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Abstract: The impact of the reduced atmospheric emissions due to the COVID-19 lockdown on
ambient air quality in the Po Valley of Northern Italy was assessed for gaseous pollutants (NO2,
benzene, ammonia) based on data collected at the monitoring stations distributed all over the area.
Concentration data for each month of the first semester of 2020 were compared with those of the
previous six years, on monthly, daily, and hourly bases, so that pre, during, and post-lockdown
conditions of air quality could be separately analyzed. The results show that, as in many other areas
worldwide, the Po Valley experienced better air quality during 2020 spring months for NO2 and
benzene. In agreement with the reductions of nitrogen oxides and benzene emissions from road
traffic, estimated to be −35% compared to the regional average, the monthly mean concentration
levels for 2020 showed reductions in the −40% to −35% range compared with the previous years, but
with higher reductions, close to −50%, at high-volume-traffic sites in urban areas. Conversely, NH3

ambient concentration levels, almost entirely due the emissions of the agricultural sector, did not
show any relevant change, even at high-volume-traffic sites in urban areas. These results point out the
important role of traffic emissions in NO2 and benzene ambient levels in the Po Valley, and confirm
that this region is a rather homogeneous air basin with urban area hot-spots, the contributions
of which add up to a relatively high regional background concentration level. Additionally, the
relatively slow response of the air quality levels to the sudden decrease of the emissions due to the
lockdown shows that this region is characterized by a weak exchange of the air masses that favors
both the build-up of atmospheric pollutants and the development of secondary formation processes.
Thus, air quality control strategies should aim for structural interventions intended to reduce traffic
emissions at the regional scale and not only in the largest urban areas.

Keywords: air quality; nitrogen oxides; emission reduction; COVID-19 lockdown; Po Valley

1. Introduction

Due to the outbreak of the SARS-CoV-2 (COVID-19) pandemic, in the first months of
2020 many governments and local authorities worldwide established measures to limit
the spread of the virus. Depending on the country, these measures were based on a mild
approach, simply relying on “social distancing” behavior for the population, or on a
more severe approach (the so-called “lockdown”), additionally relying on the stoppage of
commercial and productive activities, on the closure of schools and universities, and on
personal mobility limitations and the obligation to remain in one’s residence, for a number
of consecutive weeks.

The reductions in social and economic activities and in the related atmospheric emis-
sions caused a change in air quality that has been evidenced by satellite data [1–4]. Recently,
a number of papers have been published reporting the changes in concentration levels
for certain pollutants in different areas worldwide, where light or heavy restrictive mea-
sures have been implemented [5]. Most of these works refer to China [6–8], Korea [9–11],
India [12], Central [13,14], and South-East Asia [15], but also to Western European coun-
tries [16–18], Africa [19,20], and North and South America [21–23]. The few studies related
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to Northern Italy [24–26] usually discussed single-city case studies, typically with a time
horizon limited only to the lockdown weeks.

In order to widen the perspective, both spatially and temporally, this work is focused
on the air quality in the whole Po Basin, a plain area of about 45,000 km2 with 25 million
inhabitants in Northern Italy, during the first six months of 2020, that is, before, during and
after the COVID-19 lockdown period in Italy. The Po Valley is a well-known European
hot-spot for air pollution, where the compliance with air quality limits is a critical issue,
especially in urban areas. Indeed, the high density of people, agriculture, and industrial and
commercial activities, together with a dense network of roads and motorways, determine
huge emissions, whose dispersion is limited by the presence of the mountain chains of
the Alps and Apennines and by the atmospheric stability and lapse rate inversion, typical
of the cold season [27–30]. Air quality remediation plans enforce progressive restrictions
on old car circulation and biomass combustion for domestic heating, occasionally further
strengthened under peak pollution events. However, the restrictions adopted during the
late winter and spring of 2020 created an unprecedented scenario, both in terms of spatial
extent and temporal continuity of the measures, especially affecting the emissions regime,
and consequently, the local air quality. This work is intended to assess the impacts of these
measures on air quality, focusing on gaseous pollutants, namely, nitrogen dioxide (NO2),
benzene, and ammonia (NH3); further work will focus on particulate matter.

The Italian government and the regional authorities have implemented a series of
measures to contain the spread of COVID-19 that directly or indirectly had an impact on
typical life and straightforwardly had one on the emissions regime. On February 23rd,
the first decree was issued with measures (including distance learning in schools and
universities; limitations on the transport services of goods and people, and on local public
transport; suspension of any kind of events and meetings in public or private places) to
be implemented only in the municipalities where at least one positive case to the virus
had been recorded. On March 1st, the same measures were enforced in 11 municipalities
in Lombardy and Veneto and on March 4th in all of Italy. Additional measures were first
enforced in Northern Italy on March 8th and then in the whole country on March 9th,
the starting date of the national lockdown, namely, with the prohibition of any form of
gathering of people in public or places open to the public. Further restrictive measures
were enforced on March 11th, concerning the suspension of retail commercial activities
(except for the sale of food and basic necessities), of catering services (including bars, pubs,
and restaurants), and of activities relating to personal services (i.e., hairdressers, barbers,
and beauticians), and finally on March 22nd, with the suspension of most industrial and
commercial activities and the prohibition on people leaving their residence municipalities,
other than for proven work needs, absolute urgency, and health reasons. All the restrictive
measures remained in force until May 17th, when the reopening of commercial activities
and intra-regional mobility was permitted; interregional travelling was allowed from
June 3rd.

