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Abstract: Complex flow and pollutant dispersion simulations in real urban settings were investigated
by using computational fluid dynamics (CFD) simulations with the SST k−ω Reynolds-averaged
Navier–Stokes (RANS) equation with OpenFOAM. The model was validated with a wind-tunnel
experiment using two surface-mounted cubes in tandem, and the flow features were reproduced
with the correct qualitative behaviour. The real urban geometry of the Parade Square in Warsaw,
Poland was represented with both laser-scanning data for the ground geometry and the CityGML
standard to describe the buildings as an example. The Eulerian dispersion of a passive scalar and
the flow behaviour could be resolved within minutes over a computational domain with a size of
958 × 758 m2 and a height of 300 m with over 2 M cells due to the good and strong parallel scalability
in OpenFOAM. This implies that RANS modelling with parallel computing in OpenFOAM can
potentially be used as a tool for situational awareness on a local urban scale; however, entire cities
would be too large.

Keywords: RANS; urban dispersion modelling; Reynolds-averaged Navier–Stokes; situational
awareness; CityGML

1. Introduction

The simulation of intended or unintended atmospheric dispersion in a complex
geometry—e.g., in an urban area or industrial site—is necessary for the assessment of
hazards. In addition to the characteristics of sources, which are not considered here, the
governing factors in such events are the wind speed and atmospheric stability, as well as
the interaction with 3D structures, such as buildings and rough terrain. For the purpose of
situational awareness, a reliable, fast, and fairly accurate tool is needed in the mitigation of
risk, in decision making, and among first responders.

Wind-field modelling is imperative for such capabilities, and computational fluid
dynamics (CFD) models have gained increased popularity for phenomena occurring at
the street level, such as wind wakes and re-circulation patterns, as people who are at risk
can be modelled. Among these models, the Reynolds-averaged Navier–Stokes (RANS)
model is the fastest and is, thus, likely a suitable choice for moderately large areas [1]. It
involves solving the general equations of fluid dynamics (i.e., the continuity, momentum,
and energy equations) together with a turbulence closure in order to approximate the
turbulent behaviour of the flow. Large eddy simulations (LESs) offer turbulence modelling
that is closer to reality, but at the expense of computational effort. The first-responder tool
CT-analyst [2] relies on LES-precomputed wind fields. Back in 2010, some authors stated
that it would take about two years to get good coverage of an area [2]. Other authors, on the
other hand, claimed that pre-computations on the full parameter set of, e.g., wind speeds,
wind directions, and turbulences, would not be realistic, even with RANS [3]. Today, the
question of the size of the domain that can be modelled with RANS within the timeframe
of a first response remains.
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Although CFD and pre-computations may be possible, there are also other non-CFD
or hybrid approaches that have been developed for risk mitigation and fast response. For
an early review, the reader is referred to [4]. Setting a basis for the field, in 1990, Röckle
developed [5] a wind-field model based on the forcing mass consistency for the mean flow
together with empirical local wind observations around buildings. This renders a Poisson
equation that is computationally feasible to solve. See [6] for an evaluation of the Quick
Urban and Industrial Complex (QUIC) model. The downside of this diagnostic approach
is the lack of generality for handling arbitrary and complex 3D geometries. Gaussian puff
models have also been popular; because they do not explicitly resolve urban topography,
efforts have been made to combine them with a mechanistic street network model and
Lagrangian stochastic model for dispersion [7], or with SIRANERISK [8], which is an
operational model. More recently, an interesting approach was presented in which mega-
cities could be modelled based on a forecasted meteorology by combining CFD (RANS)
near the source with a diagnostic model for the entire domain; this was referred to as the
PMSS modelling system [3].

To investigate the speed achieved by a RANS model in an urban geometry, the popular
and open-source CFD environment OpenFOAM [9] was used to solve the system of
equations with the shear stress transport (SST) k−ω [10–12] turbulence closure in parallel
on a local server with 80 cores. This closure was validated for urban geometries in [13,14],
and it is an adequate choice because of its relatively low computational cost. OpenFOAM
has support for both compressible and incompressible turbulent flow simulations in 3D, as
well as an extensive set of turbulence closures for RANS modelling. Recently, a new suite
of atmospheric boundary conditions was added to OpenFOAM (v2006), which made it a
good choice for this application.

