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Abstract: The emission of SO2 from ships is an important source of atmospheric pollution. Therefore,
the International Maritime Organization (IMO) has established strict requirements for the sulfur
content of marine fuel oil. In this paper, a new optical noncontact detection technique for ship exhaust
emissions analysis is studied. Firstly, the single-band simulation analysis model of the imaging
detection technology for SO2 concentration in ship exhaust gas and the deep neural network model
for the prediction of sulfur content were established. A bench test was designed to monitor the tail
gas concentration simultaneously using online and imaging detection methods, so as to obtain the
concentration data in the flue and the ultraviolet image data. The results showed that 300 nm had
a higher inversion accuracy than the other two bands. Finally, a deep neural network model was
trained with the SO2 concentration data from the inversion and the engine power, and the predictive
model of sulfur content in marine fuel oil was thereby obtained. When the deep learning model was
used to predict sulfur content, the prediction accuracy at 300, 310, and 330 nm was 73%, 94%, and
71%, respectively.

Keywords: ship emissions; exhaust plume; SO2 concentration; deep learning; imaging detection

1. Introduction

With the unstoppable tide of economic globalization and the advent of the 21st-century
“Maritime Silk Road”, shipping has become the most important mode of transportation in
global trade due to its large cargo volume and low freight, providing a strong guarantee
for the rapid and steady development of the global economy [1]. However, as ships travel
on oceans and rivers far away from cities, we do not have a direct perception of the exhaust
pollution caused by ships, so governments and researchers around the world do not pay
enough attention such pollution [2]. Since the 1980s, the Maritime Environmental Protection
Committee (MEPC) of the International Maritime Organization (IMO) has been committed
to improving the problem of exhaust pollution caused by ships. In 1997, according to the
principle of Article 15 of the Rio Declaration on Environment and Development, the MEPC
of the IMO formulated Annex VI of the 1973 International Convention for the Prevention
of Pollution from Ships (MARPOL73/78)—Rules for the Prevention of Air Pollution from
Ships [3].

On the global scale, approximately 15% of NOx emissions and 4–9% of SO2 emissions
are caused by the shipping industry [4]. Nearly 70% of the exhaust gas is discharged into the
maritime atmosphere less than 400 km away from land, which causes serious air pollution
in coastal areas, especially around the ports with heavy cargo traffic [5–9]. Furthermore,
the proportion of ship exhaust emissions in global total air pollutant emissions is increasing
every year, partly due to shipping trade growth, but mainly because other industries have
implemented better regulatory measures that have effectively reduced the emissions of
land-based exhaust pollutants.
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The sulfur contained in ship fuel oil results in the production of a large amount of
SO2 through chemical reactions occurring during engine operation, and the amount of
SO2 discharged is directly related to the sulfur content of fuel oil [10]. Marine heavy fuel
oil has a sulfur content of 3.5%, and its color is jet black. Marine heavy fuel oil is mostly
“intermediate fuel oil” or “residual oil”, which has adhesive properties and produces a large
number of toxic and harmful substances if it is not burned sufficiently. The sulfur content
of automotive oil in line with the standard is 0.001%; its color is clear and transparent, with
good antiexplosion characteristics and low corrosivity. The sulfur content of marine fuel oil
conforming to the ECA standard is 0.1% [11]. Its color is reddish-brown but clear without
impurities, and the combustion products are relatively clean and environmentally friendly.
By comparing the three types of fuel, it is easy to envision the environmental harm caused
by marine heavy fuel oil. Moreover, due to the huge oil consumption of ships, if a ship
with 50,000 deadweight tons uses heavy oil as fuel, the amount of sulfur dioxide emitted
every day is equivalent to the total amount emitted by 210,000 trucks.