According to emissions inventory data of the four regions of the Po Valley (Emilia-
Romagna, Lombardia, Piemonte, and Veneto), road traffic (53%) and other mobile sources
(13%) emissions accounted for two-thirds of the total annual emissions of nitrogen oxides
(about 320 Gg year−1), followed by combustion processes (16% overall) and by industrial
processes (15%) (Figure 1a). Total emissions of Volatile Organic Compounds (VOCs) were
more distributed among the emission sectors, mainly deriving from the use of solvents,
agriculture, and other sources, including nature (Figure 1b). However, as far as benzene
was specifically concerned, national estimates indicated that road transport was responsible
for more than 50% of its emissions in large urban areas and for an average of 47% in medium
sized cities [31]. Conversely (Figure 1c), NH3 was almost entirely emitted by agriculture
(97%); contributions from non-industrial combustion plants, road transport, and waste
treatment each accounted for 1% of the total annual emissions (about 185 Gg year−1).
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Figure 1. Selected Nomenclature for Air Pollution (SNAP) sectors’ contributions to NOx, VOCs, 
and NH3 annual emissions in the Po Valley (elaboration of emission inventory data of Emilia-Ro-
magna, Lombardia, Piemonte, and Veneto region). 

Due to the progressive enforcement of the restrictive measures since the last week of 
February, atmospheric emissions varied from day to day, also depending on the pollu-
tants in emissions, compared to their typical values (Supplementary Materials Figure S1). 
Estimates developed by the Environmental Agency of Lombardia [32] for NOx during the 
weeks from 9 March to 26 April indicated reductions around a regional average value of 
about –36%, but ranging between –44% (6–12 April) and –20% (9–15 March); however, 
emission reductions in large urban areas in April were –50%, and sometimes –60%. The 
main contributor to these decreases was the reduction in emissions from road traffic, 
which was estimated to be around –65% over the entire lockdown period, but –75% at the 
beginning of April. For VOCs the overall reduction was smaller, –12% over the 9 March–
26 April period, because different sectors contributed to their emissions. The decrease in 
emissions of VOCs from road traffic was estimated in the order of –70%; a –35% reduction 
of benzene emission could be expected. Conversely, for NH3, originating primarily from 
agriculture, namely, from manure management and applications of fertilizers [33], the 
overall reduction was practically null (–1%), even though for the road traffic contribution 
a –74% reduction was estimated over the reference period, but some weekly values were 
also around –80%.  

In order to assess the impact on air quality of these emission reductions, concentra-
tion data collected all over the Po Valley area in 2020 and in the six previous years have 
been processed and compared on monthly, daily, and hourly bases. Data processing con-
sidered the January–June period so that pre, during, and post-lockdown conditions of air 
quality could be separately analyzed. Data comparisons were performed for each month 
individually to avoid the seasonal effects on the ambient concentration levels due to both 
the different emission patterns and the typical meteorological differences between winter 
and spring months. Data processing was performed on raw concentration values, without 

Figure 1. Selected Nomenclature for Air Pollution (SNAP) sectors’ contributions to (a) NOx, (b) VOCs, and (c) NH3

annual emissions in the Po Valley (elaboration of emission inventory data of Emilia-Romagna, Lombardia, Piemonte, and
Veneto region).

Due to the progressive enforcement of the restrictive measures since the last week of
February, atmospheric emissions varied from day to day, also depending on the pollutants
in emissions, compared to their typical values (Supplementary Materials Figure S1). Es-
timates developed by the Environmental Agency of Lombardia [32] for NOx during the
weeks from 9 March to 26 April indicated reductions around a regional average value of
about −36%, but ranging between −44% (6–12 April) and −20% (9–15 March); however,
emission reductions in large urban areas in April were −50%, and sometimes −60%. The
main contributor to these decreases was the reduction in emissions from road traffic, which
was estimated to be around −65% over the entire lockdown period, but −75% at the
beginning of April. For VOCs the overall reduction was smaller, −12% over the 9 March–26
April period, because different sectors contributed to their emissions. The decrease in
emissions of VOCs from road traffic was estimated in the order of −70%; a −35% reduction
of benzene emission could be expected. Conversely, for NH3, originating primarily from
agriculture, namely, from manure management and applications of fertilizers [33], the
overall reduction was practically null (−1%), even though for the road traffic contribution
a −74% reduction was estimated over the reference period, but some weekly values were
also around −80%.

In order to assess the impact on air quality of these emission reductions, concentration
data collected all over the Po Valley area in 2020 and in the six previous years have
been processed and compared on monthly, daily, and hourly bases. Data processing
considered the January–June period so that pre, during, and post-lockdown conditions of
air quality could be separately analyzed. Data comparisons were performed for each month
individually to avoid the seasonal effects on the ambient concentration levels due to both
the different emission patterns and the typical meteorological differences between winter
and spring months. Data processing was performed on raw concentration values, without
any adjustment for meteorological conditions, because the regional meteorological services
did not report the occurrence of peculiar conditions (strong wind or heavy rainfall events),
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able to alter either the long-term concentrations (i.e., monthly values) or their temporal
patterns on a daily basis. Additionally, according to analyses performed on meteorological
variables in other studies, the average meteorological conditions during the 2020 lockdown
period did not differ from those of the previous years [34,35]. Thus, the observed variations
in the concentration levels can be ascribed to the change in human activity. This work
intended to assess the impact of human activity on air quality over the whole Po Valley in
general and its different geographical areas in particular, while providing specific insights
for the urban areas, where the compliance with air quality limits is more critical.

