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Abstract: The Model Output Statistics (MOS) model is a dynamic statistical weather forecast model
based on multiple linear regression technology. It is greatly affected by the selection of parameters
and predictors, especially when the weather changes drastically, or extreme weather occurs. We
improved the traditional MOS model with the machine learning method to enhance the capabilities
of self-learning and generalization. Simultaneously, multi-source meteorological data were used as
the input to the model to improve the data quality. In the experiment, we selected the four areas of
Nanjing, Beijing, Chengdu, and Guangzhou for verification, with the numerical weather prediction
(NWP) products and observation data from automatic weather stations (AWSs) used to predict the
temperature and wind speed in the next 24 h. From the experiment, it can be seen that the accuracy of
the prediction values and speed of the method were improved by the ML-MOS. Finally, we compared
the ML-MOS model with neural networks and support vector machine (SVM), the results show that
the prediction result of the ML-MOS model is better than that of the above two models.

Keywords: big data; automatic interpretation and forecasting; ML-MOS; random forest

1. Introduction

With the development of atmospheric detection technology, such as automatic weather
stations (AWSs), radar, satellite remote sensing, and GPS, human understanding of the
mechanism of weather change and the numerical weather prediction (NWP) model has
continuously improved. Simultaneously, the development of new technologies has made
full use of conventional and unconventional observations. The machine learning methods
using big data have more extensive application prospect in regional weather interpretation
and forecasting.

There are mainly two traditional weather interpretation and forecasting methods:
physical statistical methods and NWP methods [1]. Physical statistical methods are stan-
dard in the field of meteorology [2]. In the 1980s, meteorological interpretation and
forecasting based on atmospheric and oceanic dynamic equations began to develop, among
which model output statistics (MOS) was a typical example [3]. Cleveland and Bjerknes
proposed the NWP method at the beginning of the 20th century. The weather forecast was
initially regarded as an initial value problem in mathematical physics by establishing a set
of linear partial differential equations describing the fundamental laws of the movement
of the Earth’s atmosphere and substituting the initial values under certain conditions.
Researchers can solve the equations and obtain the numerical solutions of relevant meteo-
rological elements in the future. However, due to the complex calculation of the original
equations and the disturbance of initial values, regional forecasting accuracy needs to be
improved [4].

To improve the availability of regional weather interpretation and forecasting, improve-
ments can be made in two aspects One is to enhance the quality of the input data. Traditional
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regional meteorological interpretation and forecasting input data sources are relatively sin-
gular, relying primarily on observation data from discrete sites. The data are in a singular
form and contain limited meteorological elements. The extensive use of multiple observa-
tional data (such as satellites, radar, marine buoys) to obtain high-precision, multi-element,
multi-source meteorological fusion data is an effective solution to improve the quality of input
data. Multi-source meteorological data fusion includes precipitation fusion, land surface data
fusion, sea surface data fusion, and three-dimensional cloud fusion [5]. The other method is
the algorithm model. With artificial intelligence technology development, statistical machine
learning methods have been gradually developed and used to predict short-term weather
forecasts ranging from a few hours to two weeks [6–8]. This method can also be used for
coarse-grained long-term climate forecasts where target variables accumulate over months
or years [9,10]. Dedicated machine learning solutions are widely used in early warning and
forecast of extreme weather [11]. Jessica Hwang et al. [12] have developed a forecasting
system based on machine learning and a subseasonal Rodeo dataset suitable for training and
benchmark sub-seasonal forecasting, improving the forecast of temperature and precipitation.
Burke et al. [13] used the random forest to correct the hail output in NWP. The forecast
results obtained have higher accuracy and avoid the complicated physical correction process.
However, the data source used is single and has not been fully verified. In order to improve
the correction efficiency, Scher et al. [14] used deep learning methods such as a Convolutional
neural network (CNN) to replace random forest, but due to the lack of training samples
available, it is not easy to further improve the forecasting effect.

Combined with previous work [3–7], we propose a regional automatic interpretation
forecast system supported by multi-source data to predict the temperature (maximum and
minimum temperature) and maximum wind speed of the region in the next 24 h and com-
bined machine learning methods to improve the performance of traditional interpretation
forecast models.