At present, there are two main methods to measure ship exhaust: the first is to
directly measure the plume via a helicopter or unmanned aerial vehicle carrying a sniffer;
the second is to detect ship exhaust with ultraviolet differential absorption spectroscopy
(DOAS) systems mounted on helicopters or lighthouse buoys [12]. The first method has
the advantage of measuring the plume directly, so the instrument is highly accurate and
flexible when mounted on a helicopter or drone platform [13]. However, the drawbacks
of this method are also very obvious. The flight altitude of the helicopter or unmanned
aerial vehicle (UAV) needs to be 25 to 50 m from the ship’s chimney to effectively measure
the exhaust content of the ship, and at this altitude the aircraft will seriously affect the
normal navigation of the ship. They also need to stay in the plume for 15 to 20 s. Since
the ship is sailing normally, the aircraft must maintain a low speed and stable flight, and
cannot effectively measure tail gas in the optimal plume sampling area at all times. In
addition, the measuring position of the sniffer is not at the ship’s smokestack opening.
The temperature and tail gas concentration decrease significantly with distance from the
opening, and further interference can be caused by various meteorological conditions.
Thus, the detection accuracy was shown to be low in the real port environment, which
needed to be corrected by using the measured data from several flights [14]. The advantage
of the second method is that it does not affect the normal navigation of the ship through
long-distance detection [15]. The disadvantage of DOAS is that the selected band needs to
have an obvious peak–valley structure, and the peak–valley bands must to be close to each
other to reduce the interference from other gases. For the accuracy of gas concentration
inversion results, the peak and valley bands need to be extremely precise. The simple use
of a narrow band filter cannot meet the precision requirements, and it must be coordinated
with the spectrometer [16]. DOAS uses spectrometers for band separation and accepts
exhaust concentration throughout the ship’s area [17]. The concentration of exhaust gas at
the mouth of a ship’s chimney cannot be accurately measured because it cannot be imaged.
The imaging detection technique proposed by Prata [18] at the Norwegian Institute for
Air Research can overcome this defect. In addition, imaging detection equipment is
relatively cheap, and easy to operate and carry. Imaging detection technology inverts SO2
concentration with 2D imaging information in images, and multiple tail plume images
can be collected every second. As a result, imaging detection technology can retain the
temporal and spatial variation characteristics successfully [19].

Beecken J et al. [20] developed an exhaust gas detection system that uses a sniffer
carried by small aircraft to measure SO2, NOx, and particulate matter emitted by ships.
The system has a quick response measurement capability of 1 Hz, with an uncertainty of
approximately 20% for SO2 and 24% for NOx. Premuda M et al. [21] proposed the fluid
rate emission method with DOAS (FRE-DOAS), which is used to evaluate the emission
of pollutants from moving sources such as ships. Loov JMB et al. [22] used DOAS to
determine the sulfur content and NOx emission factor of ship fuel at the Port of Rotterdam
and compared it with the ship exhaust data directly measured from the chimney mouth



Atmosphere 2021, 12, 1182 3 of 13

on the passenger ship Stena Hollandica. Although optical methods can provide reliable
results, the sniffer method is the most convenient technique for remote determination of
SO2 and NOx emission factors. Fan Z et al. [23] designed a new UAV system that consists
of a movement control terminal, a video acquisition terminal, a small pod carrying a
sniffer, and a rotating UAV. It realizes the real-time, efficient, and accurate detection of
SO2 and NO2 in ship exhaust gas. Compared with the traditional sniffer method, it can
reduce the errors due to exhaust diffusion to a certain extent. However, it only provides
a new method with respect to the design of the UAV system, which cannot completely
eliminate the errors inherent in the measurement method. Duan W et al. [24], based on the
ultraviolet absorption of SO2 in the 310 nm band, designed a new monitoring technique
for measuring two-dimensional SO2 distribution through theoretical analysis, and adopted
an ultraviolet imaging technology with double filter channels to obtain separate signal
images and background images. In this method, UV imaging and DOAS were used to
collect SO2 concentration information, and the concentration information obtained showed
good consistency.