Herein, OpenFOAM was firstly validated against wind-tunnel data from two surface-
mounted cubes in tandem [15], which showed qualitative agreement. The parallel scalabil-
ity and computational time from the perspective of a situational awareness tool were then
investigated with the atmospheric inflow profiles. By using the Parade Square in Warsaw,
Poland as an example, a method was devised so that dispersion events could be simulated
in complex and real geometries.

2. Materials and Methods

The Navier–Stokes (NS) equations describe the motion of viscous fluids. Consider
the NS equations for incompressible flow together with the continuity equation and an
equation for turbulent pollutant transport:

∂tu +∇ · (u⊗ u) = − 1
ρ0
∇p +∇ · ν(∇u +∇uT) +

1
ρ0

g, (1)

∇ · u = 0, (2)

∂tc +∇(cu) = ∇ · Dc∇c + Sc, (3)

where u is the velocity, p is the pressure, ν is the kinematic viscosity, ρ0 is the mass density,
g represents body forces, c is the pollutant concentration, Dc is the molecular diffusion of
the pollutant, and Sc is a source term. In RANS models, the time averages of velocity (ū),
pressure (p̄), and concentration (c̄) are simulated. Thus, instead of resolving in time, the
Reynolds averaging decomposes these quantities into fluctuating and static components or
primed and barred notation (u = u′ + ū, p = p′ + p̄, and c = c′ + c̄, respectively); in the
NS equations, the time-averaged flow description is given as follows:

∇ · (ū⊗ ū) = − 1
ρ0
∇ p̄ +∇ · ν(∇ū +∇ūT)−∇ · (u′ ⊗ u′) +

1
ρ0

g, (4)

∇ · ū = 0. (5)
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The pollutant transport is modelled with time dependence in order to to have a
framework that accommodates a time-varying source:

∂t c̄ +∇(c̄ū) = ∇ · Dc∇c̄−∇ · (c′u′) + Sc. (6)

The fluctuating components remain as cross-terms; for ease of the simulations, the
Reynolds stress and turbulent pollutant flux are parameterised with the Boussinesq hy-
pothesis [16]:

−(u′ ⊗ u′) = νt(ū⊗ ū)− 2
3

kI, (7)

−(c′u′) =
νt

Sct
∇c̄, (8)

respectively, where νt is the eddy/turbulent viscosity and νt/Sct is the eddy pollutant flux.
The turbulent Schmidt number, Sct, is case dependent and can vary in the range from 0.2
to 1.3, but here Sct = 0.7 according to others [17,18].

To close the system of equations, k and νt are modelled with the SST k−ω model [10–12].
This model is a blend of the standard k− ε model in the free shear flow where it is accurate
and the k − ω in the boundary layer where the standard k − ε model otherwise over-
predicts the turbulent kinetic energy. The kinetic turbulent energy k and ω are modelled
with the following equations:

∇ · (ūk) = ∇ · (ν + σkνt)∇k + G− β∗ωk + Sk, (9)

∇ · (uω) = ∇ · (ν + σωνt)∇ω +
γ

ν
G− βω2 − (F1 − 1)CFkω + Sω, (10)

where the terms and default constants for OpenFOAM-v2012 [19] are used. We use a
built-in steady-state solver simpleFoam [19] and the simple consistent algorithm [20] for
the RANS equations and for the turbulent transport ((6) and (8)); a custom solver was also
implemented.

2.1. Boundary Conditions

The turbulent inflow parameters for the simulation of the double-bluff wind-tunnel
experiment were set to:

k =
3
2
(IU)2, ω =

k1/2

(β∗)1/4L
, (11)

with the intensity I = 0.1 and characteristic length scale L = 0.04.
For the ABL flow, a logarithmic inflow boundary [21] based on Monin–Obukhov

similarity theory was used:

u =
u∗
κ

log
(

z + z0

z0

)
, k =

u2
∗

(β∗)1/2 , ω =
u∗

(β∗)1/2
1

z + z0
, u∗ =

urefκ

ln
(

zref+z0
z0

) , (12)

where z0 = 0.04 is a roughness parameter.
For the wall boundary conditions, the velocity field ū uses a no-slip boundary con-

dition on the ground and buildings. For k using a zero gradient and for ω and νt, we use
wall functions [19]. Symmetric boundary conditions are imposed for the sides and top
boundaries.