The main contributions of this article include:

(1) A multi-source meteorological data processing method based on accurate and meticu-
lous interpolation of grid data and data regionalization is proposed.

(2) Two types of automatic regional interpretation and forecasting models under holo-
nomic and non-holonomic subsets are designed.

The rest of this paper is structured as follows. The Section 2 summarizes the Model
Output Statistics (MOS) and Machine Learning Model Output Statistics ML-MOS model
principles. In the Section 3, we present the implementation of the ML-MOS model, includ-
ing the multi-source meteorological data processing method and two types of automatic
regional interpretation and forecasting models. The Section 4 outlines the experimental
data source and experimental analysis; Finally, the Section 5 gives the conclusion and
future work.

2. Preliminary Knowledge
2.1. MOS Model Principle

The MOS model is a dynamic statistical weather forecasting model proposed by the
American meteorologist Klein in the last century [15]. The MOS model uses historical
data and actual meteorological parameters of forecast objects as forecasting factors to
establish statistical equations [3]. It is based on multiple linear regression and establishes
the quantitative statistical relationship between the predictand Y and multiple predictors:

Y = b0 + b1x1 + · · ·+ bpxp (1)
y1
y2
...

yn

 =


1 x11 · · · x1p
1 x21 · · · x2p
...

...
...

1 xn1 · · · xnp




b0
b1
...

bp

+


e1
e2
...

en

 (2)
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In Equations (1) and (2), Y is the forecasting object, B= (b0, b1, · · · , bp)T is the regres-
sion coefficient, X= (x1, x2 · · · , xp)T is the forecasting factor, and E= (e1, e2 · · · , en)T is
the error matrix.

The MOS model uses stepwise regression (SWR) for modeling. Firstly, calculate each
forecasting factor variance contribution is calculated. The forecasting factor with the most
significant variance contribution and reaching a certain significance level were introduced
from all forecasting factors that had not yet entered the equation to establish the regression
equation. Simultaneously, each forecasting factor variance contribution in the original
equation is calculated after introducing the new forecasting factors and the non-significant
forecasting factors are eliminated to establish a new regression equation. New forecasting
factors with significant variance contributions are gradually introduced through the above
process. Forecasting factors with poor significance are gradually eliminated to ensure that
only the forecasting factors with significant variance for the dependent variable are always
retained in the equation. This process ends when no significant variance contributing
forecasting factor can be introduced.

The MOS model workflow is shown in Figure 1.
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The MOS model has many advantages. It is a relatively mature interpretation model
and has also achieved a range of applications [16–18]. However, the selection of parameters
and the selection of forecasting factors in the regression equation affect the quality of
the forecasting object. Therefore, significant upfront work is required to identify the
forecasting factors. For nowcasting, the real-time data acquisition of fixed predictors is
often incomplete, which affects the model processing effect. When the weather changes
drastically, and extreme weather occurs, the MOS model is no longer applicable. For
weather phenomena that reflect the multi-scale comprehensive effect, the MOS model has
a poor forecasting effect and cannot reach the availability level.

2.2. ML-MOS Model

The MOS based on machine learning (ML-MOS) model is a MOS model based on
multi-source data support combined with the machine learning method proposed to
improve the traditional MOS model. The input data of the ML-MOS model adopts the
accurate and meticulous grid data obtained from the fusion of multi-source meteorological
data, such as NWP products, radar, satellites, and AWS, to ensure the model of data input
quality. We used random forest to replace the traditional SWR method of the MOS model
to improve the self-learning and generalization capabilities of the MOS model. Random
forest [19] is a highly flexible machine learning algorithm. It uses the classifier combination
to randomly select n groups of samples from the original samples and carry out decision
tree modeling for each sample group. Then, the results of each decision tree are considered
comprehensively to vote, and the principle of majority rule obtains the final result predicted
by the model.

The specific operation process is as follows:
STEP1: Use the classifier combination to randomly select n groups of samples from

the sample data.
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STEP2: Build a decision tree for n groups of samples, select some attributes randomly
and classify each node according to these attributes.

STEP3: Repeat STEP1 and STEP2 to construct T decision trees, and each decision tree
will grow freely without pruning, thus forming a forest.