2. Material and Methods
2.1. Air Quality Monitoring Networks

In the Po Valley, air quality monitoring networks are separately operated by the
Regional Environmental Agencies (ARPA) of Emilia-Romagna, Lombardia, Piemonte, and
Veneto region. According to the European Union Directive 2008/50 [36], concentration
data for reference atmospheric pollutants are routinely collected at fixed monitoring sites
distributed all over the territory (Figure 2). As monitoring does not consider all the
pollutants at all sites, the number of stations available is pollutant-dependent. The numbers
of monitoring stations in operation during the last seven years (2014–2020) are summarized
in Table 1. NO2 data are available with hourly time resolution, whereas benzene and
ammonia (NH3) are available with daily resolution; all concentration values are expressed
in µg m−3 and refer to 20 ◦C and 101.3 kPa.
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Figure 2. Spatial distribution of the air quality monitoring stations in operation during the last seven years (2014–2020)
in the regions of the Po Valley. (Satellite image source: Google Earth; marker color: monitored pollutants; marker shape:
station classification by location).

Table 1. Number of monitoring stations in operation during the last seven years (2014–2020) in the
regions of the Po Valley.

Region NO2 Benzene NH3

Emilia-Romagna 43 9 -

Lombardia 82 22 10

Piemonte 52 22 4

Veneto 41 9 -

Total 218 62 14
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Monitoring stations were classified according to two different criteria based on geo-
graphical location and on exposure to emission sources. The former makes distinctions
among the stations located in parts of the territory (“zones”) with given features (e.g.,
plains areas, and mountain areas) and those located in urban agglomerations (cities and
conurbations of cities with more than 250,000 inhabitants); the latter makes distinctions
using the context of where the stations are located (urban, suburban, industrial, or rural),
with additional details for the types of emission sources they are exposed to (i.e., traffic or
background, which is influenced by the integrated contribution of all upwind sources).

As the land zoning for station classification is performed at the regional level, we had a
total of 23 different classes, often with common features (i.e., 10 for urban agglomerations),
but in other cases reflecting the particular and specific features of the territory of the Po
Valley. However, based on both the geographical features of the monitoring sites and on
their typical concentration levels, we were able to reduce the number of zones down to four,
namely: urban agglomerations, plains, hills, and mountains. The urban agglomerations
zone encompasses the stations located in the large conurbations of Lombardia and Piemonte
(cities of Milano, Brescia, Bergamo, and Torino) and in the largest cities of Veneto and
Emilia-Romagna (Padova, Treviso, Venezia, Verona, Vicenza, and Bologna); the plains zone
encompasses all the stations in the flat area of the Po Valley, including those located in
the small provincial capitals and in the valley floor of Northern Lombardia; the hills zone
encompasses the stations in the hilly areas of Piemonte and Veneto; the mountains zone
encompasses the stations located in prealpine and alpine areas and in the Apennines of
the Emilia-Romagna. The combination of the two classification criteria (zoning and type)
allowed the creation of stratified datasets out of the overall dataset, useful for detailed
investigations and comparisons of the effects of lockdown on air quality, for instance,
through separately analyzing data from traffic stations and background stations in urban
agglomerations.

2.2. Air Quality Data Processing

Air quality data were accessed and downloaded through the institutional websites of
the Regional Environmental Agencies and organized in a single dataset for the 2014–2020
period. In order to assess the effect of the reduced atmospheric emissions in the Po Valley
as a consequence of the COVID-19 lockdown, data for the first semester of 2020 were
compared with the mean of the six previous years (2014–2019). Analyses were developed
with different time resolutions: first, with respect to the monthly mean concentrations,
and then with respect to the time pattern of the daily mean concentrations at monthly and
weekly levels; for NO2, due to the 1-hour time resolution of the data, the time pattern of
the hourly mean concentration at the daily level was investigated too. In order to account
for the seasonality of ambient concentrations, comparisons were separately performed for
each single month, considering both the whole dataset and stratified datasets according to
the station classification criteria, assessing absolute and relative variations in concentration
levels. Statistical tests were applied to aggregate indicators (i.e., overall monthly mean
values, α = 0.95), and for the whole monthly data distributions (Kolmogorov-Smirnov test,
α = 0.99) of 2020 and 2014–2019 datasets. For time pattern analyses at the monthly level,
data distributions for each single calendar day were assembled, assessing the frequency
of occurrence of 2020 data within corresponding concentration ranges observed in the
previous six years. These ranges were defined based on the q114–19, q214–19, and q314–19
values, respectively representing the 1st, 2nd, and 3rd quartiles computed for the 2014–2019
daily datasets. The interquartile range IQR14–19 (i.e., the concentration interval between the
third and the first quartile, q314–19–q114–19) was also used for the assessment. At weekly
and daily levels, the time patterns of the average week and day in 2020 and 2014–2019
were graphically compared.
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3. Results and Discussion
3.1. NO2

The panels of Figure 3, where the monthly mean concentrations for 2020 are plotted
against the corresponding values for 2014–2019, clearly show the typical seasonality of NO2
concentration levels and the impact of COVID-19 lockdown on air quality in the Po Valley.
Note that during the cold season, the regional mean and maximum values are typically
about twice as high as during the warm season. In January, the two datasets displayed
rather similar features, with statistically non-significant differences for both the overall
means (42.5 vs. 42.1 µg m−3) and for the whole data distribution (Table 2). Relative varia-
tions of the monthly means were almost equally split between positive (increase) and nega-
tive (decrease) values, but with 50% of the stations being in the ±10% range. Conversely,
from February on, together with the usual seasonal pattern of the concentration levels, we
can see the progressive shift of the 2020 datasets towards lower values, with both signif-
icantly lower overall means and a different data distribution (Figure 4). The reductions
of the overall mean ranged between −4.6 µg m−3 (February, −12.1%) and −11.8 µg m−3

