC [1], Zhao et al., Lu et al., Vaghefi et al., and Khazanedari et al. [51–54], To project future
evolution of drought vulnerability over study region, one may project all components
involved in vulnerability, including exposure, sensitivity, and adaptive capacity. Here,
we have considered sensitivity and adaptive capacity to be constant in the future, and
exposure is projected by the projection of drought using SPEI index for all counties located
in the region. Results indicated that vulnerability would be increased under RCP4.5 and
RCP8.5 compared to the observation period, and as an average, vulnerability under RCP8.5
is greater than RCP4.5. A Maximum amount of vulnerability is expected to occur at the
end of 21st century, i.e., 2081–2100, but in RCP8.5, it is expected to occur one decade earlier.
In the latest decade, most of the counties are expected to face with “high” to “very high”
class of vulnerability, while their class in the observation period was “very low” to “low”
as an average. A higher amount of vulnerability is projected to be under RCP8.5 and
at the end of the current century. It is expected that, by the end of the 21st century, the
study region would experience a drought vulnerability index ranging from 67 and 78
(high vulnerability), which is 2 to 3 times than the observation period. All worse class of
vulnerability projected to occur in South-Khorasan and Khorasan-Razavi provinces, with
the worst case in south Khorasan

4.3. Uncertainty

All projection members arise from three GCMs, and two scenarios, a total of six members,
explain the uncertainty of future drought vulnerability projection. To this end, thresholds of
25th and 75th percentile of all member runs were incorporated in explaining uncertainty for
each county. In general, it can be concluded that uncertainty increases with the increasing
length of projection. Most of the uncertainty belongs to the latest decade of the 21st century.

5. Conclusions

This paper simulates future drought vulnerability over the northeast of Iran, which
are highly dependent on water due to their economy being mainly based on agriculture
and animal husbandry. Reducing drought vulnerability requires accurate and continuous
assessment of three vulnerability components of exposure, adaptive capacity, and sensitivi-
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ties. This study computed the observed vulnerability components based on meteorological
and socioeconomic data retrieved from related organizations. Most reliable CMIP5 GCMs
over the region were extracted through 19 GCMs by comparing historical outputs with the
observation dataset. Then future drought vulnerability is projected by incorporation base-
line adaptation capacity and sensitivity and projected level of exposure. We projected that
the class of vulnerability over study region, especially in South Khorasan and Khorasan-
Razavi, expected to increase 2–3 times than observation, so that its class of vulnerability
expected to change from “very low to low” to “high to very high” at the end of 21st century.
In other words, the results indicated that only in North Khorasan province is expected to
have a vulnerability class of “very low,” and in none of the provinces, the vulnerability
class of “very high” under the RCP4.5 scenario. In the RCP8.5 scenario, however, the “very
low” vulnerability class is not estimated for any of the provinces, and by the end of the 21st
century, all studied provinces are expected to experience a new, worse vulnerability class of
“very high”. As the contribution of the sensitivity and adaptation capacity in vulnerability
is of high importance, it is recommended to regional officials and senior planners to reduce
the region’s sensitivity to drought and increase adaptation capacity. This research also can
be improved by modifying sensitivity and adaptation capacity as a constant to dynamic
and projectable components in the future period.

Author Contributions: Conceptualization, I.B., A.E.R., M.H., M.B. and A.E.; methodology, I.B.,
A.E.R., M.B., M.B.A. and A.E.; software, I.B. and A.E.R.; validation, I.B. and A.E.R.; formal analysis,
I.B. and A.E.R.; investigation, I.B. and A.E.R.; data curation, I.B. and A.E.R.; writing—original draft
preparation, I.B. and A.E.R.; writing—review and editing, I.B., A.E.R. and M.H.; visualization, I.B.
and A.E.R. All authors have read and agreed to the published version of the manuscript.

Funding: Open Access Funding by the University of Graz.

Data Availability Statement: All data used in this study are available upon request.