STEP4: The voting mechanism is adopted to output the results.
In the following, we explain the multi-source data processing method in the ML-MOS

model and the model realization method under different constraints in detail.

3. ML-MOS Model Design and Implementation

This section mainly describes the specific implementation of the ML-MOS model.
Firstly, we propose a multi-source meteorological data processing method to ensure the
efficient utilization and organization of multi-source meteorological data. Secondly, the
process of improving the self-learning and generalization capabilities of the traditional
MOS model based on the random forest algorithm is described. We propose an ML-MOS
model to adapt to the automatic interpretation and forecasting of different regions. Finally,
we outline the framework of the ML-MOS model.

3.1. Multi-Source Meteorological Data Processing Method

The commonly used data in the meteorological field, such as NWP products, AWS ob-
servation data, meteorological radar data, and meteorological satellite data, are not unified
in macroscopic data storage. The above data can be divided into grid data and discrete data
in a spatial distribution manner. The general data format of grid data represented by NWP
products is “grib” or “grib2”, and the grid design is carried out according to longitude
and latitude. Take the high-resolution product of the ECMWF atmospheric model as an
example, the grid resolution of the atmospheric surface is 0.125◦ × 0.125◦; the barometric
grid resolution is 0.25◦ × 0.25◦. The discrete data represented by the observation data of
AWSs are usually the longitude and latitude of a single site, and the observation data of the
site are stored independently. Therefore, when using the above data as the ML-MOS model
data, the necessary format conversion and quality control of multi-source meteorological
data are required. The proposed multi-source meteorological data processing method is
divided into the following two parts.

3.1.1. Accurate and Meticulous Interpolation of Grid Data

Due to the differences in the resolution of different grid data and different elements
of the same grid data, to make full use of the grid data and meet the efficient utilization
of multi-source meteorological data, we used distance-weighted interpolation to achieve
accurate and meticulous interpolation from low-resolution to high-resolution grid data.

Definition 1. The known grid point is the initial grid point of the grid point data, that is, the
original grid point without interpolation processing.

Definition 2. The unassigned grid point is the high-resolution grid points of the original grid point
data after interpolation processing. There is a corresponding relationship with the known grid point.

The specific realization of distance-weighted interpolation can be described as Equation (3):

y =
i

∑
n=1

dnxn (3)

where xn is the value of the known grid point, and dn is the distance-weighted of xn.
Since the low-resolution grid may contain multiple high-resolution grid points, the

use of the distance-weighted interpolation method can effectively avoid the problem of the
same value of adjacent grid points to be assigned so that the interpolated grid point data
(high-resolution) has higher availability.
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As shown in Figure 2, suppose the resolution of the known grid point dataset K is
α× α, and the resolution of the unassigned grid point dataset U is β× β, where α > β. Let
ui be the i-th unassigned grid point in U, and the latitude and longitude of ui are expressed
as 〈uloni, ulati〉 in tuple. ka, kb, kc, kd are known grid points in K, and the horizontal grid
enclosed by ka, kb, kc, kd is the smallest horizontal grid Gmin enclosed by K. ka, kb, kc, kd is
the grid point value in Gmin, and its longitude and latitude are represented as 〈klona, klata〉,
〈klonb, klatb〉, 〈klonc, klatc〉, 〈klond, klatd〉. The distance dai, dbi, dci, ddi between ui and ka,
kb, kc, kd can be calculated by Euclidean distance as follows:

dij =
√(

uloni − klonj
)2

+
(
ulati − klatj

)2 (4)

where i is the i-th unassigned grid point, and j is the j-th known grid point.
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Then the distance-weighted dξ of ui corresponding to ka, kb, kc, kd is:

dξ =
dξikξ

∑ dϕi
(5)

where ξ = ϕ = a, b, c, d.
From Equation (3):

ui = ∑ dξkξ (6)

3.1.2. Accurate and Meticulous Interpolation of Grid Data

To avoid poor regional representation caused by single grid points and single station
representing various forecast regions, we obtained the grid point data by calculating the
mean value of the grid point data in the forecast area. The discrete data are obtained by
averaging the output observation values of the AWS contained in the forecast area. The
mean value obtained above is defined as the representative value of the forecast area at the
current moment.

