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Abstract: The increasing availability of low-cost air quality sensors has led to novel sensing ap-
proaches. Distributed networks of low-cost sensors, together with data fusion and analytics, have
enabled unprecedented, spatiotemporal resolution when observing the urban atmosphere. Several
projects have demonstrated the potential of different approaches for high-resolution measurement
networks ranging from static, low-cost sensor networks over vehicular and airborne sensing to
crowdsourced measurements as well as ranging from a research-based operation to citizen science.
Yet, sustaining the operation of such low-cost air quality sensor networks remains challenging be-
cause of the lack of regulatory support and the lack of an organizational framework linking these
measurements to the official air quality network. This paper discusses the logical inclusion of lower-
cost air quality sensors into the existing air quality network via a dynamic field calibration process,
the resulting sustainable business models, and how this expansion can be self-funded.

Keywords: low-cost sensor; middle-cost sensor; air pollutant; health protection; citizen
science; sustainability

1. Introduction

If the first modern, disruptive, technological revolution was the Internet, in which
people were connected in unprecedented ways, the next revolution, in which billions of
devices are connected, has the potential to be much larger and holds the possibility of
fundamentally changing how we interact with our environment. It is estimated that there
could be up to 42 billion connected Internet of Things (IoT) devices by 2025 [1]. This
IoT revolution—digitizing the physical world—has received enormous attention and, in
combination with the increasing availability of low-cost air quality sensors (LCS), is leading
to novel air quality sensing approaches [2].

These new approaches offer the greatest potential benefit in urban areas where often
invisible, hyperlocal air pollution can vary by more than eight times within 200 m [3].
This type of personal, high-resolution air quality information is not available via the
existing, official air monitoring networks whose purpose is primarily to measure regulatory
pollutant limit violations. It was this collection of facts that led the former Mayor for New
York, Michael Bloomberg, to declare that “collecting data from all sources of pollution, and
making it publicly available, is one of the least expensive and most effective ways to clean
the air” [4]. Furthermore, the EU Joint Research Centre, which is the research organization
that provides independent scientific advice to support EU policy, said that LCS have the
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potential to be a “game changer” in terms of understanding the environment provided that
the quality of their measurements is improved [5].

The challenge for LCS is that they are trying to mimic highly accurate, sophisticated,
and expensive reference-level air quality monitors. These existing reference-level monitors
are used by the air quality authorities to fulfil regulatory and compliance requirements that
are highly accurate (>90%), expensive (~$180 k per station), resemble laboratory equipment,
and require specialist technical expertise to operate and maintain. LCS, on the other hand,
tend to resemble small electromechanical devices, are relatively inexpensive (<$8 k per
replicated station), easy to use, and are targeted to fulfil the role of indicative-level monitors.

In air quality assessment terms, an indicative measure is part of a commonly rec-
ognized and legislatively defined set of accuracy thresholds set for each pollutant. The
legislatively defined threshold accuracies range from very stringent for regulatory purposes
(>90%) to less demanding “indicative measurements” (>~70% depending on pollutant and
assessment need) [6,7], which are achievable with lower cost sensors [8].

Accuracy is the primary obstacle for air quality authorities to use LCS at greater levels.
All air quality monitoring equipment is significantly influenced by weather and drift. The
weather is site-specific and the result of cross-sensitivities from interfering compounds
on measurement performance [9]. However, drift, which is the loss of accuracy over time,
varies uniquely across each device. To address these issues, well-known methods for quality
assurance and control are applied to the laboratory equipment, such as the implementation
of calibration materials and gases, by highly trained technicians. These techniques are
not practical, and, in many cases, not possible with LCS, so they are dependent upon the
existing air quality monitoring equipment to mimic.

This key problem of deployed device accuracy is recognized by many technical
bodies such as the one in Europe, which is currently drafting a certification for LCS [10]
and strongly recommends that sensor measurements are periodically compared side-
by-side with the reference stations near the deployed location. This well-established
field calibration process involves various statistical techniques and is critical for these
LCS devices to achieve acceptable levels of accuracy or, according to the Council of Gas
Detection and Environmental Monitoring, “actual measurements taken are only as good
as the calibration of the instrument used to do the measuring” [11]. This means that any
future certification will have limited practice relative to the algorithms used and frequency
of the instruments’ field calibration.

A key to the future business prospects of using LCS in air quality assessments depend
on the existing air quality authorities’ active support and involvement in their use. In a joint
statement of 38 influential organizations from 14 different countries, a lack of cooperation
between the official air quality monitoring networks (AQM), operators of the reference
stations, and lower-cost sensor operators was identified as the main obstacle to their greater
use for officially conducted air quality assessments [12].