Acknowledgments: The authors acknowledge the financial support provided by the University
of Graz. We would like to thank all the Data providers. Data were provided by Iran Meteoro-
logical Organization, the European Centre for Medium-Range Weather Forecasts (ECMWF) and
Integrated Climate Data Center−ICDC, National Planning and Budget Organization (NPBO), we
also acknowledge the World Climate Research Program’s Working Group on Coupled Modeling,
which is responsible for CMIP.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Code Availability: The software was used in this study was R, which has been using as a program-
ming language and free software for statistical computing and graphics.

Ethics Approval: (1) This material is the authors’ original work, which has not been previously
published elsewhere. (2) The paper is not currently being considered for publication elsewhere.
(3) The paper reflects the authors’ research and analysis wholly and truthfully. (4) The paper
properly credits the meaningful contributions of co-authors and co-researchers. (5) The results are
appropriately placed in the context of prior and existing research. (6) All sources used are correctly
disclosed (correct citation). Copying of text must be indicated as such by using quotation marks and
giving proper reference. (7) All authors have been personally and actively involved in substantial
work leading to the paper and will take public responsibility for its content. The violation of the
Ethical Statement rules may result in severe consequences. I agree with the above statements and
declare that this submission follows Solid-State Ionics’ policies outlined in the Guide for Authors
and the Ethical Statement.

Consent to Participate: I am a corresponding author; on behalf of the other authors, I declare that
we are satisfied with participating in the research.

Consent for Publication: I am a corresponding author; on behalf of the other authors, I declare that
we are pleased to publish this valuable Journal research.



Atmosphere 2021, 12, 1704 21 of 22

References
1. IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press.

2. Adaawen, S. Understanding Climate Change and Drought Perceptions, Impact and Responses in the Rural Savannah, West
Africa. Atmosphere 2021, 12, 594. [CrossRef]

3. Li, Z.; Sun, Y.; Li, T.; Chen, W.; Ding, Y. Projections of South Asian Summer Monsoon under Global Warming from 1.5 ◦C to 5 ◦C.
J. Clim. 2021, 34, 7913–7926. [CrossRef]

4. Angélil, O.; Stone, D.; Wehner, M.; Paciorek, C.J.; Krishnan, H.; Collins, W. An Independent Assessment of Anthropogenic
Attribution Statements for Recent Extreme Temperature and Rainfall Events. J. Clim. 2017, 30, 5–16. [CrossRef]

5. Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index.
J. Clim. 2015, 28, 5430–5447. [CrossRef]

6. Stott, P.A.; Christidis, N.; Otto, F.E.L.; Sun, Y.; Vanderlinden, J.P.; van Oldenborgh, G.J.; Vautard, R.; von Storch, H.; Walton, P.;
Yiou, P.; et al. Attribution of extreme weather and climate-related events. WIREs Clim. Chang. 2016, 7, 23–41. [CrossRef]

7. Babaeian, I.; Najafinik, Z.; Zabol-Abbasi, F.; Habibi-Nokhandan, M.; Adab, H.; Malbusi, S. Climate change assessment over Iran
during 2010–2019 using downscaling of ECHO-G GCM model. Geogr. Dev. 2010, 7, 135–152.

8. Ghahreman, N.; Gharakhni, A. Trend analysis of mean wind speed in different climatic regions of Iran. Iran. J. Lrrigation Drain.
2010, 4, 31–43.

9. Yueyue, H.; Changchun, Z.; Tanveer, A. Vulnerability assessment of rural social-ecological system to climate change: A case study
of Yunnan Province, China. Intl. J. Clim. Chang. Strateg. Manag. 2021, 13, 162–180.

10. Buda, S.; Jinlong, H.; Sanjit, K.M.; Jianqing, Z.; Yanjun, W.; Shanshan, W.; Miaoni, G.; Yanran, L.; Shan, J.; Tong, J.; et al. Insight
from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375.

11. Shanshan, W.; Anqian, W.; Hui, T.; Khalid, M.; Jinlong, H.; Jianqing, Z.; Cheng, J.; Ghulam, R.; Buda, S. Population exposed to
drought under the 1.5 ◦C and 2.0 ◦C warming in the Indus River Basin. Atmos. Res. 2019, 218, 296–305.