(March, −37.4%), but in relative terms were even higher in April (−9.3 µg m−3, −40.9%)
in the full lockdown period. In February, relative reductions of the monthly mean were
observed at about 80% of the stations—but mostly (87%) as little as −30% (−5.1 µg m−3

on average); in March and April, reductions were observed at almost all the stations
(Figure S2) and to a larger extent. In March, reductions were observed at 98.6% of the
stations, with 28.4% being down to −30% (−5 µg m−3) and 71.6% between −50% and
−30% (−14.6 µg m−3). Figures for April were quite similar, with reductions observed at
94% of the stations but even stronger in their relative magnitude: 25.6% down to −30%
(−2.7 µg m−3); and 74.1% were between −50% and −30% (−12.3 µg m−3). In spite of the
progressive loosening of the lockdown measures, reductions were still largely present in
May (94%) and June (91.2%), but to a decreasing relative extent: in May, reductions by 30%
(−2.8 µg m−3) were 38.9% and those in the 30% to 50% range (−10.6 µg m−3) were 61.1%,
whereas, conversely, in June they were 61.1% (−3.2 µg m−3) and 38.9% (−8.6 µg m−3).

Table 2. Summary statistics for the NO2 monthly mean concentrations (µg m−3) in 2020 and 2014–2019 (q1, q2, and q3: 1st,
2nd, and 3rd quartiles; p5 and p95: 5th and 95th percentiles; N = number of observations; K-S: Kolmogorov-Smirnov test).

Parameter
January February March April May June

2020 2014–2019 2020 2014–2019 2020 2014–2019 2020 2014–2019 2020 2014–2019 2020 2014–2019

Mean 42.5 42.2 33.6 38.3 19.7 31.5 13.5 22.8 12.5 19.3 13.6 18.3

St. dev. 15.5 16.0 13.2 15.8 8.3 14.4 6.2 11.8 5.8 11.3 6.7 10.5

Minimum 2.1 1.2 1.4 1.9 2.4 1.5 1.1 1.6 0.7 0.7 0.2 1.0

Maximum 88.4 113.1 80.2 99.3 47.3 97.3 36.4 76.2 30.5 80.9 38.5 64.8

q1 33.9 32.3 26.5 28.4 14.4 22.2 8.9 14.7 8.5 11.6 9.1 10.9

q2 41.7 40.9 33.7 36.7 19.6 30.0 13.1 20.6 12.1 16.6 12.7 16.1

q3 50.7 51.3 41.5 47.7 24.3 40.3 17.2 29.2 15.3 24.7 16.9 23.2

p5 15.3 17.2 11.3 14.0 6.6 9.5 4.3 7.0 4.8 5.5 5.2 5.5

p95 71.2 70.3 56.3 66.2 34.8 56.6 23.2 44.8 24.4 40.7 26.9 38.6

N 218 1275 218 1278 218 1277 218 1276 218 1278 218 1283

Means
Test non reject reject reject reject reject reject

K-S test non reject reject reject reject reject reject
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Figure 3. Scatterplots of the monthly mean NO2 concentrations for 2020 versus the corresponding values for 2014–2019.
Error bars show the minimum–maximum range for 2014–2019.
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The analysis of the stratified dataset by zones shows that the different areas of the Po
Valley were rather homogeneously affected by the emission reductions due to lockdown.
Both the time pattern of the relative reductions, U-shaped with the minimum values in
April, and their magnitude, in particular as mean values, were fairly common to the
different areas (Figure 5). However, a slightly higher average relative reduction (−42%,
−14.6 µg m−3) and larger maximum relative reductions (−72%, −35.1 µg m−3) were
observed for the stations of the urban agglomerates in the March–May period compared
with the other locations—all about −36% (−7.4 µg m−3) and with maximum values around
−67% (−27.3 µg m−3), respectively. The further stratification of the urban agglomerates
subset by station type showed higher relative reductions at traffic-exposed sites (−47% on
the average, ranging between −75% and −25%) than at urban background sites (−39% on
the average, ranging between −72% and −3%); in absolute terms, at traffic stations the
reduction (−20.3 µg m−3) almost doubled that of the background stations (−10.8 µg m−3).
More generally, the stratification by station type highlighted that traffic sites experienced
larger reductions (−41% on the average, −15.5 µg m−3) than background sites (−32%,
−6.6 µg m−3), particularly rural background sites (−19%, −2.6 µg m−3). Interestingly,
data from one traffic station located near to the Milano-Torino motorway reported relative
reductions of around −70% (about −30 µg m−3) during the lockdown period and only
around −30% (−10 µg m−3) from May on. The extent of the concentration reduction
observed during the lockdown was consistent with the emission reduction on motorways,
estimated to be in the order of −70% for passenger cars and light duty vehicles and −50%
for heavy duty vehicles [32].
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The time patterns of the overall daily mean and median concentrations in 2020 cal-
endar days are compared with the corresponding values of 2014–2019 period in Figure 6,
where concentration ranges with respect to the quartiles of the 2014–2019 distributions
are also plotted. The progressive reduction of the concentration values over the whole Po
Valley is clearly evident and well summarized by Table 3. In January and February, the
overall mean concentrations were in line with the values observed in the 2014–2019 period,
almost always falling within the interquartile range (IQR14–19 = q314–19–q114–19, roughly
about 30–50 µg m−3) and the maximum values, in spite of some peaks (e.g., 2nd week of
January, February 8th–10th) and sinks (e.g., first week of February) driven by the peculiar
meteorological conditions in those days of 2020. However, a certain decrease in concen-
tration levels appeared at the end of February, when the lockdown was already enforced
in small municipalities in the middle of the Po Valley. Conversely, in March and April,
they were always below q214–19 (<30 µg m−3), and even below q114–19 (<15 µg m−3) in 50%
of the days, with the differences between mean values usually being in the 5−10 µg m−3