Take Figure 3 as an example, where the gray area is the forecast area. Let f, g, j, and k
in Figure 3a be the grid points included in the forecast area. Take the ground pressure in
the ground layer element in the NWP product as an example. Suppose the representative
value of the pressure in the forecast area at the current moment is Pr, and the pressure of
each grid point is Pi, where i = 1, 2, · · · , n, n = 4. Then:

Pr =
1
n

n

∑
i=1

Pi (7)
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Let a~f in Figure 3b be the AWSs included in the forecast area. Take the 2 m tempera-
ture in the observation elements of the AWS as an example, suppose the 2 m temperature
representative value of the forecast area at the current moment is Tr, and the 2 m tempera-
ture of each AWS is Ti, where i = 1, 2, · · · , n, n = 6. Then, there is:

Tr =
1
n

n

∑
i=1

Ti (8)

3.2. Two Types of Automatic Regional Interpretation and Forecasting Models

As mentioned above, the traditional MOS model cannot receive real-time meteoro-
logical data, especially NWP products, and short-term weather forecasts have particular
difficulties because of the current station communication conditions. The factors and equa-
tions selected in the dynamic statistical forecasting equations established by the traditional
MOS model are all fixed [3]. However, these factors may be vacant due to incomplete
data available on the forecast day, so these traditional methods cannot meet real-time fore-
casting needs. We selected factors through the traditional MOS model to generate factor
subsets. According to the completeness of the factor subset, the automatic regional interpre-
tation and forecasting are divided under the condition of holonomic and non-holonomic
factor subset.

3.2.1. Regional Forecast under the Condition of Holonomic Factor Subset

Under the condition of holonomic factor subsets, the regional forecast needs to solve
reliable datasets with multi-source meteorological data. The quality of the dataset directly
determines the availability of machine learning models. In the production of the dataset,
we comprehensively considered the time and space levels. The time level was used to
determine the time range of the factor subset, and the space level was used to determine
the area range of the factor subset. In time levels, for the forecast at a certain moment,
for the forecast data (such as numerical weather forecast), two forecast times before and
after the time effect were selected as factor fields. Real-time observation data (such as
AWSs, weather radar, meteorological satellites) were chosen for the forecast aging before
this time as the factor field. The forecast time limit is 24 h. In space levels, according to
the geographic location of the forecast area, combined with the distribution of AWS in the
forecast area, the area range of the forecast area corresponding to the forecast factor field
is determined. The area range changes within the entire data area as the location of the
forecast station changes.
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Take the prediction of the highest ground temperature of 2 m (Tmax), the lowest
temperature of 2 m (Tmin), and the highest wind speed of 10 m (Wmax) in the next 24 h
in a region as an example. As shown in Figure 4, each forecast area corresponds to a set
of datasets. For example, forecast area I corresponds to dataset A, and forecast area II
corresponds to dataset B. All datasets are divided by moment t1, t2, · · · , tn corresponding
to n groups of data, and each group of data is composed of input elements and labels. Take
the data at tn (UT: 00:00:00) as an example. The data of 48 h before and after the forecast
product and 24 h before the real-time observation and detection data at tn are obtained.
The data are extracted according to the factor subset elements to form the input dataset
at the moment tn. Then, Tmax, Tmin and Wmax of the next 24 h at the moment tn are used
as labels. Random forest is used to train the dataset and establish statistical mode. This
model is denoted as model I, which outputs the predicted value of Tmax, Tmin, and Wmax
for a certain area in the next 24 h.
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3.2.2. Regional Forecast under the Condition of Non-Holonomic Factor Subset

There are frequently missing observational data in actual automatic interpretation and
forecasting of areas (such as remote areas) and NWP products that have not been received
and processed in time. At this time, the factor subset obtained through the traditional MOS
model is missing relative to the complete factor subset, and the factor subset is incomplete.
For the regional forecast under the non-holonomic factor subset, a similar forecast method
fills in the missing data. The implementation steps are as follows:

STEP1: Calculate the similarity between the data Ft obtained at the current moment
t and the data At′ at the historical moment to obtain the m groups of data similar to the
moment t in the historical moment data, and the corresponding similarity is denoted as
‖Ft −At′‖m.

