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Abstract: Greenhouse gases and air pollutant emissions originating from road transport continues
to rise in the UK, indicating a significant contribution to climate change and negative impacts on
human health and ecosystems. However, emissions are usually estimated at aggregated levels,
and on many occasions roads of minor importance are not taken into account, normally due to lack of
traffic counts. This paper presents a methodology enabling estimation of air pollutants and CO; for
each street segment in the Greater London area. This is achieved by applying a hybrid probabilistic
classification-regression approach on a set of variables believed to affect traffic volumes and utilizing
emission factors. The output reveals pollution hot spots and the effects of open spaces in a spatially
rich dataset. Considering the disaggregated approach, the methodology can be used to facilitate
policy making for both local and national aggregated levels.

Keywords: greenhouse gases; air pollution; gradient boosting machine; GBM; probabilistic classifica-
tion; annual average daily traffic (AADT); GIS

1. Introduction

Recent data show that despite a decrease in the UK’s total greenhouse gas (GHG)
emissions by 32% since the 1990s, emissions from road transport have increased by 6%
during the same period [1]. In fact, road transport alone makes up approximately 20%
of the UK’s total GHG emissions [1] with 92% of emissions originating from transport—
and in particular CO, [2]—having global impacts and contributing to climate change [3].
In addition, road transport is a significant source of air pollutants—such as nitrogen
oxides (NOy), particulate matter (PM) and carbon monoxide (CO)—contributing up to 80%
of total transport pollutant emissions [4]. These pollutants are responsible for negative
impacts on human health and ecosystems [5] and even though there has been a significant
reduction in emissions, damage to human health can occur even at low levels [6,7].

To date, a number of studies have focused on the estimation of GHG and air pollutant
emissions from the road transport sector to further understand environmental and health
implications and facilitate policy making. However, numerous limitations and diverse re-
sults are observed, usually depending on the selected model and data availability, subject to
area/country of application. For example, emissions are usually estimated at an aggregated
level such as national, regional or city-wide e.g., [8-10]. Therefore, conclusions about local
impacts cannot be drawn. In addition, some countries—such as the UK—estimate emis-
sions on roads of minor importance based on average regional flows [11,12], due to lack
of traffic measurements on these roads. Considering that minor roads are less crowded,
but make up 87% of total road length in the UK [13], the aforementioned methodological
approach implies incomplete and unreliable emission estimation across the full extent of
the road network.

Consequently, traffic flow estimation for roads where data is not available has been
investigated in numerous studies, where several influencing factors have been incorporated.
In particular, estimation of annual average daily traffic (AADT)—a measure of traffic flow
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defined as the average traffic volume of a street segment on an average day in the year [14]—
has been investigated in studies on motorised, e.g., [15] and non-motorised transport
e.g., [16,17]. However, estimation is mainly conducted on total AADT while the volumes
of specific vehicle types—and the associated emissions—in the road network is still to a
great extent unexplored. Furthermore, research is mainly focused on AADT estimation
on major roads e.g., [18] with only a few studies incorporating minor roads e.g., [19,20].
The latter is considered fundamental to estimate traffic flows and related emissions for
various vehicle types, and facilitate policy making and urban and environmental planning.

The aim of this paper is to estimate specific air pollutants and GHGs (PM; 5, NOy,
CO and COy) at a detailed level of analysis (i.e., link/street segment) for all roads—major
and minor—in the Greater London area, while addressing and potentially overcoming the
identified limitations of the modelling implemented so far. To achieve this, we present a
two-fold methodological approach based on classification and regression models, where
emissions are estimated for all available vehicle types. The method incorporates data from
different sources partially manipulated within a geographic information system (GIS).
Considering the outputs are at detailed local levels, we envisage it can be used to identify
both hot spots of air pollution exposure and GHG emissions, as well as to estimate total
(i.e., aggregated) emissions.