range, but occasionally as high as 12–15 µg m−3. Maximum daily values of 2020 were
practically always lower than in the past, lying in the q314–19–max14–19 range, and even
within the IQR14–19 sometimes, with values getting closer and closer to q314–19, down
to around 30–40 µg m−3, in late April. In May, and most of all, in June, concentrations
progressively rose, but still mainly remained below the median values of the previous years
(96.7% in May, 86.7% in June). Indeed, except for the first days of May, when lockdown
measures were still in force, the differences between daily mean values became smaller
and smaller, mostly in the 3–6 µg m−3 range in May and in the 2–5 µg m−3 range in June.
Nevertheless, the pattern of the maximum values showed a weak growing trend, with
values up to 40–50 µg m−3 in the end of June, that is, about 20 µg m−3 less than in the
previous years.
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Table 3. Frequency distribution (fractional number of days in each month) of the 2020 overall daily
mean NO2 concentrations by concentration range observed for the 2014–2019 period (q114–19, q214–19,
and q314–19: 1st, 2nd, and 3rd quartiles).

Range January February March April May June

<q114–19 0.0% 17.2% 51.6% 50.0% 29.0% 6.7%

q214–19–q114–19 32.3% 48.3% 48.4% 50.0% 67.7% 80.0%

q314–19–q214–19 64.5% 34.5% 0.0% 0.0% 3.2% 13.3%

>q314–19 3.2% 0.0% 0.0% 0.0% 0.0% 0.0%

The stratified analyses of the time patterns give further evidence to the piece of infor-
mation obtained from monthly averaged data, namely, as far as the difference between
traffic and background stations is concerned. Larger concentration reductions were con-
sistently observed at traffic stations during the whole lockdown period, namely, in April
(Figure 7). Daily means were at least 10 µg m−3 lower than the average of the previous
years—up to 20 µg m−3 lower in some periods; in these periods maximum values were
50–60 µg m−3 lower than their 2014–2019 means (Figure 7 top left panel). At background
stations the reductions were less relevant and had reduced fluctuations, regarding both
daily mean and maximum values: daily means were usually 3–8 µg m−3 lower than in
2014–2019, but up to 10 µg m−3 on the central days of the month, as for the traffic stations;
daily maximum values showed an appreciable decrease only in the second half of the
month, when they were about 20 µg m−3 lower than the average of the previous years
(Figure 7 top right panel). Focusing the analysis on urban agglomerations, the effect of the
lockdown on traffic emissions was further evidenced: at traffic stations, the daily concentra-
tions usually showed reductions in the 15–20 µg m−3 range, but also as high as 30 µg m−3;
at background stations, reductions were most frequently in the 5–15 µg m−3 range only
(Figure 7 bottom panels). Interestingly, at the traffic stations of the largest urban agglomer-
ates (cities of Milano and Torino) the difference between 2020 and the previous years was
even larger, systematically in the order of 20–30 µg m−3, showing the dominating role of
traffic emissions in urban traffic hotspots. However, the role of traffic emissions in NO2
ambient levels was even more highlighted by the reductions observed at the mentioned
Milano-Torino motorway station, where daily means in April were 20–30 µg m−3 lower
than in the reference period for 12 days but up to 30–40 µg m−3 lower for 18 days.

Regardless for the zone and station type, the 2020 time patterns displayed a rather clear
7-day cycle, corresponding to the weekly cycle, with the lowest concentrations on Sundays
(e.g., March 8th and 15th or April 5th and 12th). However, such a temporal scheme was
more evident at traffic stations, which are more directly influenced by traffic emissions, than
at background stations, and specifically, at rural background stations (Figure 7). Indeed,
even though strongly reduced during the lockdown period, road traffic was not completely
gone, as alimentary goods delivery was active and personal travel for some workers (e.g.,
sanitary operators, alimentary markets staff, and post deliveries) was allowed. In the panels
of Figures 6 and 7, 2020 Sundays’ data are compared with the working days’ average of
the previous years; the weekly cycle was specifically investigated in order to have proper
day-of-the-week comparisons. These analyses confirmed the systematically lower values
throughout the lockdown and post-lockdown weeks (Figure S3), and the reduction of
concentration levels on Sundays. On average, Sundays’ concentration was 6.0 µg m−3

(−28.4%) lower than on weekdays in March, 5.1 µg m−3 (−35.9%) in April, and 5.6 µg m−3

(−40.3%) in May; corresponding figures for the 2014–2019 period are 7.3 µg m−3 (−22.4%)
in March, 6.7 µg m−3 (−28.1%) in April, and 5.8 µg m−3 (−29.1%) in May, all larger in
absolute terms, but they are 6% to 11% smaller in relative terms given the normally higher
ambient levels. For the spring period, Sundays’ concentrations during lockdown could be
regarded as an indicative value of the NO2 background level in the Po Valley, in the order
of about 10 µg m−3 in urban agglomerates and 6–7 µg m−3 at rural sites.
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Finally, inspection of the daily patterns on an hourly basis showed that during lock-
down, traffic emissions, even though strongly reduced, were still present, as suggested by
the typical rush-hour concentration peaks in the morning and in the evening (Figure S4). Ac-
tually, the concentration levels were almost uniformly reduced during the whole day, in the
order of 8–10 µg m−3 in March and April (−36% and −40%, respectively), and 4–6 µg m−3

(−33%) in May. However, the peak during the evening rush hours was more reduced and
progressively smoothed, especially in April and May: during these hours, reductions as
high as 15–18 µg m−3 (−41%) in March, 11–14 µg m−3 (−51%) in April, and 7–9 µg m−3

(−39%) in May were observed. Consistently with their direct exposure to traffic emissions,
traffic stations showed larger reductions in both morning and evening rush hours: in urban
agglomerations, namely, reductions in the order of −55% to −35% in the morning and
−60% to −50% in the evening, exceeded those of the background stations, which were only
in the order of −40% to −30% in the morning and −50% to −40% in the evening.