This paper provides an overview, including some examples, of the existing and future
business opportunities using LCS to conduct a high-resolution assessment of air quality in
urban areas. It reviews the business cases for this under three scenarios: (1) the current
situation in which LCS are operated independently of the AQM, (2) the current situation
where greater air quality assessment needs are met through an integration of LCS into the
official air quality network, and (3) a proposed way forward to systematically network LCS
to the AQM using a dynamic field calibration process as well as the resulting benefits and
business opportunities.

2. Background of Existing Business Models for High-Resolution Assessment of
Air Quality

Air quality assessments have a wide range of accuracy target thresholds. These
move beyond the legislative definition of providing indicative or regulatory compliance
measures, as seen below [7]:

• Regulatory compliance (>90%)



Atmosphere 2021, 12, 595 3 of 16

• Spatial gradient studies (>75%)
• Intervention studies/indicative measures (>70%)
• Hot spot determination (>50%)
• Citizen science projects (>50%).

The status quo, in most areas of the world, is little or no cooperation between the offi-
cial air monitoring networks and the lower-cost sensor operators. This situation relegates
the use of LCS largely to citizen science projects and/or hobbyists. It is commonly assumed
that the accuracy of these devices is not much better than 50%.

The most successful business model for urban air quality monitoring is the one-time
sales of hardware and software. Today, there are hundreds of LCS systems commercially
available on the market with costs ranging from several hundred to several thousand
euros [9]. The total size of the global air quality monitoring market, which includes both
reference level monitors and LCS hardware and services, is expected to reach $6.4 billion
in the next 5 years [13]. The segment of this market experiencing the greatest growth are
LCS hardware and services, which is growing at 14.3% [14] and the municipal IoT enabled
LCS hardware to expand at an astounding 25.4% [12] per annum.

The reason that this market has been largely limited to hobbyists is because the current
business model offers no guarantee of deployed sensor accuracy or precision. Nevertheless,
the demand for LCS continues to grow, which is reflected in both the sales data and the
changing public perception of their environment. A recent public opinion survey on air
pollution in Europe [15] found that the majority of Europeans (54%) did not feel well-
informed about air quality and, despite significant improvements [16], believed that air
quality was getting worse.

LCS offer a feasible and affordable means to quantify the effect of air pollution mitiga-
tion interventions. High-resolution Smart Air Quality Networks (SAQN, see: Section 4)
can be installed in the urban environment, parallel to policy-based or technology-based
mitigation strategies, which may be integrated in the existing urban infrastructure (‘Lungs
of the City’-concept [17]). Encouraging the active participation of local hobbyists, resi-
dents’ organizations, and educational institutions may co-create a ‘living lab,’ resulting in
increased public awareness and sense of involvement. Availability of real-time air quality
information among peers will increase acceptance of such data. Moreover, visualization of
actual air quality improvements upon mitigation will positively affect public opinion, as
well as the sentiment that changes can be taken to improve local air quality.

2.1. Standalone, Independently-Operated LCS Air Quality Assessment Networks

The demand for greater air quality information and a call for governments to provide
this has led to numerous government-funded citizen science projects. These projects are
undertaken by members of the general public, often in collaboration with or under the
direction of professional scientists and scientific institutions [18].

The demand for this information has been so great that some citizen science projects
have continued to grow even after the official end of the project. The most notable has
been “Luftdaten”, which started as a nationally funded Open Knowledge Lab project in
Germany with the aim of making particulate matter (PM) visible in places where it was not
officially measured [19]. Beginning in 2015 with 300 sensors in Stuttgart, Germany [20], it
has now grown to a global network of over 12,168 privately owned LCS reporting over
7 billion data points and operating in 75 different countries. This post-project growth
occurred without government funding and without an advertising budget. Luftdaten, now
known as a sensor community (https://sensor.community/en/ (accessed on 2 May 2021),
has plans for further expansion and wants to use its grassroots organization to pressure
local governments to take further action to address air pollution [21].

2.2. Semi-Integrated LCS-Official Air Quality Assessment Networks

The general technological trajectory for LCS is clearly one of ever improving capability
since newer sensors tend to outperform older versions [22]. This continually improving

https://sensor.community/en/
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performance, increasing consumer demand, and air quality authority’s obligation to inform
the public has naturally led these devices to become increasingly integrated into the existing
AQM. This integration together with data fusion and analytics has allowed these devices to
provide legislatively recognized indicative levels of accuracy, which has opened up many
new applications, uses, and business opportunities.

The following real-world examples demonstrate different types of integration and the
resulting benefits of an expanded, indicative air quality monitoring network.