The similarity calculation formula is the calculation method in [20]:

‖Ft −At′‖ = k
l

∑
i=1

√√√√√ ∼
t

∑
τ=−

∼
t

(
Fi,t+τ − Ai,t′+τ

)
(9)
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‖Ft −At′‖m represents the similarity, the smaller the value, the higher the similarity.
k is the hyperparameter, adjusted according to the acquired dataset. l is the number of

factors in Ft. [−
∼
t ,
∼
t ] is the time window,

∼
t ≥ 1 and

∼
t ∈ N+.

STEP2: Set the similarity threshold H, when H > ‖Ft −At′‖η , remove the η group
data, where η = 1, 2, · · · , m, and finally obtain the available m′ groups data.

STEP3: Input the above m′ groups of data into the model I, and output m′ groups of
data, denoted as (Tγ

max, Tγ
min, Wγ

max), where γ = 1, 2, · · · , m′.
STEP4: Calculate the mean value of the m′ groups of data, and obtain the output Tmax,

Tmin and Wmax in the next 24 h in this area at the moment t.

3.3. Two Types of Automatic Regional Interpretation and Forecasting Models

In summary, the ML-MOS model includes multi-source weather data processing methods
and two types of automatic regional interpretation and forecasting models. The multi-source
meteorological data processing method ensures the reliability of the input data quality of the
ML-MOS model through refined interpolation of grid data and data regionalization.

For different forecast areas, regional forecasts under the holonomic factor subset
conditions and regional forecasts under the non-holonomic factor subset based on similar
forecasts are designed. The ML-MOS model uses random forest as the core algorithm to
generate statistical models, establishes the relationship between input elements and output
elements in the dataset, and realizes automatic interpretation and forecasting of designated
areas. The ML-MOS model framework is shown in Figure 5.
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4. Experiment and Analysis
4.1. Data Source and Preprocessing

We used the European Centre for Medium-Range Weather Forecasts (ECMWF) and
GRAPES_GFS as two types of NWP products, with date from January 2019 to October
2020 (UT, the same below) with a total of 670 days, and hourly observation data of Chinese
AWSs were the interpretation objects of the ML-MOS model.

The relevant meteorological background and the traditional MOS model were com-
bined, considering the correlation between the two types of NWP products, the output
elements of AWSs (such as dew-point temperature, wind direction, cloud cover), and
the elements to be forecasted. The factor subset of the highest temperature Tmax, low-
est temperature Tmin, and maximum wind speed Wmax in a certain area in the next 24 h
were determined. The elements shown in Tab 1. were used as the factor subset of the
ML-MOS model.

In Table 1, the input time interval of atmospheric surface elements is 3 h. The input
time interval of barometric elements is 3 h, including five levels of 600, 700, 800, 850, and
925 hPa. The input time interval of observation elements is 1 h; the label is the extreme
value of the corresponding element output by the automatic station on the next day. The
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time interval is 24 h. Every eight groups of atmospheric surface elements, barometric
elements, and 24 groups of observation elements correspond to the label set.

Table 1. ML-MOS model input elements.

Source Type Name

NWP (ECMWF, GRAPES_GFS)

Atmospheric surface elements

Pressure

Accumulated precipitation in 3 h

Low cloud cover

Total cloud cover

East–west Wind (U)

North–south wind (V)

2 m temperature

Dew-point temperature

Barometric elements

Pressure

Temperature

Dew-point temperature

East–west Wind (U)

North–south wind (V)

Geopotential height

Automatic weather station

Observation elements

Pressure

2 m temperature

2 m humidity

10 m wind speed

Wind direction

Accumulated precipitation in 1 h

Model label

The highest temperature of
the day

The lowest temperature of the day

The maximum wind speed of
the day

Data preprocessing is one of the essential processes in machine learning. To address
the problems of missing data and varying dimensions in the input data, the input data
were preprocessed utilizing median interpolation and data normalization using the time
series of the input data. The details are as follows:

(1) Default data processing of the AWSs. In the AWS observation data, due to abnormal
problems such as equipment and data transmission links, the data at some moments
were missing. We used the time series of the input data, based on the data correla-
tion of the previous and next moments, and used the median padding to fill in the
default data.