The paper is presented in 7 sections. Section 2 introduces road transport emission
modelling approaches and respective applications. Section 3 presents the datasets used
and Section 4 describes the methodological steps followed to estimate emissions. Section 5
presents the outcomes from the modelling process, while in Section 6 we discuss these re-
sults. Finally, Section 7 concludes on the outcomes and investigates potential future studies
to improve our work.

2. Literature Review

Estimation of GHG and air pollutant emissions from road transport can be conducted
with the use of various emission models classified depending on geographic scale of appli-
cation, methodological approach and generic model type [21]. In particular, road transport
emission models can be classified into static and dynamic, with each type exhibiting ad-
vantages and disadvantages, mainly related to data availability, and required computer
processing as well as the scale of application. Static and dynamic models are further classi-
fied into (1) traffic situation, (2) instantaneous, (3) average speed and (4) aggregate emission
factor models [22]. The first three classes are also introduced in [23] and are generally ac-
cepted and widely used in the literature, although some studies use different classifications.
For example, [21] introduce variations of average speed and instantaneous models, [24]
classify the models based on the type of emissions, while [25] do so based on input data,
study scale and type of pollutants being modelled. The major requirement for all emissions
models is activity (i.e., traffic) data, extracted from transport models.

Traffic situation models estimate emissions related to particular traffic patterns, us-
ing emission factors for each situation, with situations defined in terms of road type,
area type, speed limit and congestion level where a specific traffic patterns occurs [26].
These models require information on vehicle kilometres travelled (VKT) and on the traffic
situation applied to each road link [27]. Incorporation of traffic situation models can be
found in a number of cases, such as the Handbook of Emission Factors for Road Transport
(HBEFA) database which provides emission factors based on defined traffic situations [28].
HBEFA has been used by [8] to estimate nitrogen oxides (NOy) in Madrid and [29] to esti-
mate carbon monoxide (CO), carbon dioxide (CO,) and NOy emissions with both studies
concluding that the model overestimates emissions. By contrast, [30] testing HBEFA on
CO concludes that the model underestimates emissions. The Assessment and Reliability of
Transport Emissions Models and Inventory Systems (ARTEMIS) is another traffic situation
model [31,32] consisting of a collection of sub-models [33]. The model has been used
by [34] to measure compound emissions for diesel and petrol vehicles and by [35] for CO,
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HC and NOx for two wheeled vehicles. ARTEMIS emission factors were also used by [36]
to estimate CO, in Sweden.

Instantaneous emission models relate emission rates to vehicle operational modes [27]
so that a traffic simulation module provides vehicle operation data and the emission module
assigns an emission factor to each combination of instantaneous speed and acceleration
rates [22]. The Passenger car and Heavy duty vehicle Emission Model (PHEM) is the
most significant example of an instantaneous model [25] based on parameters from real
driving conditions considering factors such as road gradients and vehicle loading [37].
PHEM is incorporated in the HBEFA model, providing evaporation emission factors for air
pollutants and CO, emissions [28].

Average speed models use average rather than instantaneous emission factors varying
according to the average speed of a vehicle [21] and applying to a street segment or an entire
journey [26]. The Computer Program to calculate Emissions from Road Transport (COPERT)
is the most widely used average speed tool for air pollutants and GHGs, where emission
factors are expressed as function of the average speed over a complete driving cycle [38] and
can also be used to provide distance-based emission factors. COPERT has been used and
integrated in numerous studies and models, such as the National Atmospheric Emissions
Inventory (NAEI) in the UK, providing emission maps based on spatial datasets and traffic
count data [11]. In other studies COPERT has been used by [39] to estimate CO,, NOy and
PMj, 5 on major roads in Belgium and [9] to assess the impact of a shift from private cars
and motorcycles to public transport, and a shift from conventional fuel use to natural
gas on GHG and air pollutant emissions in Malaysia. In China, [40] used the model to
estimate emissions from passenger cars, for three future scenarios, while in the UK [41]
used COPERT to predict impacts of CO,, NOy and black carbon based on different traffic
management measures in Glasgow.