All these results show that the measures enforced during the lockdown period had a
significant and prolonged impact on NO2 concentration levels, resulting in their generalized
reduction all over the Po Valley. However, the magnitude of the observed reductions
was strongly related to the geographical location and the exposure of the monitoring
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station to the emission sources, especially road traffic. Indeed, as the reduction of the
regional background was about −20%, urban areas had reductions in the order of −50%
to −40%. These numbers are consistent with estimates reported for Milan metropolitan
area only [25], with the reduction of tropospheric NO2 in Milan (−47 ± 15%) estimated by
columnar data [37], and with data from other European cities such as Barcelona (−51.4%
to −47.0%) [18]. The observed reductions were the consequence of the reduced traffic
flows all over the region, with emission reductions estimated to be in the order of −35%
compared to the regional average, but these were even higher at urban traffic sites during
the full lockdown period. The substantial agreement between the emission reductions and
the generalized air quality improvement confirms the reliability of the inventory data used
to assess the emissions scenario for the lockdown period. This agreement also confirms the
source apportionment results for NO2 in large urban areas [38], where concentration levels
are mostly determined by very local and urban traffic emissions, but with an important
contribution from regional background too.

3.2. Benzene

In general, the major findings resulting from the analyses of the benzene datasets are
similar to those of NO2, as far as the monthly mean variations and their time patterns are
concerned and regarding the different extents to which stations have been affected by the
emission reductions. Ambient concentrations in January 2020 were in agreement with
the levels recorded in 2014–2019, with similar distributions and the same overall mean of
2.4 µg m−3 (Table 4). Positive relative deviations of the monthly means slightly prevailed
over negative variations (55% vs. 45%), with 39% of the stations being in the ±10% range.
From February on, we can see the progressive shift of the 2020 datasets towards lower
concentration levels, with both significantly lower overall means and different data distri-
butions, namely, as far as maximum values and high percentiles are concerned (Figure 8
and, Figure S5). The reductions of the overall mean were roughly −0.4 µg m−3 in February
and March (−25.4% and −33.7%, respectively), −0.25 µg m−3 in April and May (−35.1%
and −43.3%, respectively), and −0.15 µg m−3 in June (−33.9%). Since February, relative
reductions of the monthly mean were observed at about 90% of the stations (Figure S6);
however, the extent of these reductions was greater in March, April and May—when
reductions in the −50% to −30% range were observed at 70% of the stations (−0.4 µg m−3

on average, −1.1 to −0.1 µg m−3 range)—than in February (40%) and June (50%). The
outcome of the stratified dataset analysis for benzene confirmed that the Po Valley was
rather homogeneously affected by the emission reduction due to the March–May lockdown,
again with slightly higher average relative reductions (−40%, −0.40 µg m−3) in the urban
agglomerates than at the stations of the plains and hills sites (−30%, −0.24 µg m−3); smaller
and fairly constant reductions, in the order of −20%, were observed at mountain stations
during the whole period (Figure 9). The impact of traffic emissions on benzene ambient lev-
els was highlighted by the larger reductions generally observed at traffic stations (−41% on
the average, −0.34 µg m−3) than at background stations (−32%, −0.20 µg m−3), especially
when the urban agglomerates were concerned: traffic stations showed lockdown reductions
of around −45% (−0.48 µg m−3), and background stations, around −35% (−0.31 µg m−3).
The peculiar features of the monitoring station located near to the Milano-Torino motorway
emerged from benzene data too; however, the difference with respect to the other traffic
stations was less marked than for NO2.
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Table 4. Summary statistics for the benzene monthly mean concentrations (µg m−3) in 2020 and 2014–2019 (q1, q2, and q3:
1st, 2nd, and 3rd quartile; p5, p95: 5th and 95th percentiles; N = number of observations; K-S: Kolmogorov-Smirnov test).