2.2. Three-Dimensional Geometry and Computational Mesh

The virtual topography of the Parade Square in Warsaw, Poland was built based on
a combination of two data sources: one for the buildings [22] in the CityGML format
and a numerical terrain model [23] (NTM) to represent ground roughness. CityGML is
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the international standard of the Open Geospatial Consortium (OGC) and is based on
the Geography Markup Language (GML) [24]. The standard defines a three-dimensional
description of cities and regional areas at three different levels of detail (LODs). In this
work, LOD = 2 was chosen, since it contains sufficient details for accurate wind-field
calculations and dispersion events, but omits details that would make the amount of data
very large and too complicated for the generation of a computational mesh. NTM data
are based on laser scanning. This dataset was filtered using the ground classification (=2)
to exclude, e.g., buildings for which CityGML was a better source. The average height
error was not greater than 0.20 m, and the data were at a 1 m spatial resolution in the
ground plane in the source. However, they were downsampled to a 5 m resolution to aid in
having faster simulations. All geometric operations were performed with the Visualization
Toolkit [25] to produce a triangulation of the surfaces that was compatible with the native
mesh generator snappyHexMesh in OpenFOAM.

3. Results
3.1. Double Bluff

The comparison of the wind-tunnel data of two surface-mounted cubes in tandem [15,26]
showed a good agreement between the simulations and experiments. The main features of
the mean velocity field (see Figure 1a,b), the front wake at the first cube, the re-circulation
zone between the cubes, and the leeward wake of the second cube were present. The
lift at the front wall of the first cube eventually dropped down and was re-attached at
the roof of the second cube. This model successfully captured the complex flow pattern
of a 3D geometry that was similar to that of an urban environment with sharp-cornered
buildings. The Reynolds number was Re = 22,000 based on the free-stream velocity of
u = 8.8 m/s, cube dimension of h = 0.04 m, and viscosity of air of ν = 1.6 × 10−5.
Although small geometric differences were reported, this was well above the threshold for
the independence of the Reynolds number [27].

3.2. Wind-Field Simulation of a Scaled-Up Double-Bluff Geometry with Atmospheric Inflow
Profiles

Simulations of the scaled-up version of the wind-tunnel experiment with cubes
(h = 20 m) that were 500 times larger than those in the original experiment are shown
in Figure 1c. The Reynolds number (Re = 44) was still above the threshold for the indepen-
dence of the Reynolds number (=25) [27]. Here, a logarithmic inflow profile was used in
comparison with the flat profile in order to simulate the wind tunnel’s geometry; clearly,
this had profound effects on the flow characteristics. The re-circulations were still there, but
were slightly shifted in their positions. The main difference was that the wind speed was,
for the height of the buildings, distinctly lower than in the free stream above the buildings.
With a logarithmic inflow, the urban topography effectively acted to shield against the
free-blowing wind.

The logarithmic boundary conditions in OpenFOAM were developed for neutral at-
mospheric stability [28]. Inflow boundary conditions based on Monin–Obukhov similarity
theory for the case of stable stratification were employed with RANS modelling and vali-
dated in atmospheric dispersion field trials called the Mock Urban Setting Test (MUST) [29].
Much better agreement was found when the inflow turbulent kinetic energy (TKE) was
fitted to the upstream values measured [29]. OpenFOAM offers the possibility of fitting
the levels of the TKE of the inflow to the measured data and still satisfying the solution
to the RANS equations [30]. Nevertheless, it is perhaps more challenging to accurately
assess the present atmospheric turbulence (as well as the wind speed and direction). The
merging of atmospheric stratification with numerical dispersion modelling is likely a topic
for continued future research; a review is provided in [31].
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(a)

(b)

(c)
Figure 1. Comparison of the velocity fields of the simulations using the SST k−ω turbulence model (a) to experimental wind-tunnel
data [15] (b). Simulations with the atmospheric inflow boundaries of the scaled-up geometry are shown in (c); these panels are not to
scale. The size of the arrows has been adjusted to aid visualisation, and streamlines have been added to enhance the patterns in which
the arrows are small.