Other less common models for estimating emissions from road transport in the UK
include: (1) the UK Transport Carbon Model (UKTCM) developed to provide annual pro-
jections for all passenger and freight transport supply and demand as well as estimate CO5,
CO, NOy, SO,, total hydrocarbons (THC) and PM emissions [42]. (2) The Background,
Road and Urban Transport modelling of Air quality Limit values (BRUTAL) model [43],
which is based on the previous Abatement Strategies Assessment Model (ASAM) [44] and
the UK Integrated Assessment Model (UKIAM) [45] using GIS and incorporating datasets
extracted from NAEI and COPERT. A different approach based on dispersion kernels is
incorporated in the SHERPA-city application developed by [46] and applied in Madrid to
estimate NOy and NO, concentrations. As an alternative and sometimes combined with the
set models discussed, a different methodological approach has been applied. In particular,
GHG and air pollutant emissions can be estimated by multiplying emission factors with
activity data (e.g., annual vehicle kilometres travelled), similar to the methodology used
in NAEI to estimate hot exhaust emissions [47]. In fact, VKT is also an essential input
for the COPERT model [48] and can be calculated by multiplying AADT by the length of
each link [49], an essential indicator for accurate VKT calculation [50]. This approach has
been used in [10] to estimate GHG, NO,, CO and SO, in Mauritius where traffic counts
(i.e., AADT) for all road classes are split by fuel type and fuel consumption is calculated
by vehicle type and road class. Similarly, [51] estimate NO, CO,, SO, PM and CO for a
particular road in Indonesia and [52] calculated VKT from traffic counts to estimate CO,
NOy, PM; 5 and volatile organic compounds (VOC) emitted from trucks on major roads in
a Korean metropolitan area. [53] also utilised traffic counts to calculate VKT and emissions
factors for each fuel and vehicle type to estimate CO; in Dhaka, Bangladesh and [54] esti-
mated road transport emissions from VKT based on AADT, to distribute emissions along
the road network in Salt Lake City, Utah. Finally, [55] used AADT values to calculate VKT
and estimate PM; 5, NOy and HC emissions for each road link in the Republic of Ireland.
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3. Data

To estimate emissions, we utilize datasets from different sources. For activity data,
we use the dataset presented in [56]. This spatial dataset contains traffic count points across
England and Wales for four road classes—'A’, ‘B’, ‘C’ and “U’. For each count point, AADT
values for five different vehicle types (cars and taxis, buses, light goods vehicles (LGVs),
heavy goods vehicles (HGVs) and two-wheeled vehicles) are provided, coupled with a
number of land use, socioeconomic, roadway and public transport characteristics in the
vicinity (The vicinity around each point is defined by service areas—i.e., buffers around
each point taking into account the road network—thus considering the actual distance
driven by each vehicle.) of each point considered as factors affecting AADT. The attributes
are shown in Table A1l in the Appendix A.

For each road class, meter count points are categorised in five subgroups generated by
clustering. For each subgroup, six service areas are computed, containing information on
attributes in the vicinity of the meter points. For each subgroup, the service area providing
the best AADT estimation is selected in the final model. For more information on the
process followed to build the dataset, the reader can refer to [56]. Sizes of service areas for
each road class and Subgroup are shown in Table 1.

Table 1. Service area by subgroup for each road class.

Class
Subgroup 1 2 3 4 5
Service Area Size (m)
A 800 1600 500 500 500
B 800 1000 800 800 2000
C 500 800 1000 800 2000
U 3200 800 1000 1000 2000

To account for all roads within the study area we also extract traffic count points
for motorways from the Department for Transport, where again AADT for the same
five vehicle categories are provided. In addition, we extract the London vehicle fleet
composition (Figure 1) and air pollutant emission factors from the NAEI providing details
for vehicle types and related fuels. CO, emission factors are extracted from The Department
for Business, Energy and Industrial Strategy (BEIS).