In this study, the spectral characteristics of SO2 in ship exhaust were evaluated. A
single-wavelength imaging detection simulation analysis of the concentration of SO2 in
ship exhaust gas was carried out, and the single-wavelength inversion errors in SO2
concentration in three bands at 300, 310, and 330 nm were analyzed. In addition, a system
of noncontact optical monitoring equipment for ship exhaust gas was presented that
could analyze ship exhaust gases quickly at a long distance. The ship exhaust emission
monitoring was carried out using optical monitoring equipment. At the same time, online
monitoring equipment was used to directly obtain the real ship exhaust data. The UV
image data were processed by a complete data-processing method, and the concentration
of SO2 was retrieved by a single-band inversion model. Combined with the deep-learning
method, the predictive model of sulfur content in marine fuel oil was constructed. The
results showed that 310 nm UV could be used to predict fuel sulfur content with the highest
accuracy, reaching 94%. This study provides a theoretical basis for the establishment of a
ship exhaust emission monitoring system.

2. Methods
2.1. Single-Wavelength Simulation Analysis Model

The law of light absorption, also known as the Lambert–Beer law, is the theory of the
quantitative analysis of the absorption effect of all light-absorbing substances, including
molecules, atoms, ions, solids, liquids, and gases, on all electromagnetic radiation. The law
of light absorption is expressed as follows [25]:

I(λ) = I0(λ) exp[−L(cSO2 σSO2(λ) +
n

∑
i=1

σ(λ)ci) + εR + εM] (1)

where I0 is the initial light intensity; I is the light intensity received by the optical system
after passing through the absorbing gas; L is the optical path length; λ is the wavelength;
cSO2 is the SO2 concentration; σSO2 (λ) is the SO2 absorption cross-section for the given
wavelength; ci is the concentration of the other absorbing gases, excluding SO2; σi(λ) is the
absorption cross-section of the other absorbing gases; n is the number of the other types of
absorbing gases; εR is the Rayleigh scattering; and εM is the Mie scattering.

In addition to the absorption effect of SO2, NO2 also has an obvious absorption
cross-section in ship exhaust between 280 nm and 380 nm, as shown in Figure 1.
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Figure 1. SO2 and NO2 absorption cross-sections (data source: the HITRAN 2016 molecular spectro-

scopic database [26]). 
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Figure 1. SO2 and NO2 absorption cross-sections (data source: the HITRAN 2016 molecular spectro-
scopic database [26]).

In this study, only the influence of NO2 was considered, and the influence of scattering
was ignored. Beecken J et al. [20] showed that between 15% and 50% of the NO emitted
by ships is transformed into NO2, and the specific value depends on the distance from
the emission source. However, for the exhaust gas just out of the chimney mouth, the NO
conversion rate may not reach 15%. Therefore, this study carried out a simulation analysis
for 15 cases in which the NO conversion rate varied from 1% to 15%. The simulation
analysis model was as follows:

I(λ) = I0(λ) exp[−L(cSO2 σSO2(λ) + cNO2 σNO2(λ))] (2)

According to Equation (2), the formula for calculating the SO2 concentration can be
expressed as follows after ignoring other gas absorption effects:

cSO2 = [I0(λ)/I(λ)]/[Lσ(λ)] (3)

The SO2 absorption cross–sections of the three bands obtained from the High–Resolution
Transmission Molecular Spectroscopy Database (HITRAN) were σ(300 nm) = 3.868 × 10−19

cm2/molecule, σ(310 nm) = 1.613 4 × 10−19 cm2/molecule, and σ(330 nm) = 4.797 × 10−21

cm2/molecule. In the previously stated form of the Lambert–Beer law, the unit of concentra-
tion of SO2 was m2/g, so a unit conversion is required. The conversion formula is:

σm2/g =
0.0001 m2/cm2 ∗ σcm2/molecule

1.063 × 10−22 g/molecule
(4)

As calculated by Equation (4), σ300 = 0.363876 m2/g, σ310 = 0.15178 m2/g, and
σ330 = 0.0045127 m2/g. In the ship exhaust monitoring experiment, the diameter of the
chimney was 0.8 m. Therefore, the three single-wavelength SO2 concentration inversion
models can be respectively expressed as:

c300 = 3.435236 × ln[
I0(300)
I(300)

] (5)
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c310 = 8.235604 × ln[
I0(300)
I(300)