2.2.1. AirNow: Fire and Smoke Map

In the United States, the Environmental Protection Agency (EPA) is currently ad-
vancing lower cost and portable air measurement technology to enhance monitoring
capabilities that comply with the National Ambient Air Quality Standards (https://
www.epa.gov/naaqs (accessed on 2 May 2021)) [23]. They have also taken the additional
step of integrating an existing private LCS network (>10 k LCSs) operated by PurpleAir
(https://www2.purpleair.com/ (accessed on 2 May 2021)) into a government-sponsored
platform known as AirNow. The AirNow Fire and Smoke map is a sensor data pilot project
designed to provide the public with additional information on particle pollution levels
(PM2.5) in the air, particularly during wildfires. This is provided via a web-based real-time
map (https://fire.airnow.gov/ (accessed on 2 May 2021)) that fuses particle pollution mea-
sures from the official EPA air quality monitors, corrected PurpleAir LCS measurements,
and fire data from the U.S. Forest Service.

In order to ensure the integrity of the LCS readings, the EPA applies a correction factor
based on 50 collocated PurpleAir sensors situated at 39 sites spanning 16 different states
(https://www.epa.gov/air-sensor-toolbox/technical-approaches-sensor-data-airnow-fire-
and-smoke-map (accessed on 2 May 2021)) [24]. These correction factors help to account
for systematic biases in the raw data measurements reported from each LCS, including
biases caused by different atmospheric conditions. The release of this integrated product
corresponded to one of the worst fire seasons in the Western US. Previously, AirNow
received tens of thousands of page views during the entirety of a single smoke event. With
the new integrated map, they reached a peak of nearly 400,000 page views on a single day,
achieving over 7.4 million views between 14 August 2020 and 30 November 2020.

2.2.2. Cangzhou, China

In Cangzhou, China, a pilot project sponsored by the Environmental Defense Fund
(EDF), Beijing Huanding Environmental Big Data Institute, and the municipal government
was launched, showcasing the ability of mobile LCS technology to reduce air pollution
by targeting enforcement actions in hot spot areas [25]. This pilot consisted of 50 taxis
mounted with LCS measuring particulate matter every 3 s. Both mobile and stationary
LCS measures were used to fill the gaps left by the official AQM network while relying on
that network to ensure accuracy.

Within 3 months after starting this pilot, air pollution enforcement effectiveness
increased by a factor of 10. This pilot was the result of a wider “grid management” project
initiated in 2017 by the Ministry of Ecology and Environment, China, which led to a drop
of PM2.5 levels by 38.3% in the piloted area versus a 20% reduction experienced across the
rest of Cangzhou [26].

2.2.3. Rijnmond: We-Nose Network

As the level of integration and analysis with the official air quality stations increases, so
does the usefulness of the data. Electronic noses (E-Noses) are a technology that have been
around for more than 25 years and attempt to mimic mammalian smell. Historically, they
had been deployed for quality control of food and other products as well as odour exposure
in the surroundings of sources, such as from agriculture. However, in the last 10 years, they
have increasingly been deployed as alert systems to detect ambient odour concentrations
within ports, specifically for the illegal release of Volatile Organic Compounds (VOC).

https://www.epa.gov/naaqs
https://www.epa.gov/naaqs
https://www2.purpleair.com/
https://fire.airnow.gov/
https://www.epa.gov/air-sensor-toolbox/technical-approaches-sensor-data-airnow-fire-and-smoke-map
https://www.epa.gov/air-sensor-toolbox/technical-approaches-sensor-data-airnow-fire-and-smoke-map
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These releases often occur during the degasification of liquid-carrying vessels but can also
result from unintended leaks [27]. These E-Noses are generally deployed as a collection of
non-specific, low-cost, gas-sensor arrays that, when properly trained and distributed, can
identify the presence and source of the emissions.

In order to achieve this goal in an outdoor setting, rigorous field calibrations need to be
completed as does extensive training of the data [28,29]. This process entails a mathematical
pattern recognition of smells (both odour and odourless) as each type of substance has
a unique chemical signature [30]. In practice, this means a very close cooperation with
the local air quality authority figure who operates the nearby AQM stations where some
of the E-Noses are located. When an event is detected and investigated, it often entails
a comparison of the E-Nose measures and samples taken from traditional approaches
conducted by the local air quality authority.

The Port of Rotterdam, situated in a densely populated region of the Netherlands,
is the largest refining and chemical cluster in Europe. In 2013, as a result of numerous
odour complaints (5–6 k per year), 77 E-Nose sensors were installed by a company to
act as an early alert system to identify the location, concentration, and composition of
these emissions. This network, known as We-Nose (https://www.dcmr.nl/projecten/e-
nose-programma-rijnmond.html (accessed on 2 May 2021)), has now expanded to more
than 250 E-Noses covering the Rijnmond area. The success of this integrated network has
led to similar efforts in other ports, e.g., Amsterdam, Antwerp, and Tallinn. This type of
application for ambient air quality is additive and not a replacement of the existing efforts.
The triumph of this approach would not be possible without the combined collaborative
efforts of the port, national environment agency, and private industry.