London Vehicle Fleet Composition

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
M Cars - Electric M Cars - Petrol M Cars - Diesel Taxis

B LGVs - Electric B LGVs - Petrol B LGVs - Diesel B HGVs - Rigid

W HGVs - Artic W TfL Buses H Non-TfL Buses / Coaches B Motorcycles

Figure 1. London vehicle fleet composition (LGV—Light Goods Vehicle, HGV—Heavy Goods Vehicle, Artic—Articulated Ve-
hicle, TfL—Transport for London).
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4. Methodology

To estimate GHG and air pollutant emissions, one of the identified approaches has
to be applied. However, from Section 2 it can be concluded that traffic situation and in-
stantaneous emissions models cannot be utilised. Traffic situation models require detailed
statistics for speed and a determination of each traffic situation for each road link [27]
making these models unsuitable for extended application [22]. Also, instantaneous models
are very rare [21] due to precision issues identified when measuring emissions, subject to
vehicle operating conditions [57], as well as the need to include traffic simulation models,
requiring a wide range of data which are difficult to obtain, calibrate and process [58].
By contrast, data required as inputs for average speed models are usually available and
the models are comprehensive in terms of number of pollutants that can be modelled,
vehicle types as well as influencing factors [26]. However, they do not take into account
different driving behaviours and operational modes [59] usually resulting in different
emissions and fuel consumption factors for the same speed [22]. Consequently, consider-
ing data availability we are estimating emissions in three major steps. First, we estimate
traffic volumes—i.e., AADT—at locations where counts have not been measured. Sec-
ond, we calculate VKT and finally, we use emission factors to estimate emissions following
the methodologies presented in [10] and [55] among others.

4.1. Annual Average Daily Traffic (AADT) Estimation

To estimate traffic counts at unmeasured locations, we create “artificial” traffic counters
at unmeasured street segments, by placing a point in the middle of each unmeasured
segment using a GIS. For each new point, we create service areas of different sizes to take
into account the land use, socioeconomic, roadway and public transport characteristics,
based on service areas selected for each road class. For example, for count points on
‘A’ roads only service areas of 500, 800 and 1600 metres are considered as shown in
Table 1. The process results in traffic counters with the same ID occurring multiple times in
the dataset, with variable values different for each service area.

Then, each new point is allocated to the subgroup with most similar characteristics
and the most suitable service area for each point based on the classification problems
discussed below is identified. Moreover, the dataset provided already incorporates values
for AADT—i.e., the value we aim to estimate—which has influenced the formation of
subgroups [56].

To tackle these issues, we firstly select the points falling within the Greater Lon-
don area, and we randomly split these—80% for training and 20% for testing—and exclude
the dependent variable (i.e., AADT). We then use the training set to train three different
classification algorithms (random forest (RF), gradient boosting machine (GBM), and K-
nearest neighbour) and test the accuracy with the testing set using a confusion matrix.
Among the three algorithms, GBM provided the highest classification accuracy (Table A2
in the Appendix A) and it is, therefore, selected to classify the new points.

Finally, to account for points with repeated IDs we apply a GBM probabilistic classi-
fication [60] for all new points and service areas, so as to identify the probability of each
point—and respective service area—belonging to each of the subgroups. For example,
for ‘A’ roads if a service area of 800 metres is selected for a point, then it should be assigned
to subgroup 1, but if a service area of 500 metres is selected, the point can belong to any of
subgroups 3, 4 or 5 as shown in Table 1.

GBM is essentially an ensemble of “weak” prediction models—usually decision trees—
aimed to improve accuracy by minimising the average value of the loss function L(y;, F(x))
on the training set [61], for a number of M iterations [62], where y; is the observed value
and F(x) is the corresponding function The probability of a point belonging to a class is
given by:

log (odds)
P(ylx)

where log(odds) represents the odds of a point belonging to a class.