] (6)

c330 = 276.996 × ln[
I0(300)
I(300)

] (7)

Three error indicators; namely, root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE), were used to evaluate the accuracy
of the SO2 concentration calculation. The calculation methods of the three error indicators
are presented below:

MAE =
1
k

k

∑
i=1

∣∣∣ctrue − c f orecast

∣∣∣ (8)

RMSE =

√√√√1
k

k

∑
i=1

∣∣∣ctrue − c f orecast

∣∣∣2 (9)

MAPE =
1
k

k

∑
i=1

∣∣∣∣ ctrue − c f orecast

ctrue

∣∣∣∣× 100% (10)

where ctrue is the true SO2 concentration; cforecast is the predicted SO2 concentration; and k is
the number of the groups of collected concentration data.

2.2. Deep Neural Network Model

Based on the SO2 concentration obtained by inversion, a predictive model of sulfur
content in ship oil was established using deep learning. However, the SO2 concentration in
ship exhaust will vary not only with fuel sulfur content, but also with engine power [27].
Thus, we needed to take the engine power into account. The sulfur content prediction
model adopted the SO2 concentration obtained from the inversion of the single-wavelength
inversion model and the power of the main engine as the inputs to predict four different
sulfur contents. The schematic diagram of the sulfur content prediction model is shown
in Figure 2 below. Four types of marine fuel oil with sulfur contents of 0.1%, 0.3%, 0.5%
and 0.8% were used in the experiment. Thus, the final output was one of the four sulfur
contents.
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Figure 2. The schematic diagram of the sulfur content prediction model.

3. Experiments and Data

A bench experiment utilizing UV imaging was performed to obtain the ship emission
data closest to the actual situation and UV image data. Four types of fuel with a sulfur
content ranging from 0.1 to 0.8% and 13 different engine power conditions ranging from 0
to 100% were used for this experiment. An online monitoring system was used to collect
the gas concentration data by punching a hole in the flue, and UV imaging detection
equipment was used to collect ultraviolet image data from the ship’s exhaust.



Atmosphere 2021, 12, 1182 6 of 13

3.1. Experimental Diesel Engine

A MAN B&W 6S35ME-B9 diesel engine in Figure 3 was the main engine used in the
bench experiment. It is an electronically controlled two-stroke six-cylinder cross-head-type
ship main engine with 3400 kW power, 142 r/min rated speed, 3.5% allowable maximum
marine fuel sulfur content, and 30,000 kg/h approved maximum tail gas handling capacity.

Atmosphere 2021, 12, x FOR PEER REVIEW 6 of 14 
 

 

3. Experiments and Data 

A bench experiment utilizing UV imaging was performed to obtain the ship emission 

data closest to the actual situation and UV image data. Four types of fuel with a sulfur 

content ranging from 0.1 to 0.8% and 13 different engine power conditions ranging from 

0 to 100% were used for this experiment. An online monitoring system was used to collect 

the gas concentration data by punching a hole in the flue, and UV imaging detection 

equipment was used to collect ultraviolet image data from the ship’s exhaust. 

3.1. Experimental Diesel Engine 

A MAN B&W 6S35ME-B9 diesel engine in Figure 3 was the main engine used in the 

bench experiment. It is an electronically controlled two-stroke six-cylinder cross-head-

type ship main engine with 3400 kW power, 142 r/min rated speed, 3.5% allowable maxi-

mum marine fuel sulfur content, and 30,000 kg/h approved maximum tail gas handling 

capacity. 

 

Figure 3. Ship diesel engine selected for the experiment. 

3.2. Online Monitoring Equipment 

The sampling probe was placed in the center of the ship flue, and the real concentra-

tion of exhaust pollutants was determined by direct sampling of flue gas by using the ship 

exhaust online monitoring equipment. The connection between the sampling probe and 

the flue is shown in Figure 4. 

Figure 3. Ship diesel engine selected for the experiment.