Parameter
January February March April May June

2020 2014–19 2020 2014–19 2020 2014–19 2020 2014–19 2020 2014–19 2020 2014–19

Mean 2.4 2.4 1.4 1.8 0.8 1.2 0.4 0.7 0.3 0.5 0.3 0.4

St. dev. 1.0 0.9 0.5 0.7 0.3 0.5 0.2 0.3 0.1 0.4 0.2 0.3

Minimum 0.6 0.3 0.3 0.1 0.3 0.2 0.1 0.0 0.1 0.0 0.0 0.0

Maximum 5.5 5.2 2.8 5.1 1.4 3.0 0.9 3.2 0.7 3.2 1.0 3.9

q1 1.7 1.8 0.9 1.3 0.5 0.8 0.3 0.5 0.2 0.3 0.2 0.3

q2 2.4 2.3 1.4 1.8 0.8 1.2 0.4 0.6 0.3 0.5 0.3 0.4

q3 2.8 2.9 1.7 2.3 1.0 1.4 0.5 0.8 0.3 0.6 0.3 0.5

p5 1.2 0.9 0.7 0.8 0.4 0.4 0.2 0.2 0.1 0.1 0.1 0.1

p95 3.9 4.0 2.3 3.1 1.3 2.1 0.7 1.3 0.5 1.2 0.6 1.0

N 62 353 62 355 62 355 62 357 62 357 62 356

Means
Test non reject reject reject reject reject reject

K-S test non reject reject reject reject reject rejectAtmosphere 2021, 12, x FOR PEER REVIEW 14 of 20 
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The comparison of time patterns of the overall daily mean and median concentrations
in 2020 with the corresponding values of 2014–2019 highlighted once again the progressive
reduction of the concentration levels over the whole Po Valley (Figure S7). In January,
the overall mean concentrations were usually (65%) within the 2014–2019 range (roughly
1.8–3.0 µg m−3), with a time pattern that mirrored the behavior of NO2. In February, concen-
trations were still mostly (55%) within the IQR14–19, but below q114–19 for the remainding
45%, namely during the low-concentration periods driven by the meteorological conditions
already observed for NO2 (e.g., February 4th–5th and 11th–13th) and in the end of February,
when the very first local lockdown measures were already enforced in small municipalities
of Lombardy. From March on, the overall means were always below q214–19 (<1.5 µg m−3

down to <0.5 µg m−3), and even below q114–19 (<1.0 µg m−3 down to <0.2 µg m−3) for
more than 50% of days (Table 5), with the difference between mean values usually being
around 0.3 µg m−3, but sometimes as high as 0.5–0.6 µg m−3. The decreasing trend affected
the maximum daily values too, almost always lying within the q314–19-max14–19 range,
down to around 0.7–1.0 µg m−3, in May. In May and June, concentration levels remained
fairly stable around 0.3 µg m−3, always below the median values of the previous years
(30% lower, roughly), and did not show the slight progressive increase observed for NO2.
In general, during the lockdown period the weekly patterns for benzene did not display
an evident cycle and were less identifiable than for NO2: indeed, daily concentrations
remained basically constant during the whole week, and Sundays’ levels did not decrease
with respect to weekdays. This pattern suggests that benzene levels are mainly driven by
the regional background and less affected by contributions from local emissions. However,
stratified analyses showed that a weak weekly pattern could still be recognized at traffic
stations in general, and at those located in urban agglomerates in particular, with respect
to background stations.
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Table 5. Frequency distribution (fractional number of days in each month) of the 2020 overall daily
mean concentrations by concentration range observed for the 2014–2019 period (q114–19, q214–19, and
q314–19: 1st, 2nd, and 3rd quartiles).

Range January February March April May June

<q114–19 16.1% 44.8% 77.4% 53.3% 61.3% 10.0%

q214–19–q114–19 19.4% 44.8% 22.6% 46.7% 38.7% 90.0%

q314–19–q214–19 45.2% 10.3% 0.0% 0.0% 0.0% 0.0%

>q314–19 19.4% 0.0% 0.0% 0.0% 0.0% 0.0%

3.3. NH3

The stations monitoring NH3 are far fewer than those available for monitoring NO2
and benzene, because regulations do not set air quality standards for this pollutant, and
thus, its monitoring is not mandatory. In 2020, only 10 stations, mostly located in Lombar-
dia, were in operation out of the 14 active in the six previous years; additionally, one of the
stations was not considered in this work, because its location in a very peculiar rural context
makes it poorly representative, as discussed by Lonati and Cernuschi [39]. Therefore, data
analyses were developed for the whole dataset, without any further stratification.

The comparison between the monthly mean values for 2020 and 2014–2019, both for
single station data (Figure 10 left panel) and for the data distributions (Figure 10 right
panel), did not show the systematic decrease observed for NO2 and benzene from March
on. As summarized in Table 6, concentrations levels were basically higher in January and
February 2020 than in the previous years, but lower or similar to the past in the following
months. This result is fully consistent with the fact that NH3 almost entirely comes from
agriculture, whose emissions were not affected by the restrictive measures of the lockdown.
The higher pre-lockdown values (January–February) were likely due to the enhanced slurry
spreading activities (land application of liquid manure) that usually take place in autumn,
hindered by unfavorable weather conditions in 2019 and thus delayed to the beginning of
2020 [34]. The time trends of the daily concentrations displayed mean and median levels
for 2020 fluctuating around the corresponding values of 2014–2019 without any systematic
pattern (Figure S8). Given the constant emission regime, this confirmed that no particular
meteorological conditions able to affect the ambient concentration levels occurred in 2020.
Interestingly, concentration levels at urban stations (in the order of 10–15 µg m−3) did
not show a decline, even during the month of April, when NO2 and benzene showed the
strongest reductions. Thus, the large reduction of NH3 emissions from traffic (estimated at
up to −80%) did not affect ambient concentration levels, even at the local scale, seemingly
because the atmospheric presence of NH3 in the Po Valley was completely driven by
agricultural emission transported all over the area by air masses’ local circulation [39].
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Table 6. Summary statistics for NH3 monthly mean concentrations (µg m−3) in 2020 and 2014–2019 (q1, q2, and q3: 1st, 2nd,
and 3rd quartiles; p5, p95: 5th, 95th percentiles; N = number of observations).