)

- 1 4 elog (odds)
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The algorithm, starts with a constant function:

Fo(x) = argmin ) L(y;, ) ©)
i=1

where 7 is the value for log(odds).
For each iteration (i.e., m = 1 to M), pseudo-residuals (i.e., the difference between the
observed and predicted values) are computed:

= - [l F)

" Ni=1,2,...,n ®)
oF (x;) ]F(x)_P(ml)(x)

and a weak learner h,,(x) is fitted to the residual values. Moreover, the parameter 7, is
calculated as follows:

n
Ym = argmin 'y L(yir Fin—1)(xi) + “Yhm(x)) )
i

and the model is updated as Fy (x) = F(;,_1)(x) + Ymhm (x) where I, is the weak learner
for iteration m and vy;, the corresponding value extracted from Equation (4). Finally, the al-
gorithm concludes in the final Fy(x) output after M iterations.

After the new points are classified, to estimate AADT for each vehicle type, we apply
RF regression within each subgroup using the existing points to train the algorithm and
all the available independent variables. RF is applied for regression as the algorithm with
the highest estimation accuracy for this model and dataset [56] based on mean absolute
percentage error (MAPE) and root mean square error (RMSE). RF is a collection of decision
trees based on bootstrapping and bootstrap aggregation [63,64] and the regression is
performed as:

A 1B
fi =5 LT ©)
where: B is the number of trees and Ty (x) is the b*" tree grown from b bootstrapped data.

4.2. Vehicle Kilometres Travelled (VKT) and Emission Calculation

To calculate VKT we multiply the AADT values with the length of each street segment
for all vehicle types.

where i and j represent vehicle type and traffic counter location respectively. For the
new points, the length of each link is extracted from GIS.

To estimate GHG and air pollutant emissions, we first merge the observed and the
estimated points and distinguish between points lying in Central, Inner and Outer London
due to different vehicle composition in these zones (Section 3). Then, we utilised the
fleet composition data extracted from NAEI and calculated the number and proportion of
vehicle types in each of the zones. Emissions are estimated as follows:

Eij = AjjF;; @)

where: E is the emissions expressed, A is the activity (i.e., VKT), F is the pollutant emission
factor (in grams per km travelled), i indicates vehicle type and j indicates fuel type.

5. Results

In Figure 2 the estimated AADT for all street segments in the Greater London area
are presented, where roads with significantly higher traffic volumes can be distinguished.
These are usually ‘A’ roads and parts of motorways. Roads around Heathrow airport,



Atmosphere 2021, 12, 188

7 of 16

river crossings and major arteries also appear to carry heavy traffic loads, while secondary
roads and streets in residential areas have lower AADT values.

AADT
Under 5000
| 5000 - 10000
10000 - 20000
20000 - 50000

~——— Over 50000
~ Motorways
Greater_London

Figure 2. Annual average daily traffic (AADT) by street segment in Greater London.

The aggregated VKT estimations for all vehicle types and road classes are presented
in Table 2. One can observe that streets are mainly dominated by cars. Interesting also
appears to be the high volume of HGVs on motorways as opposed to other road classes.
By contrast, estimated bus traffic volumes are lowest on motorways.

Table 2. Aggregate vehicle kilometres travelled (VKT) proportions by vehicle type and road class.

Vehicle Type Road Class
Motorways A B C U All Roads
Cars 72.79% 77.37% 76.46% 81.65% 80.60% 78.62%
Buses ! 0.43% 2.46% 5.06% 2.19% 1.63% 2.28%
LGVs 15.91% 13.70% 13.11% 12.07% 12.98% 13.29%
HGVs 10.18% 3.78% 2.10% 2.84% 2.29% 3.61%
Two-wheeled 0.69% 2.69% 3.26% 1.26% 2.49% 2.21%
Total 6.76% 44.60% 6.4% 24.32% 17.91% 100%

1 This vehicle type includes buses and coaches [65].

Total average and annual estimated emissions for each vehicle type are presented
in Table 3. Annual emissions are estimated by multiplying average daily emissions
by 365. Again, it is observed that highest emissions levels are originating from cars.
Moreover, CO, emissions are similar for LGVs and HGVs although the number of HGVs
and associated VKT are much lower compared to LGVs.