12. Emadodin, I.; Reinsch, T.; Taube, F. Drought and Desertification in Iran. Hydrology 2019, 6, 66. [CrossRef]
13. Abbasi, F.; Kuhi, M.; Javanshiri, Z.; Malbusi, S.; Falamarzi, Y.; Babaeian, I.; Habibi-Nokhandan, M. Climate change detection

update over weather stations of Iran. J. Clim. Res. 2020, 11, 46.
14. Babaeian, I.; Karimian, M.; Modirian, R.; Mirzaei, E. Future Climate Change Projection over Iran using CMIP5 Data during

2020–2100. Nivar 2019, 43, 62–71.
15. Saburi, G.; Musavi-Baygi, M.; Babaeian, I. Study of changes in Iran’s climatic zones until 2100 under the Global Warming

using statistical downscaling of GCM models. In Proceeding of the Fifth Regional Climate Change Conference, Tehran, Iran,
25 February 2016.

16. Mosadegh, E.; Babaeian, I.; Baygi, M. Uncertainty Assessment of GCM Models in Predicting Temperature, Precipitation and Solar
Radiation Under Climate Change Impact in Tehran, Iran. In Proceedings of the Climate Change Impacts on Water Resources,
Belgrade, Serbia, 17–18 October 2013.

17. Bannayan, B.; Mohamadian, A.; Alizadeh, A. On Climate Variability in North-East of Iran. J. Water Soil 2010, 24, 118–131.
18. Babaeian, I.; Karimian, M.; Modiriyan, R.; Falamarzi, Y.; Koohi, M. Future Precipitation and Temperature Projection over Eastern

Provinces of Iran using Combined Dynamical–Statistical Downscaling Technique. Clim. Chang. Res. 2021, 2, 41–58.
19. Salimi-Fard, M.; Sanaei-Nejad, H.; Jabari-Noghabi, M.; Sabet-Dizavandi, L. Detecting the effect of climate change on extreme

temperature events in Khorasan Razavi province Case study: 1990–2015. J. Clim. Res. 2017, 29, 111–124.
20. Kouzegaran, S.; Mousavi-Baygi, M. Investigation of Meteorological Extreme Events in the North-East of Iran. J. Water Soil 2015,

29, 750–764.
21. Babaeian, I.; Koohi, M. Agroclimatic Indices Assessment over Some Selected Weather Stations of Khorasan Razavi Province

Under Climate Change Scenarios. J. Water Soil 2012, 26, 953–967.
22. Engström, J.; Jafarzadegan, K.; Moradkhani, H. Drought Vulnerability in the United States: An Integrated Assessment. Water

2020, 12, 2033. [CrossRef]
23. Adger, W.N. Vulnerability. Glob. Env. Chang. 2006, 16, 268–281. [CrossRef]
24. Kristie, L.; Kathryn-Bowen, E. Extreme events as sources of health vulnerability: Drought as an example. Weather. Clim. Extrem.

2016, 11, 95–102.
25. Dai, A. Drought under global warming: A review. Wiley Interdiscipl. Rev. Clim. Chang. 2011, 2, 45–65. [CrossRef]
26. Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120.

[CrossRef]
27. Spinonia, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new

global database of meteorological drought events from 1951. Hydrol. Reg. Stud. 2019, 22, 100593. [CrossRef] [PubMed]
28. Guo, H.; Chen, J.; Pan, C. Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China. Int. J.