(2) Normalized input elements: Since the dimensions of each element are not consis-
tent, such as pressure measured in hPa, east–west wind (U) measured in m/s, and
2 m temperature measured in ◦C, inputting unnormalized data directly into the
ML-MOS model will adversely affect the generalization ability of the model. We
normalized each element separately to solve the problem of incomparability caused
by dimensionless disunity among the elements.

4.2. ML-MOS Model Training and Evaluation

In the training process of the ML-MOS model, the input data must be divided into
a training set and a test set. We selected 80% of the input dataset as the training set and
20% as the test set. The optimal selection of the three hyperparameters of the number of
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random forest estimators (N_ estimators), the maximum number of features (Max_ feature),
and the maximum depth of the tree (Max_ depth) in the ML-MOS model was achieved
through grid search, and the model training was completed. An Intel(R) Xeon(R) W-2104
CPU @3.20Hz, 16GB RAM computer was used for model training in this work.

For the trained model, the root means square error (RMSE) and mean absolute error
(MAE) were used as the evaluation indicators of the ML-MOS model. The calculation of
RMSE and MAE is shown in Equations (10) and (11):

RMSE =

√√√√ 1
N

N

∑
i=1

( fi − oi)
2 (10)

MAE =
1
N

N

∑
i=1
| fi − oi| (11)

where N is the total output of a type of element (Tmax, s or Wmax), fi is the i-th predicted
value, and oi is the i-th observed value. The larger the RMSE and MAE, the better the
performance of the ML-MOS model, that is, the smaller the error between Tmax, Tmin, Wmax
and the actual observation value.

The ML-MOS model data processing and training process is summarized in Figure 6.
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4.3. Experimental Results and Analysis
4.3.1. Parameter Selection

During the experiment, the number of features output by the random forest was
analyzed by the traditional MOS model, and Max_ feature could be determined. Max_
depth usually ranges from 10 to 100, and Max_ depth = 50 was used in this experiment.
During the experiment, the dataset was randomly divided 200 times by adjusting N_
estimators, and the RMSE of the test set was observed to change with M_ estimators, as
shown in Figure 7. It can be concluded from Figure 7 that when the value is 300, the RMSE
value begins to decrease slowly. When the value of N_ estimators is 800, the error remains
basically unchanged.

In summary, we used an N_ estimators value of 1000 to ensure that the model had
better performance.
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4.3.2. Results and Analysis

Aiming at the automatic interpretation and forecasting of different regions, we selected
Nanjing, Beijing, Chengdu, and Guangzhou (regional scope delineated by administrative
regions) for experimentation. The experiment first verifies the feasibility of the regional
forecast method under the condition of the holonomic factor subset in the ML-MOS model.
By randomly extracting 20 days of data (without missing values) from the data from June
2020 to August 2020, the 20-day data were input into the above model to obtain Tmax,
Tmin and Wmax for the 20 days in Nanjing, Beijing, Chengdu, and Guangzhou. Taking the
Nanjing area as an example, the results are shown in Figure 8.
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The predicted value of Tmax, Tmin and Wmax in Nanjing, Beijing, Chengdu, and
Guangzhou obtained by the ML-MOS model basically coincides with the changing trend of
the actual value. The RMSE and MAE values of Tmax, Tmin and Wmax are shown in Table 2.

Table 2. The RMSE and MAE values corresponding to Nanjing, Beijing, Chengdu, and Guangzhou
(holonomic factor subset).

City
Tmax (◦C) Tmin (◦C) Wmax (m/s)

RMSE MAE RMSE MAE RMSE MAE

Nanjing 1.75 1.43 2.02 1.81 0.48 0.42

Beijing 1.62 1.52 1.68 1.42 0.42 0.38

Chengdu 1.73 1.34 1.53 1.37 0.32 0.33

Guangzhou 1.65 1.41 1.62 1.40 0.39 0.36

It can be seen in Table 2 that the RMSE and MAE in Nanjing, Beijing, Chengdu, and
Guangzhou are basically maintained at a relatively low level.

We compared ML-MOS with MOS, Neural networks and an SVM.