Atmosphere 2021, 12, 188 8of 16

Table 3. Daily average and total annual emissions by vehicle type (tonnes).

Vehicle Type NOx PM, 5 co CO,

Cars 23.93 0.38 24.62 14,810

Buses 9.50 0.10 2.70 0,181

LGVs 13.77 0.18 1.88 3,446

HGVs 7.66 0.09 2.35 3,038

Two-wheeled 0.28 0.02 8.74 0,250

Total—Average Daily 55.14 0.77 40.30 21,725
Total—Annual 20,126.10 281.05 14,709.50 7,929,625

In Figure 3 emissions for the estimated pollutants and CO, are shown with London
boroughs overlaid with heat maps for each pollutant and CO,. Higher pollution can
be observed in central and inner London as opposed to boroughs located far from the
city centre. South London boroughs have lower level emissions compared to the north part
of the city, reflecting the lower levels of traffic shown in Figure 2.

(c) CO emissions in Greater London. (d) CO2 emissions in Greater London

Figure 3. Air pollutants and CO, estimation heat maps.

Similar patterns are observed in Figure 4 where emissions for each borough are
mapped by the length of streets within the borough—kilograms of pollutant per kilometre
of street length (kg/km). One can observe that some boroughs in the northern part of the
city have higher values of emissions, particularly in the case of NOyx and PM; 5.
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(c) CO2 by road length in Greater London boroughs

Figure 4. Air Pollutants and CO, emissions in kilograms per street kilometre (kg/km) for London boroughs.

Interestingly, one can identify the impacts of large open spaces such as Richmond
park indicated by green patches on the maps as well as the—negative—impacts of town
centres and busy streets, indicated by smaller red patches around the city centre (Figure 5).
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Figure 5. Open spaces and town centre’s impact on CO, emissions.

6. Discussion

The study focused on the emission estimation of NOx PM; 5, CO and CO; originating
from road transport in the Greater London area. Estimation has been conducted for five
road classes and five different vehicle types used by the Department for Transport (DfT)
in the UK, by combining data from numerous sources and applying classification and
regression modelling.

The results show higher levels of pollution in the city centre as expected, as can also
be confirmed by similar studies in other urban areas [55,66]. For London in particular,
our results can also be validated with those presented in [67] where PM; 5 distribution is
studied and higher levels of pollution are concentrated in central and inner London, as well
as major road arteries. Estimated emissions from the method presented in this paper,
are also comparable in most cases—with the exception of PM; s—with estimations from
the London Atmospheric Emissions Inventory (LAEI) forming fraction of the NAEI for
London [68]. The aggregated emissions are provided in Table 4. The large deviation
in estimations observed for PMj; 5 in Table 4 can be attributed to the methodology and
factors taken into consideration when estimating emissions by NAEI. In the case of PM; 5
emissions from breaks and tyres are also considered on top of the exhaust emissions.

Table 4. Estimation comparison—tonnes/year.

NOx PM; 5 co Co,

LAEI 23,8525 1,253.4 N/A 6,651,511
Authors’

Method 20,126.10 281.05 14,709.50 7,929,625

Deviations in estimations from statistical approaches compared to standard emissions
models are subject to various factors also reported in similar studies in Greater London
and the UK as well as other countries, while significant deviations in estimations can be
observed even among different emission models. For example, [29] compared COPERT and
HBEFA to identify deviations in the estimations and concluded that both over-predicted
PM emissions, with HBEFA results deviating more from actual measurements. In the
case of NAEI, which is widely used in the UK, estimations have been usually found to
deviate from other modelling approaches. For example, [69] indicate that NAEI tends to
overestimate NOy emissions, although it seems to underestimate volatile organic com-
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pounds [70]—not examined in our study. By contrast, [71] compare NOx, PM;y and CO,
estimation with NAEI to find strong correlations, although in this study annual distance
travelled is used and there is no differentiation between vehicle types.