Environ. Res. Public Health 2021, 18, 4449. [CrossRef]
29. Duong, H.; Thuc, H.; Ribbe, T. Assessing and Calculating a Climate Change Vulnerability Index for Agriculture Production in the

Red River Delta, Vietnam. Redefining Divers. Dyn. Nat. Resour. Manag. Asia 2017, 2, 27–40.

http://doi.org/10.3390/atmos12050594
http://doi.org/10.1175/JCLI-D-20-0547.1
http://doi.org/10.1175/JCLI-D-16-0077.1
http://doi.org/10.1175/JCLI-D-14-00707.1
http://doi.org/10.1002/wcc.380
http://doi.org/10.3390/hydrology6030066
http://doi.org/10.3390/w12072033
http://doi.org/10.1016/j.gloenvcha.2006.02.006
http://doi.org/10.1002/wcc.81
http://doi.org/10.1080/02508068508686328
http://doi.org/10.1016/j.ejrh.2019.100593
http://www.ncbi.nlm.nih.gov/pubmed/32257820
http://doi.org/10.3390/ijerph18094449


Atmosphere 2021, 12, 1704 22 of 22

30. Tsesmelis, D.E.; Karavitis, C.A.; Oikonomou, P.D.; Alexandris, S.; Kosmas, C. Assessment of the Vulnerability to Drought and
Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive
Areas Index (ESAI). Resources 2019, 8, 6. [CrossRef]

31. Ortega-Gaucin, D.; Bartolón, J.C.; Bahena, H.V.C. Drought Vulnerability Indices in Mexico. Water 2018, 10, 1671. [CrossRef]
32. Dabanli, I. Drought Risk Assessment by Using Drought Hazard and Vulnerability Indexes. Nat. Hazards Earth Syst. Sci. Discuss.

2018. [CrossRef]
33. Noorisameleh, Z.; Khaledi, S.; Shakiba, A.; Zeaiean-Firouzabadi, P.; Gough, W.A.; Qader-Mirza, M. Comparative evaluation of

impacts of climate change and droughts on river flow vulnerability in Iran. Water Sci. Eng. 2020, 13, 265–274. [CrossRef]
34. Zarafshani, K.; Sharafi, L.; Azadi, H.; Van Passel, S. Vulnerability assessment models to drought: Toward a conceptual framework.

Sustainability 2016, 8, 588. [CrossRef]
35. Ahmadi, E.; Hejazizadeh, Z.; Alijani, B.; Saligheh, M.; Danaiefard, H. A New Climate Vulnerability Index Sistan and Baluchistan

province. Res. Geogr. Sci. 2015, 15, 73–96.
36. Ekrami, M.; Fatehimarj, A.; Barkhordaeu, J. Assessment Agricultural Drought Vulnerability in Arid and S-arid climates using GIS

and AHP, A Case Study for Taft Township: Yazd Province-Iran. Irrig. Water J. 2015, 5, 107–117.
37. Hoseini, S.S.; Nazari, M.R.; Araghinejad, S. Investigating the impacts of climate on agricultural sector with emphasis on the role

of adaptation strategies in this sector. Iran. J. Agric. Econ. Dev. Res. 2013, 44, 1–16.
38. Fatehimarj, A.; Hassaniabadi, F. Developing an Agricultural Drought Risk Management Plan: Pilot Project for Alamut-Ghazvin; Final

Project Report; Soil Conservation and Watershed Management Research Institute: Tehran, Iran, 2012.
39. Raziei, T.; Sotoudeh, F. Investigation of the accuracy of the European Center for Medium Range Weather Forecasts (ECMWF) in

forecasting observed precipitation in different climates of Iran. J. Earth Space Phys 2017, 43, 133–147.
40. Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S. Precipitation downscaling under

climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1–34.
[CrossRef]

41. Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional
climate models. Int. J. Climatol. 2011, 31, 1531–1544.

42. Sarr, M.A.; Seidou, O.; Tramblay, Y.; El Adlouni, S. Comparison of downscaling methods for mean and extreme precipitation in
Senegal. J. Hydrol. Reg. Stud. 2015, 4, 369–385. [CrossRef]

43. Xuewei, F.; Jiang, L.; Jiaojiao, G. Statistical downscaling and projection of future temperatures across the Loess Plateau, China.
Weather. Clim. Extrem. 2021, 32, 100328.