3. Potential Benefits of High-Resolution Assessments of Air Quality

Air pollution is the fifth leading risk factor for mortality worldwide and, each year,
more people die from it than road traffic accidents or malaria [31]. In Europe, air pollution
is the number one cause of premature deaths from environmental factors and this effect
is particularly pronounced in cities where most people live [32]. In economic terms, the
resulting loss due to urban air pollution is currently estimated at 3.9% of all income earned
in cities and this cost “will probably increase as additional associations between pollution
and disease are identified” [33].

3.1. Cost Savings Potential of Improved Public Health

The rapidly growing healthcare expenditures now exceed 10% of global GDP [34]. One
clear payment strategy is to finance the expansion of the measurement networks with the
money that is saved through reduced healthcare cost (Figure 1). The rationale for such a self-
funding mechanism is as follows: Initially, policy-based or technology-based intervention
and mitigation strategies (as designed and implemented by (local) governments and funded
from public sources (€1)), result in improvements of AQ. As a consequence of appropriate
governance-based actions (Figure 1, grey-shaded box), a positive effect on public health
is anticipated, which, in turn, results in reductions of healthcare costs. Resources that are
saved due to lower healthcare spending can be reassigned (€2) to intensify air pollution
mitigation efforts and to expand monitoring networks. In turn, this results in additional
AQ improvement, leading to further exposure reduction, and, consequently, additional
health gain. Thus, an adequate governance framework may establish proper conditions to
generate a self-sustainable ‘positive feedback loop.’

In this scheme, AQM serves multiple purposes. Improved public awareness may
prompt individuals to use actual measurement data in making informed decisions regard-
ing personal exposure-evasion strategies. Additionally, the availability of current and past
AQ information will greatly assist in determining causality, drawing up legislation, and
implementing enforcement.

https://www.dcmr.nl/projecten/e-nose-programma-rijnmond.html
https://www.dcmr.nl/projecten/e-nose-programma-rijnmond.html
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Figure 1. The interplay of air quality (AQ) monitoring and AQ improvement and mitigation mea-
sures, paid out of common assets (€1), adds to improved public health. The necessary measurement
networks and intervention strategies could, therefore, be funded from the savings that were gen-
erated in the healthcare system (€2), gradually phasing out the necessity of a contribution from
common assets.

Another topic for financing the costs of clean air is the willingness of people to pay for
air quality data.

The advent of affordable, high-resolution air quality measurement networks allows for
the reliable assessment of personal exposure potential and related health risk. Based on this
type of information, individuals can make informed decisions regarding personal evasion
strategies [35]. The ability to avoid urban air pollution concentrations using real-time
measurements is not currently possible with the existing official network. This network’s
reference stations are used primarily for compliance purposes and typically go through a
quality control process prior to public reporting. This reporting delay is typically between
30–120 min. Moreover, data are representative for the conditions at that specific station
location only.

In Europe, a recent study focusing on urban air pollution concentrations concluded
that the societal costs (see Figure 1: Public Health) for the 432 cities studied, totalled EUR
166 billion in 2018 [36]. These encompass the overwhelming majority of the European
GDP [37]. To measure this exposure, the 891 urban reference stations in Europe had an oper-
ational cost of only EUR 21.3 million [16,37]. Unfortunately, the academic literature is very
limited on the ability of people to avoid localized air pollution concentrations because these
real-time measurements are not currently available. However, assuming that they were
avoiding localized air pollution and this were to lead to only a 3% reduction in exposure in
Europe, this would translate into a savings of approximately EUR 5 billion per year.

The highest estimates for the social cost of air pollution in Europe are in London.
In 2018, the loss in welfare for its 8.8 million inhabitants totalled EUR 11.38 billion [36].
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A similar 3% reduction in air pollution exposure would potentially translate into an
economic benefit of EUR 341.4 million per year. For this reason, the City of London
embarked on a multi-year consortium project focused on high-resolution air quality as-
sessments. The first phase of this project involved 250 schoolchildren carrying LCS de-
vices to measure their personal exposure to air pollution on their route to school. This
phase also involved one-off mobile mapping of the city using two normally powered
Google Street View cars (https://insights.sustainability.google/labs/airquality (accessed
on 2 May 2021)). These were specifically fitted with reference grade air quality monitoring
equipment and were driven on weekdays over the course of a year, using a previously
developed process [38]. Upon completion of this mapping, 100 LCS were installed at air
pollution hotspots (https://www.london.gov.uk/what-we-do/environment/pollution-
and-air-quality/london-air-quality-map (accessed on 2 May 2021)). In order to verify
the accuracy of those devices, they were periodically manually calibrated with reference
level equipment.