However, over- and underestimations cannot be solely attributed to each modelling
approach per se, but can be related to limitations in methodology and available data [8].
In our approach, one has also to consider modelling limitations, such as the classification
and regression outcomes, the length of roads within the study area and the study area
per se. First, from Table A2 one can observe that classification accuracy is significantly
higher for ‘A’ roads, as opposed to other road classes, although accuracy for “U’ roads
is relatively high as well (70%). Thus, an uncertainty in the classification of points and
consequently in the estimation of AADT and VKT can result in biased emission estimations.
However, from Table 2 one can see that VKT on ‘A’ roads and Motorways account for
over 50% of total VKT. Including ‘U’ roads, the percentage is 68% indicating that for most
modelled street segments, emissions are correctly estimated. Moreover, taking into account
classification accuracy for ‘A’ roads as well as the fact that there is a large sample to train
the algorithm for this road class and that AADT on motorways is directly counted—and
not estimated with a model—we can also conclude that results for these two road types
are more reliable as opposed to other road classes. Second, roads have been spatially
clipped so as not to extend further than the Greater London boroughs and associated
boundaries. That is, initial street segment lengths could be longer affecting estimation of
VKT and related emissions. This can significantly affect estimations for motorways and
attached outer London boroughs, where one can observe that even though these road types
usually carry heavy traffic, VKT accounts for a smaller fraction of the total, due to the
short length within the study area. Finally, the occurrence of satellite cities (i.e., smaller
settlements around larger cities, separated from the metropolitan core by belts of rural
territories [72,73]) attached to but outside Greater London can significantly affect emissions
on the edges of the study area, an effect that cannot be captured in our study.

7. Conclusions and Future Work

Spatial distribution of AADT, VKT and associated emissions is of high importance for
research in urban, transport as well as health and environmental planning. The method-
ology presented can provide a significant improvement in estimating emissions since all
street segments of the study area are modelled, therefore delivering a better understanding
of the spatial distribution of pollution levels in the area. Our approach can be used for both
micro (e.g., street level) and macro (e.g., countries or states) analysis and consequently can
be useful for both policy makers and planners. However, it is important to highlight that
our method estimates and presents the spatial distribution of average daily emissions and
not concentration of pollutants.

Based on the results presented here, additional research can follow. Firstly, the analysis
can be extended to the Home Counties so as more accurate emissions in outer London can
be estimated. Secondly, although we have tested three classification algorithms, other prob-
abilistic classification models can be trialled to achieve higher classification accuracy and
emission estimation if possible. Moreover, further subdivision of vehicle types based
on the Euro standards (e.g., Pre-Euro, Euro 1, Euro 2, etc.) and related emission factors
will allow to more detailed estimations. Finally, estimating pollutant concentrations as-
sociated with the estimated emissions, would allow further comparison of modelled and
measured concentrations.
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Appendix A

Table Al. Attributes for each count point.

Variable

Description

10.

11.

12.

13.

14.

15.

16.

Urban/Rural

Distance to Urban Area

Whether a count point is located at urban or rural environment

Distance of count point to the edge of the nearest edge of spatial polygon
indicating urban area

Distance to Major Urban Area ! Distance of count point to the edge of the nearest edge of spatial polygon

Distance to Urban Area Centroid

indicating Major urban area 1

Distance of count point to the geometrical centroid of the nearest spatial
polygon indicating urban area—indicating urban (city /town/village)
centre

Distance of count point to the geometrical centroid of the nearest spatial

. . 1 .
Distance to Major Urban Area * Centroid polygon indicating major urban area '—indicating major urban

Toll Road

Ring Road

Road Nature

Road Category
Junction Accessibility
Bus Stops

Bus Stations

Train Accessibility
Population
Population Density

Workplace Population

(city) centre

Whether a count point is located on a road with tolls

Whether the count point is located on a ring road

Whether the count point is located on a single or dual carriageway,
slip road or roundabout

Whether the point is located on a primary or trunk road (mainly for
higher class roads) in an urban or rural area

Whether the point is located on a road with access to motorway within
the specified service area

Number of bus stops within the specified service area

Number of bus stations within the specified service area

Indicating train station accessibility within the LSOA 2 where the count
point is located.