3.2. Online Monitoring Equipment

The sampling probe was placed in the center of the ship flue, and the real concentration
of exhaust pollutants was determined by direct sampling of flue gas by using the ship
exhaust online monitoring equipment. The connection between the sampling probe and
the flue is shown in Figure 4.
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An RJ-CEMD ship exhaust online monitoring system was selected; this system con-
forms to the MARPOL Annex VI and IMO–MEPC technical regulations on ship exhaust
emissions.
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3.3. Marine Fuel

Four types of marine fuel with sulfur contents of 0.1%, 0.3%, 0.5%, and 0.8% were
used in the experiment. These were thought to be representative of the sulfur content in
actual marine fuels used during navigation and berthing.

3.4. Working Conditions of the Diesel Engine

When marine fuel with the same sulfur content was used, the different working
conditions of the diesel engine yielded the primary effect on the ship exhaust. Table 1
shows the different working conditions of the diesel engine.

Table 1. Diesel engine conditions employed in the experiment.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Power percentage (%) 0 5 10 15 20 25 30 40 50 60 80 90 100

3.5. UV Imaging Detection Equipment

The ultraviolet imaging detection equipment used in this experiment is shown in
Figure 5. The equipment had optical filter and measurement functions, and the spectral
induction band was 230–920 nm. The working environment temperature range was −20 to
50 ◦C; the resolution was 2048 × 2048; the data bit depth was 16-bit; the focal length was
78 mm; and the lens size was 50 mm.
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Figure 5. UV detection equipment for plume sampling.

In order to minimize noise in the ultraviolet image and retain the detail of the image
to the maximum extent, an adaptive fuzzy median filtering algorithm was used to filter
the image. A square area with side lengths equal to 2/5 of the chimney diameter was
selected for the extraction of ship exhaust. In order to ensure that SO2 concentration was
extracted from the same exhaust gas area in each image, a Canny edge-extraction algorithm
was utilized to automatically extract the chimney boundary of each image, and then the
location of ship exhaust gas area was found. The gray value in the extraction area was
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averaged and the background value subtracted to obtain the optical thickness needed to
invert the concentration of SO2.

4. Results and Discussion
4.1. Single-Wavelength Simulation Analysis Results

The collected gas concentration data were substituted into Equation (2) for the simula-
tion, and then Equations (5)–(7) were used to obtain the respective inverted SO2 concentra-
tions. The single-wavelength simulation analysis results for different NO conversion rates
at different wavelengths are shown in Figure 6.
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When the tail gas was discharged from the flue, with the increase of the NO conversion
rate, the interference from NO2 was continuously enhanced, leading to the continuous in-
crease of single-wavelength simulation errors. When the NO conversion rate was constant,
the simulation errors at 300 nm were the smallest, because compared with the other two
bands, the absorption of SO2 at 300 nm was stronger, while the interference from NO2 was
smaller.

4.2. Single-Wavelength Inversion Results of Ultraviolet Images

Equations (5)–(7) were used to invert the collected ultraviolet images to obtain SO2
concentration. The SO2 concentration inversion results obtained from ultraviolet images at
the three wavelengths are shown in Figures 7–9.
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Figure 8. Single-wavelength inversion results at 310 nm.

The errors in SO2 concentration inversion using UV images at the three wavelengths
are shown in Table 2.

Table 2. SO2 concentration inversion errors at three UV wavelengths.

Wavelength (nm) RMSE MAE MAPE

300 0.15 0.12 55.69
310 0.38 0.28 148.28
330 15.43 13.20 9976.35
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Figure 9. Single-wavelength inversion results at 330 nm.

As shown in Table 2, when the actual image was used for single-wavelength inversion,
the minimum inversion errors occurred at 300 nm, which was consistent with the simulation
results. This also was consistent with the fact that the absorption of SO2 was the strongest
at 300 nm, and the interference from NO2 was the lowest at 300 nm.