44. Smid, M.; Cristina-Costa, A. Climate projections and downscaling techniques: A discussion for impact studies in urban systems.
Int. J. Urban Sci. 2018, 22, 277–307. [CrossRef]

45. Ruti, P.; Ruti, P.M.; Somot, S.; Giorgi, F.; Dubois, C.; Flaounas, E.; Obermann, A.; Dell’Aquila, A.; Pisacane, G.; Harzallah, A.; et al.
MED-CORDEX initiative for Mediterranean Climate studies. Bull. Amer. Met. Soc. 2016, 97, 1187–1208. [CrossRef]

46. Vicente-Serrano, S.M.; Begueria, S.; Lopezmoreno, J.L. A multiscalar drought index sensitive to global warming: The standardized
precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

47. UNDP. Calculating the Human Development Indices; Technical Note 1 in Human Development Report; UNDP: New York, NY, USA,
2002; 253p.

48. Purtaheri, M.; Eftekhari, R.; Kazemi, N. Level and degree of drought vulnerability in rural areas of Iran from farmers views. J.
Geogr. Res. 2016, 48, 19–31.

49. Masoudi, M.; Hakimi, S. A new model for vulnerability assessment of drought in Iran using Percent of Normal Precipitation
Index (PNPI). Iran. J. Sci. Technol. Trans. A Sci. 2014, 38, 435–440.

50. Carrao, H.; Naumann, G.; Barbosa, P. Mapping global patterns of drought risk: An empirical framework based on sub-national
estimates of hazard, exposure and vulnerability. J. Glob. Environ. Chang. 2016, 39, 108–124. [CrossRef]

51. Zhao, T.; Dai, A. The Magnitude and Causes of Global Drought Changes in the Twenty-First Century under a Low–Moderate
Emissions Scenario. J. Clim. 2015, 28, 4490–4512. Available online: https://journals.ametsoc.org/view/journals/clim/28/11/jcli-
d-14-00363.1.xml (accessed on 18 November 2021). [CrossRef]

52. Lu, J.; Carbone, G.J.; Grego, J.M. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models.
Sci. Rep. 2019, 9, 4922. [CrossRef]

53. Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The future of extreme
climate in Iran. Sci. Rep. 2019, 9, 1464. [CrossRef] [PubMed]

54. Khazanedari, L.; Zabol-abbasi, F.; Ghandhari, S.; Kuhi, M.; Malbusi, S. Drought conditions in the next thirty years in Iran. J.
Geograpgy Reg. Dev. 2009, 7, 83–98. [CrossRef]

http://doi.org/10.3390/resources8010006
http://doi.org/10.3390/w10111671
http://doi.org/10.5194/nhess-2018-129
http://doi.org/10.1016/j.wse.2020.05.001
http://doi.org/10.3390/su8060588
http://doi.org/10.1029/2009RG000314
http://doi.org/10.1016/j.ejrh.2015.06.005
http://doi.org/10.1080/12265934.2017.1409132
http://doi.org/10.1175/BAMS-D-14-00176.1
http://doi.org/10.1175/2009JCLI2909.1
http://doi.org/10.1016/j.gloenvcha.2016.04.012
https://journals.ametsoc.org/view/journals/clim/28/11/jcli-d-14-00363.1.xml
https://journals.ametsoc.org/view/journals/clim/28/11/jcli-d-14-00363.1.xml
http://doi.org/10.1175/JCLI-D-14-00363.1
http://doi.org/10.1038/s41598-019-41196-z
http://doi.org/10.1038/s41598-018-38071-8
http://www.ncbi.nlm.nih.gov/pubmed/30728418
http://doi.org/10.22067/geography.v7i12.8929

	Introduction 
	Materials and Methods 
	Area and Period of Study 
	Data 
	Statistical Downscaling 
	Exposure (E) 
	Sensitivity (S) 
	Adaptive Capacity (AC) 
	Drought Vulnerability Index (DVI) 

	Results 
	Observed Vulnerability 
	Future Vulnerability 

	Discussion 
	Observation Vulnerability 
	Future Vulnerability 
	Uncertainty 

	Conclusions 
	References