The success of this project has led to its further extension until 2024. The extension
involves fixed deployments by a company of 100 LCS at hospitals, schools, and other
sensitive locations (https://www.breathelondon.org/ (accessed on 2 May 2021)) at a cost
of roughly EUR 214,000 per year [39]. This figure is aligned with a general guide for the
total costs of an LCS network in which the analysis expenditure is five times the hardware
costs [40]. In the case of London, the benefit is very clear. If the deployment of LCS leads to
a reduction of exposure by a mere 1%, simply through avoidance, the societal benefit could
total EUR 113.8 million at a cost of only EUR 214,000 (a 531.7× return).

3.2. Polluter-Pays-Principle

The polluter-pays-principle is the basics of all environmental protection measures.
However, the practical realisation is limited in the case of road, ship, or air traffic. High-
resolution air pollution networks of stationary and mobile sensors can support the detection
of unknown emission hot spots. This is an additional driving factor when developing
such networks by agencies, which are responsible for compliance with the polluter-pays-
principle. Following this, the knowledge of personal air pollution exposure and, thus,
health risks is not only a personal interest but a societal interest.

4. Future: The Smart Air Quality Network

This paper outlines a standardized approach for the expansion of the existing air
quality monitoring (AQM) network to include IoT-linked LCS devices, which we refer to as
the Smart Air Quality Network (SAQN). This expanded indicative monitoring network is
made possible through telecommunications, GPS positioning, and a mobile network of air
pollution sensors mounted to normally operated vehicles. The critical link in this network
occurs when two air pollution monitoring devices sample the same air. In an outdoor
setting, this means that they pass within close proximity of each other. When this occurs, an
automated comparison analysis of these air quality measurements is made, either within
the LCS device or in the cloud, and calibration instructions are relayed back to the device in
need of adjustment. The end result of this fully connected network will be the accuracy of
every connected device in real-time. These measures can then be used for specific air quality
assessments and to reduce the public’s exposure to urban air pollution concentrations.
Further adaptation of additional digitized information will be critical for some assessment
needs and will improve the accuracy and reliability of the overall network.

The market for LCS sales will not be the focus of this paper since those sales are
expected to continue double-digit growth into the foreseeable future, which is independent
of establishing an organizing framework. However, given growing popularity, it should
be noted that customers for LCS have shifted significantly in recent years from expert
users to consumers. A lack of public understanding regarding the complexity of urban air
pollution and trending negative public opinions about the trustworthiness of governments
are growing risks that can ultimately undermine existing efforts if nothing is done. An

https://insights.sustainability.google/labs/airquality
https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/london-air-quality-map
https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/london-air-quality-map
https://www.breathelondon.org/
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overview of low-cost sensors for particulate matter and gases in different monitors is
listed together with references, tests conducted, the standard method used, the comparison
period, and the outcome in Reference [41]. An overview about data communication,
storage, cloud services, processing, and dissemination is given in Reference [41] as these
areas are not discussed here.

4.1. The Smart Air Quality Network Design

The ability to link devices via sampling the same air in an outdoor setting is a common
practice for all LCS devices and is referred to as a field calibration. The ability to do
this on a mobile basis was successfully demonstrated in the Opensense project (http:
//opensense.epfl.ch/wiki/index.php/OpenSense_2.html (accessed on 2 May 2021)), which
involved LCS mounted to 10 normally operated municipal buses. These buses were
run continuously over the course of 3 years (600,000 driven km, 800 m data points).
The result was these findings solved for the mobility distortion effects on slow reacting
chemical sensors and they developed an automated, dynamic calibration process [42],
which improved sensor accuracy and solved for drift. As in other studies, the vehicle
emissions themselves did not significantly affect the LCS readings [43].

The Opensense project demonstrated that a network of mobile sensors can be consis-
tently and reliably maintained remotely with very high levels of availability (>99%). While
there is very little information available on performance comparisons using non-stationary
sensor networks, this project demonstrated accuracy levels consistently above the existing
indicative thresholds. In a comprehensive review of LCS performance based on stationary
deployments conducted in 2019, sensors built using the same design and calibration tech-
niques developed by Opensense were found to be the most accurate in the market at that
time [9].

The future Smart Air Quality Network should be based on a similar dynamic calibra-
tion technique. A dynamic recalibration process is one that can take place systematically in
real-time between any two devices. The instructions for the adjustment of a device that has
been deemed to need adjustment are then sent back to that device.