3.3. Warsaw

Accurate 3D representations of buildings are needed to simulate the atmospheric
properties in the vicinity of those structures. For the Parade Square in Warsaw, the geometry
is characterised by a central landmark building in an otherwise open square, followed
by several large and tall buildings that are downwind. The upwind regime consists
of smaller rectangular buildings. This gives rise to the simulated wind field seen in
Figure 2, with several recirculation and deflection zones, as well as separation lines. Clearly,
the CFD simulation captures the physical flow behaviour around the central landmark
building, as well as the smaller and larger circulations throughout the domain. This
complex flow pattern influences the transport of a simulated release. The release point
was chosen to be at the rooftop of a smaller building that was upwind (marked by a star
in Figure 2) to capture the urban turbulence effects in the close vicinity of the source. The
concentration also increases upwind from the source due to the wake patterns, which are
similar to the those of the double-bluff experiment. The central building then deflects the
transport of the pollutant from the general wind direction as the plume spreads and travels
downwind, which is in agreement with the results of other simulations [3] and the MUST
field trials [32].
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Figure 2. Visualisation of the ground concentration of a pollutant on a logarithmic scale that was
released on a roof top (white star), which is in the bottom part of the figure. The complex wind
field is visualised using streamlines, and the inflow wind direction is given by the white arrow. The
geometry is that of the Parade Square in Warsaw, Poland.

3.4. Parallel Scaling

The parallel performance of the RANS turbulence model was investigated on an
Intel(R) Xeon(R) Gold 6230 CPU at 2.10 GHz with four sockets containing 20 cores each.
The mesh was decomposed using scotch [33], which aims to minimise the number of
processor boundaries. Two meshes with different coarseness were produced—one with
10,839,462 and the other with 2,292,898 cells. In both cases, 1000 iterations were performed
with the simpleFoam solver in OpenFOAM. The computational domain had a footprint with
a size of 958 × 758 m2 and a height of 300 m.

As seen in Figure 3, for this particular problem, the solver showed good parallel
behaviour. A further increase in the processor number would not significantly increase
the total clock time. Up to about 35 cores, the solver exhibited strong, excellent scaling for
these problem sizes; however, above this number, the communication between different
cores became significant. The full capacity of the server gave approximately 135,000 or
28,000 cells for each core to handle, and the total clock time was 954 or 133 s, respectively.
To further reduce the computation time, a smaller area or coarser mesh is needed, and the
one-minute mark is viable.
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Figure 3. Parallel scaling using two different mesh sizes of the RANS solver on the real geometry of
the Parade Square in Warsaw, Poland.

From the perspective of situational awareness, this means that with pre-generated
meshes, in terms of time, RANS modelling is within the reach of the actions first responders
in moderate-sized urban environments. Larger scales that approach the whole of even
small cities will currently be too large, considering that the number of cells increases with
the size of the footprint modelled at a constant mesh resolution.

4. Conclusions

Here, it was shown that parallel scaling in OpenFOAM increases the speed enough that
the wind and dispersion over a local urban environment can be simulated in close to real
time with the SST k−ω Reynolds-averaged Navier–Stokes (RANS) model. Nevertheless,
length scales that cover whole cities would still be too time consuming. Building geometry
and ground topography can, respectively, be incorporated by using the CityGML standard
and laser-scanning data if available.

It is suggested for future work to include validation of the model with a large-scale
field experiment. Furthermore, the inflow profiles used here are for neutral stratification,
but stable and unstable stratification would also be of interest. The vertical mixing processes
can then be further studied for all stratification types, and, since the RANS framework
does not seem to be sufficiently fast for large scales, such as whole cities, a more accurate
hybrid approach could be foreseen by combining the outcomes from the RANS model with
those of either a street network model or a Gaussian puff model, as in [3]. Another possible
research direction would be to compare the SST k−ω turbulence closure to the cheaper
zero-equation approach used in [1] for urban geometries.
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