(1) Neural networks

We used a six-layer neural network, containing three input layers, one output layer,
three hidden layers, and three FC layers. The number of neurons in each of the three hidden
layers was the same. In the training process, the number of neurons was set to 16, 32, 64,
128, and 256, respectively, and the ReLU loss function was used. The training results show
that the convergence state can be reached after about 12,000 iterations, and the network
parameters and convergence effect can reach the optimal state when the number of neurons
is set to 128. Eight, six, and six inputs were used for the three input layers, corresponding
to Atmospheric surface elements, Barometric elements and Observation elements. The
number of neurons in the fully connected layer is 384, 24 and 8 respectively. The output
layer includes three outputs, i.e., Tmax, Tmin, Wmax. The network structure is shown in the
Figure 9.
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(2) SVM

The decision function adopted for the SVM was:

f (x) =
M

∑
i=1

αihik(x, y) + b (12)

where M is the number of support vector machines. αi is the Lagrange coefficient of
the i-th support vector. hi is the class identifier of the i-th support vector. k(x, y) is the
kernel function.

For the kernel function, we chose the RBF kernel function, i.e.,

k(x, y) = exp(−γ ‖ x− y ‖2) (13)

where x and y represent samples and vectors respectively; γ is a hyperparameter; and
‖ x− y ‖ is the norm of x− y.

From Equations (12) and (13), we can obtain:

f (x) =
M

∑
i=1

αihi exp(−γ ‖ x− y ‖2) + b (14)

In the regional forecast comparison experiment under the holonomic factor subset, the
ML-MOS model has the best effect. The specific experimental results are shown in Figure 9.

From Figure 10, it can be concluded that the performance of the prediction results
obtained by the MOS, neural network and SVM for different elements is different. The
RMSE and MAE values of Tmax, Tmin and Wmax obtained by the MOS, neural networks,
SVM, and ML-MOS model are shown in Table 3.
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 Figure 10. Comparison of the prediction results of (a) Tmax, (b) Tmin and (c) Wmax with different models.
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It can be seen from the above Table 3 that although the MOS, neural network and
SVM can solve the nonlinear regression problem, the RMSE and MAE values obtained by
the ML-MOS model show better performance.

To verify the regional forecast under the condition of the non-holonomic factor subset,
it was assumed that the selected 20-day data of Nanjing, Beijing, Chengdu, and Guangzhou
failed to obtain the NWP product data in time. The RMSE and MAE values of Tmax, Tmin
and Wmax obtained through the ML-MOS model proposed in this paper are shown in
Table 4. The RMSE and MAE values remained at a low level.

Table 3. RMSE and MAE values corresponding to the neural networks, SVM, and ML-MOS model.

Models
Tmax (◦C) Tmin (◦C) Wmax (m/s)

RMSE MAE RMSE MAE RMSE MAE

MOS 3.33 2.98 3.38 2.76 0.59 0.63

Neural Networks 3.23 2.84 3.40 2.87 0.58 0.61

SVM 3.41 2.92 3.04 2.76 0.64 0.68

ML-MOS 1.75 1.43 2.02 1.81 0.48 0.42

Table 4. The RMSE and MAE values corresponding to Nanjing, Beijing, Chengdu, and Guangzhou
(non-holonomic factor subset).

City
Tmax (◦C) Tmin (◦C) Wmax (m/s)

RMSE MAE RMSE MAE RMSE MAE

Nanjing 2.04 1.81 1.72 1.33 0.59 0.61

Beijing 2.32 2.03 2.12 1.91 0.56 0.58

Chengdu 2.95 2.59 1.98 1.79 0.47 0.44

Guangzhou 2.46 2.14 2.63 2.36 0.51 0.48

5. Conclusions

Based on the automatic regional interpretation and forecasting system supported
by multi-source data, we propose a multi-source meteorological data processing method
based on an accurate and meticulous interpolation of grid data and data regionalization.
According to the factor subset type obtained in the forecast area, we design two models
with automatic interpretation and forecasting under different factor subsets. Through
NWP products and AWS observation data, we selected four areas for verification in the
experiment. The RMSE and MAE values of Tmax, Tmin, and Wmax obtained by the ML-MOS
model are significantly lower than those of the neural networks and SVM. In future work,
the ML-MOS model will be combined with weather radar and other data to improve the
precipitation prediction and enrich the model data source, further improving the model
prediction accuracy and obtaining more forecasting objects.
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