Total population of a count point’s adjacent LSOAs 2

Average population density of a count point’s adjacent LSOAs 2

Total number of registered employed people of a count point’s
adjacent LSOAs 2



https://roadtraffic.dft.gov.uk/downloads
https://naei.beis.gov.uk/data/ef-transport
https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2020
https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2020
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Table A1. Cont.

Variable

Description

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Workplace Population Density
Workplace plus Population Density
Income

Households

Registered Vehicles

Charging Points

Ports

Airports

Research, Education and Training

Factories, Workshops and Industrial Activity

Healthcare

Leisure

Office and Business Space

Public Services, Infrastructure and Buildings
Shops, Stalls, Kiosks and Markets
Super/Hyper Stores

Sport

Vacation Sites, Accommodation and Facilities

Petrol Stations

Vehicle Infrastructure

Warehouse and Storage

Parking Space

Average of registered employers’ density around a count points’
adjacent LSOAs 2

Average workplace plus population density of a count point’s
adjacent LSOAs 2

Average median income of a count point’s adjacent LSOAs 2

Total number of households of a count point’s adjacent LSOAs 2

Total number of registered cars and vans of a count point’s
adjacent LSOAs 2

Number of charging points within each service area

Whether there is a port within the specified service area around the
count point

Whether there is an airport within the specified service area around the
count point

Total number of Schools, Colleges, Libraries, Universities, Language and
Music Schools, etc. within the specified service area

Total number of Energy Production Facilities, Factories, Workshops,
Mines, Oil Fields, Recycling Plants, Shipyards, Scrap Yards within the
specified service area

Number of Hospitals, GPs, Surgeries, Clinics within the specified
service area

Number of Public Houses, Bars, Nightclubs, Restaurants, Art Galleries,
Cinemas and Theatres, Coffee shops within the specified service area

Number of Offices, Banks, Business Units within the specified
service area

Number of Post Offices, Community Centres, Police and Fire Stations,
Prisons, Courts within the specified service area

Number of Shops, Kiosks, Showrooms, Stores within the specified
service area

Number of Superstores, Malls within the specified service area

Number of Stadia, Sport Centres, Golf Courses, Tennis Centres,
Football Grounds within the specified service area

Number of Campsites, Caravan Sites, Hotels, Guest Houses,
Holiday Units, Hostels, Motels, Beach Houses within the specified
service area

Number of Petrol Stations within the specified service area
Number of Vehicle Repair Workshop, Garages, Car Wash within the
specified service area

Number of Warehouses, Depots, Storage Depots, Land Used for Storage
within the specified service area

Number of Car/Vehicle Park Sites and Park Spaces, Motorcycle Bays
within the specified service area
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Table A1. Cont.

Variable Description
39.  Animal Husbandry, Farming and Agriculture Number of Aviaries, Farms, Animal Shelters, Stud Farms within the
specified service area
40. Marine Infrastructure Number of Mooring Sites, Quays, Wharfs, Lifeboat Stations,
Marine Control Centres within the specified service area
41.  Under (re)construction Number of Properties and Premises Undergoing (re)Construction within

the specified service area

! The six largest urban agglomerations in England and Wales (i.e., Greater London, West Midlands (Birmingham, Wolverhampton,
Coventry), Greater Manchester, West Yorkshire (Leeds and Bradford), Tyneside (Newcastle and Sunderland) and Liverpool Urban Areas)
as defined by [74]. 2 Lower super output areas (LSOAs) indicate approximately 35,000 areas in England and Wales with a minimum of
1000 population.

Table A2. Classification accuracy.

Algorithm A B C U
RF 92.05% 50.00% 60.00% 67.57%
GBM 93.18% 50.00% 66.67% 70.27%
KNN 89.77% 37.50% 33.33% 64.86%
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