The backbone of this chain of linked devices is the official air quality reference station,
which must be in close proximity to at least one of the passing vehicles with mounted LCS
devices. A hierarchy of accuracy and reliability is then established for the entire chain of
linked devices, which is based on sampling frequency and number of devices, or nodes,
between the device and the reference station, e.g., a single LCS that passes often within
close proximity to the reference station would have a higher rank than a device that is
several steps removed from passing a reference station and is now in a different pollution
environment. For cities that have multiple reference stations where a single LCS device
passes, there could be multiple sets of calibrations depending on a combination of location,
weather variables, and pollution levels. As in any classic network, the information of this
network improves with a greater number of nodes on the network, i.e., it follows Metcalf’s
Law, which states that the value of the network is proportional to the square of the number
of users (see Figure 2).

http://opensense.epfl.ch/wiki/index.php/OpenSense_2.html
http://opensense.epfl.ch/wiki/index.php/OpenSense_2.html
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Figure 2. The value of the Smart Air Quality Network is proportional to both the square of the
number of connected LCS devices and their spatial and temporal closeness to the existing official air
quality monitoring network (AQM). These AQM stations are shown in green in the chart above.

For stationary devices that do not fit within this synchronized measurement chain, i.e.,
one that never passes another device, a different technique has been developed to calibrate
devices remotely based on nearby measurements [2]. This was demonstrated in Beijing
using 1000 LCS (including seven that were collocated with reference stations) [44]. These
calibration instructions can then be transferred across a larger scale gestalt network of
similar devices using the 5G network’s advances in data processing and 3D positioning [2].

For areas not measured within a city, spatial pollution distribution maps, incorporating
urban topography, have been developed using these high-frequency, spatially distributed
measurements. One notable example is the method developed [45] as a result of a mobile
sensing project in Antwerp (https://www.imeccityofthings.be/en/projects/dencity-more-
sensors-in-the-city (accessed on 2 May 2021)) in which 20 postal vehicles were equipped
with LCS and combined with the measurements from 15 fixed LCS locations.

The end results are real-time air pollution measurements available in 25-m incre-
ments across roughly 70% of the city. These are achieved with only a small number of
mobile sensors (https://business.edf.org/insights/future-fleets/ (accessed on 2 May 2021))
coupled to the existing official network. These are then supplemented with additional
measurements taken by interconnected personal LCS devices (both fixed and mobile) and
newly developed dispersion modelling applying all these data points.

This approach has three additional significant benefits:

• It is technology independent as it can continue to grow and improve with newer
sensing technologies,

• It is hyper scalable. The more nodes it has, the better it functions, as most of the work
is done via algorithms and telecommunication technology,

• It allows the air quality authority to freely use sensors of a known accuracy that are
owned and maintained by others without sacrificing the quality of its existing measurements.

4.2. Structuring and Funding the Smart Air Quality Network

The following section outlines how the expansion of the network can be self-funding
and operated in a way that is additive to the air quality authority’s assessment needs.

https://www.imeccityofthings.be/en/projects/dencity-more-sensors-in-the-city
https://www.imeccityofthings.be/en/projects/dencity-more-sensors-in-the-city
https://business.edf.org/insights/future-fleets/


Atmosphere 2021, 12, 595 10 of 16

4.2.1. Mobile Network Operator

A business opportunity exists for an independent company to maintain the mobile
network on behalf of the air quality authority. In the public’s mind, this delineation more
clearly separates the regulatory responsibilities of the air quality authority from those
involving indicative measures. This delineation also makes functional sense as LCS are
focused on information technology rather than environmental science.

4.2.2. LCS Franchise Fees

Each independent LCS owner would pay a fee to receive a certification from the
environmental protection agency, i.e., their device meets the indicative measures quality
threshold. The fee generation could be used to offset the network’s operating cost. This
franchise fee system could be further segmented by enforcement rights or a visual display
of the air quality at that location.

4.2.3. LCS Franchise Fees: Green Halo

Many people want to be seen as “green.” The subset of air pollution sensor owners
known as the “Green Halo” pay an annual franchise fee to be visible on the network and
seen on the official air quality maps. In addition, their sensor can be equipped with visual
cues such as the LED lights on their vehicle that represents the current air quality level at
that location. The concept of the “Green Halo” is originally a label given to the premium
that people were willing to pay for a hybrid vehicle (~6%) and is based on the economic
idea of conspicuous conservation [46].

4.3. Business Models

The following section illustrates some examples of businesses that could be developed
based on the existence of a newly expanded network.

4.3.1. Visibility: Hyper-Local Air Pollution Maps/Visual Cues

Visibility leads to a greater simplicity and understanding. This digital visualization
of the real world can take the form of visual signals of localized air pollution, such as a
colour-coded air quality index represented by an LED light. These lights could be placed
at a street level to indicate the air quality at that location and encourage certain forms
of transport.