Parameter
January February March April May June

2020 2014–19 2020 2014–19 2020 2014–19 2020 2014–19 2020 2014–19 2020 2014–19

Mean 13.4 8.7 13.2 8.4 8.9 10.0 8.7 8.4 8.4 7.7 8.3 9.4

St. dev. 14.6 5.8 9.8 5.7 4.6 5.9 3.8 5.1 3.2 6.2 4.2 6.6

Minimum 0.2 0.1 2.1 0.1 3.3 0.1 5.0 0.3 5.5 0.5 2.9 0.5

Maximum 48.5 21.0 35.4 26.6 18.0 26.6 15.6 25.3 15.5 33.9 14.8 33.0

q1 3.6 4.2 8.2 4.2 5.7 5.6 6.3 4.8 6.3 4.4 5.9 4.9

q2 7.7 7.4 9.9 7.8 7.7 9.0 7.6 7.3 7.4 6.3 6.3 8.4

q3 16.2 13.4 17.0 12.0 12.3 12.9 8.5 11.3 8.6 8.9 9.3 11.9

p5 1.5 0.1 3.8 0.3 4.0 2.4 5.4 2.6 5.6 1.7 3.8 1.6

p95 36.5 19.6 28.9 15.4 16.0 21.3 15.3 19.1 13.9 19.9 14.8 23.6

N 9 48 9 48 9 52 9 48 9 45 9 45

Means Test non reject non reject non reject non reject non reject non reject

4. Conclusions

As in many areas worldwide where restrictions to human activities were implemented
in order to limit the spread of the COVID-19 virus, the Po Valley also experienced better
air quality during spring 2020. However, as far as the gaseous pollutants considered in
this work are concerned (NO2, benzene, and NH3) air quality improvement was seemingly
affected by traffic-related pollutants only. Lockdown rules in Northern Italy determined
reductions of nitrogen oxide and benzene emissions from road traffic in the order of −35%
of the regional average, but with much higher reductions at traffic sites in urban areas
during some weeks in April. Consequently, significant average reductions in the −40% to
−35% range were observed for 2020 monthly mean concentrations for the area compared
with the 2014–2019 period. In contrast, NH3 ambient concentration levels, almost entirely
due to emissions from the agricultural sector, did not experience any relevant changes.
Even at traffic stations in urban areas, the role of NH3 traffic emissions was still marginal,
or practically negligible, with respect to agriculture, whose emissions affected NH3 levels
over the entire air basin of the Po Valley.
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Additional pieces of information highlighted by this work can be summarized as follows:

• The long-term air quality limit for NO2 (40 µg m−3 as annual average) is likely to
be respected at all the monitoring stations of the Po Valley in 2020, due to the low
concentration levels recorded from March to June.

• The observed reductions for the concentration levels were consistent with what could
be expected based on emission inventory and source activity data: this supports the
accuracy of both these factors, and thus, the reliability of the emissions scenario during
the lockdown period to be used for testing the performance of air quality models at
the regional scale.

• The Po Valley appears as a rather homogeneous air basin, with urban area hot-spots
where the contributions of the local emissions add up to a relatively high regional
background concentration level. Indeed, the low regional background reached at the
end of the lockdown period was beneficial for the following period, namely, with
concentration levels in June 2020 still below the average of the previous years, in spite
of the resumption of pre-lockdown activities.

• The relatively slow response of the air quality levels to the sudden decrease of the emis-
sions confirms that the Po Valley is an air basin with a weak exchange of air masses,
which favors both the build-up of atmospheric pollutants and the development of
secondary formation processes.

The improvement in air quality for traffic-related pollutants observed in the Po Valley
during and after the 2020 spring lockdown was the result of exceptional measures enforced
over the whole region for a prolonged time period. Both those features (i.e., territorial extent
and temporal continuity) are typical of structural interventions for air quality management
at the central level, in opposition to local-level policies, usually limited to urban areas and
mostly enforced for short time periods due to critical pollution events. Thus, national
policies for air quality should aim at a baseline limitation of traffic emissions and be
coupled with further coordinated policies, both structural and emergency, by the regional
authorities of the Po Valley that consider the abovementioned peculiar features of the area.
These policies can directly address the traffic source (i.e., supporting the renewal of the
circulating fleet, public transportation systems, and intermodal freight transport) but can
also address the individual mobility demand. Actually, the changes in habits and working
modes experienced during the lockdown period have demonstrated that teleworking and
remote business meetings, previously scarcely used, can profitably reduce the need for
mobility, and thus help reduce atmospheric emissions from road traffic with beneficial
outcomes for the air quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
433/12/2/264/s1, Figure S1: Relative variation of NOx (top), NMVOC (middle), NH3 (bottom)
emission by zones in Lombardia. [32]; Figure S2: Pie-charts for the distribution of the relative
variation of the monthly mean NO2 concentrations between 2020 and 2014–2019; Figure S3: Weekly
time patterns of NO2 overall daily mean concentrations for 2020 versus the corresponding values for
2014–2019. Shaded areas show concentration ranges for 2014–2019; Figure S4: Daily time patterns
of NO2 overall hourly mean concentrations for 2020 versus the corresponding values and min-max
range for 2014–2019; Figure S5: Scatterplots of the monthly mean benzene concentrations for 2020
versus the corresponding values for 2014–2019. Error bars show the min-max range for 2014–2019.
Please note that concentration scales are different for every other two months; Figure S6: Pie-charts for
the distribution of the relative variation of the monthly mean benzene concentrations between 2020
and 2014–2019; Figure S7: Time pattern of benzene overall daily mean concentrations for 2020 versus
the corresponding values for 2014–2019. Shaded areas show concentration ranges for 2014–2019;
Figure S8: Time pattern of NH3 overall daily mean concentrations for 2020 versus the corresponding
values for 2014–2019. Shaded areas show concentration ranges for 2014–2019.
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