Mobile phone applications based on higher levels of spatial and temporal data already
exist, e.g., “Green Pathways” [47] and allow users to minimize their exposure, e.g., during
their daily commute. These apps draw the community closer together since they have a
similar appeal to other social media applications of this type, which fulfil people’s need for
purpose. The primary revenue drivers of this business model are advertising revenues.

4.3.2. Traffic Management: Flexible LEZs

There are around 250 Low Emission Zones (LEZ) [48] in Europe and it is unclear what
their effectiveness is in reducing air pollution. As reported by the EU Court of Auditors,
“in the rare instances when the effectiveness of these zones is assessed, it is often years
after implementation” [32]. In addition, the fees collected very rarely cover the direct
costs of administration. According to experts, low emissions zones do not make money
using traditional enforcement mechanisms: “The more you enforce, the more expensive it
gets” [49].

The integration of the SAQN data to the existing traffic control system allows these
zones to be flexibly managed, which would increase their political acceptability and reduce
the enforcement cost. The primary revenue drivers of this business model are derived from
the government’s transport budget.



Atmosphere 2021, 12, 595 11 of 16

4.3.3. City and Transport Planning

A key aspect of all planning processes is an assessment of the costs and benefits of
the policy options being considered with a considerable focus on the ‘cost benefit ratio’ for
the building or transport project [50]. Detailed guidelines on how government economists
should quantify these effects is often very limited for air pollution. An SAQN would
simplify and standardize this aspect of the process and allow verification of specific design
effects on the environment, which is unprecedented. The primary revenue driver of this
business model is local government funding.

4.3.4. Air Quality Plans

The previously mentioned auditor’s report found that: “Existing air quality plans
often do not assess the cost effectiveness of the measures taken, are insufficient, poorly
targeted, and the enforcement process is slow” [32]. It maintained that citizens should
“play a key role in monitoring the Member States’ implementation of the Ambient Air
Quality Directive, in particular, when results imply difficult political choices. Local action
is important, but requires public awareness: only if citizens are well informed can they
be involved in the policy and take action, where appropriate, including changing their
own behaviour.” The SAQN serves as a systematic, real-time check on the effectiveness
of mitigation measures taken. The primary revenue driver of this business model is
government funding.

4.3.5. City-Level Emissions Inventories

An emissions inventory is a database that lists, by source, the amount of air pollutants
discharged into the atmosphere. Governments use emission inventories to help determine
significant sources of air pollutants and to target regulatory actions [51].

The demand for city-level emission inventories is growing, with 9500 cities signed
onto the Paris Agreement. Numerous cities have developed climate action or remediation
plans, but only a small percentage have the necessary inventories to adequately track their
progress [52,53].

Calculating an inventory for cities is a complex, expensive undertaking that requires
access to accurate, citywide data, which is often not readily available or standardized.
Essentially, these inventories are normally only done at a national level and are based
on national statistics, e.g., fuel consumption. In an attempt to remedy this problem,
standardized approaches have been developed [54] for cities and research has been done
to further disaggregate this data spatially and temporally [55]. While these advances are
necessary for complex aspects such as wood burning heat [56] or road salting [57], they
inevitably rely on emission factors, which are assumed to represent long-term averages.
The difficulty with this top-down approach has been most dramatically illustrated with the
‘Dieselgate’ scandal in which CO2 emissions have been shown to be one-third higher [58]
and NOX emissions up to 40 times higher [59] than official estimates. Even prior to this
discovery, it was widely accepted that the uncertainty around emission factors for transport
were regularly around 50% and rose to as high as 120% [60]. This uncertainty around
city-level emissions using a top-down approach will only get worse with the electrification
of the transport sector, which, in Europe, has witnessed a 212% increase since last year with
the share of electric vehicles now reaching 10% of all new vehicle sales [61].

As previous research suggests, the approach using additional information to spatially
and temporally disaggregate emissions data does yield big improvements and has been
tried by companies like Google (https://insights.sustainability.google/ (accessed on 2 May
2021)). However, ultimately, the problem is that a top-down approach does not work
well no matter how well the information is disaggregated because the correct and real
emission indices must be known. What is required are a greater number of ambient air
measurements for source apportionment and inverse dispersion modelling methods, i.e., a
bottom-up approach [62]. This can be seen in the most recent academic review of 48 US
cities in which it was found that they were, on average, under reporting their emissions by

https://insights.sustainability.google/
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18.3%, with a range of −145.5% to +63.5%. As a result, the authors of the report suggest a
more systematic, bottom-up approach with spatial granularity down to the street level [63].

4.3.6. European Emissions Trading Scheme

One promising approach would be to incorporate the building and transport sectors
into the existing European Emissions Trading Scheme (ETS). Since 2005, the ETS has
included the power generation and industrial sectors, which account for 46% of GHG
emissions and have been reduced by 25% since ETS inception. In contrast, the building and
transport sectors, which account for 38% of GHG emissions, have only achieved marginal
reductions in the same time period.

This works simply by combining the SAQN data with additional information, such
as vehicle traffic counts and building heating sources, which has been previously done in
creating air pollution dispersion mapping using the same techniques [64].

The inclusion of these sectors into the ETS would follow a similar path as the inclusion
of the industrial sector except that the fixed amount of emission credits would be allocated
to each city or port rather than an individual vehicle or building owner. The zone would
then find the most efficient way to mitigate and manage risk.

This standardized approach is entirely dependent on the AQM infrastructure, which is
regulated and tied to the long-standing CEN standards (1996). Allocating the responsibility
for managing this risk to the city or port also helps reduce the cross jurisdictional regulation
risk of the transport sector, which is currently a hodgepodge of city, country, and EU level
regulation. As seen previously in the energy sector, these duplicative jurisdictions can lead
to policies working against each other, resulting in zero added benefit at a greater cost. The
decentralization of the decision-making to the local level minimizes risks and increases the
political acceptability as this approach enables different cities to take approaches that best
fit their needs, e.g., city planning.

Inclusion of the transport sector in this manner is an attractive alternative to the
proposed European Carbon Border Tax as it is not a tax but a market price based on
usage. This means that it is not a violation of existing international trade and diplomatic
agreements. Lastly, this approach is very inexpensive with the overall cost to maintain this
system being less than the implementation costs for the majority of Low Emission Zones
(LEZ) [65].

4.3.7. Pricing Urban Air Pollution

Most congestion road pricing schemes are based on a flat tariff applied to vehicles
entering and leaving the congestion zone, which is a fixed area at the centre of a city.
Commuters tend to resist congestion schemes since they are seen as merely another tax,
which many commuters believe they have already paid in the form of time along with
vehicle and fuel taxes. The schemes are also viewed unfavourably on a socio-economic
basis and are subject to gaming, e.g., a diesel-powered Uber vehicle that drives all day only
within the zone.

However, new technologies have proven that a path-dependent road usage price can
be established per vehicle as detailed by the centre for London think tank [66], which
concluded that dynamic road pricing schemes are likely the most sensible and economic
solutions for large cities facing intractable issues of road congestion. This approach can
also be applied to pricing location-specific air pollution levels along the route travelled.
Establishing this link to air pollution pricing allows cities, for the first time, to accurately
place a value on clean air and improve the acceptability of a market-based dynamic
congestion/air pollution scheme.

A market-based approach differs from a tax-like fixed tariff approach because a portion
of the funds collected would be redistributed directly to vehicle owners or measures that
reduce air pollution. For instance, a parking garage owner would be reimbursed through
the market mechanism for an air purification system [17]. This could fund open air cleaning
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solutions, such as ‘Smog Free Towers’ (https://www.studioroosegaarde.net/project/smog-
free-tower (accessed on 2 May 2021)).

The overall baseline for the market price would be set by a revenue neutral entity.
This is similar to what exists in the power sector with an independent system operator
(ISO) who oversees the pricing mechanism for wholesale electricity. This ISO is revenue
neutral with their operating budget being funded by a fixed fee based on the rent collected.
These types of market structures have a long and successful record of delivering accurately
priced and reliable energy. The annual baseline for this market could be raised or lowered,
as dictated by the latest understanding of the health and economic costs of air pollution.

An added benefit of this approach is that baselines could be determined at a local
level and are more efficient than strict vehicle bans. In countries with emissions pricing,
much of the potential legal opposition has already been litigated and implementing this
approach would not require unity on a national or supranational level.

5. Conclusions

Historically, actions taken to handle air pollution have been achieved with overwhelm-
ing political support when that pollution was visible. Making air pollution visible through
the digitization of the environment at a personal level offers one of the greatest opportu-
nities for addressing urban air pollution. This is achieved by including LCS devices in
the existing environmental monitoring network via a systematic, dynamic field calibra-
tion process. The resulting, unprecedented spatiotemporal resolution of urban air quality
will simplify a complex problem and empower individuals to take personal action. This
greater transparency and awareness provided by the expanded air quality network will
lead to consensus-driven solutions that will support numerous new, sustainable business
opportunities, such as road pricing schemes linked to a market price for clean air.

Accurately measuring air pollution with a hyperlocal spatial and temporal resolution
will ultimately lead to business models that are funded by sectors of the economy that
benefit the most, e.g., the healthcare system. This funding may occur indirectly, such as
funding from the government’s transport budget for traffic management via flexible LEZs
or reimbursement of the air purification system in parking garages via a market mechanism.
The specific market mechanisms and mitigations used to address air pollution problems
are somewhat unknown since they depend on the acceptability of the local community.
However, what is clear is that we cannot begin to address this situation until we measure it.
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