By comparing the inversion results obtained from UV images with the simulation
results, the conversion rate of NO just discharged from the chimney mouth was estimated
to be approximately 7–8%. Regardless of the simulation results or the UV image inversion
results, the errors at 330 nm were very large. This is because the absorption of SO2 at
330 nm was very weak, while the interference factors such as absorption of NO2 and
scattering were very influential. In general, 330 nm is used as the reference channel in
dual-wavelength inversion, and interference factors that do not change with wavelength
are subtracted out, so as to obtain more accurate SO2 concentration data. In this experiment,
the real gas concentration was the gas concentration in the flue, while the UV image data
collected was at the chimney mouth. Since it was impossible to know the dilution degree
of the gas just coming out of the chimney mouth, it was assumed that the concentration
of the gas just coming out of the flue mouth remained unchanged. In reality, the gas
concentration at the flue mouth was lower than that in the flue. It can be seen from the
inversion results for the three wavelengths that if the real SO2 concentration was lowered,
the inversion results at 300 nm were closer to the true value. Although 300 nm had the
smallest inversion errors among the three wavelengths, it also had the highest requirement
for skylight conditions in practical application. In the case of poor skylight background,
the signal-to-noise ratio of a UV image acquired at 300 nm may be low, making the UV
image data unusable. When the sulfur content was 0.1%, the concentration of SO2 in the
tail gas was low, and because the sensitivity of the detector used in this experiment was
limited, most of the images collected at 300 and 310 nm could not be used due to low
signal-to-noise ratios. However, at 330 nm, perhaps due to strong absorption of other gases
and scattering, more effective data could be obtained. In future work, it will be necessary
to consider the solar zenith angle, the transmittance curve of the filter, and other related
factors, and to analyze the inversion errors of SO2 concentration, the signal-to-noise ratio
of the image, and other factors, so as to obtain the optimal detection wavelength for UV
imaging technology.
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4.3. Sulfur Content Prediction Results

Precision, recall, F1-score, accuracy, macro avg., and weighted avg. of the models were
obtained by training with the data at the three respective wavelengths. The deep-learning
results for the three wavelengths are shown in Tables 3–5.

Table 3. Model evaluation report for 300 nm.

Fuel Sulfur Content (% m/m) Counts Precision Recall F1-Score Accuracy

0.1 4 0 0 0 -
0.3 806 0.71 0.81 0.76 -
0.5 676 0.74 0.69 0.72 -
0.8 212 0.81 0.57 0.66 -

Macro avg. 1698 0.57 0.52 0.54 -
Weighted avg. 1698 0.74 0.73 0.73 -

Total 1698 - - - 0.73

Table 4. Model evaluation report for 310 nm.

Fuel Sulfur Content (% m/m) Counts Precision Recall F1-Score Accuracy

0.1 2 1 0.5 0.67 -
0.3 388 0.91 0.93 0.92 -
0.5 873 0.97 0.94 0.96 -
0.8 42 0.69 0.9 0.78 -

Macro avg. 1305 0.89 0.82 0.83 -
Weighted avg. 1305 0.94 0.94 0.94 -

Total 1305 - - - 0.94

Table 5. Model evaluation report for 330 nm.

Fuel Sulfur Content (% m/m) Counts Precision Recall F1-Score Accuracy

0.1 300 0.49 0.49 0.49 -
0.3 767 0.74 0.83 0.78 -
0.5 910 0.81 0.76 0.79 -
0.8 321 0.60 0.53 0.56 -

Macro avg. 2298 0.66 0.65 0.65 -
Weighted avg. 2298 0.71 0.71 0.71 -

Total 2298 - - - 0.71

The prediction accuracy of sulfur content at 310 nm was the highest, reaching 94%.
This indicated that the single-wavelength SO2 inversion model combined with the deep-
learning method could be used to accurately predict the sulfur content of ship fuel. The
accuracy at 310 nm was the highest, possibly because the distribution characteristics of SO2
inversion data at 310 nm conformed to the distribution characteristics of sulfur content,
which was more easily learned by the deep neural network.

5. Conclusions

In this study, we performed a simulation experiment of ship exhaust emissions, built a
single-wavelength simulation analysis model, and established a predictive model of sulfur
content in ship fuel oil. The single-wavelength simulation analysis model could predict
SO2 concentration with high accuracy from an ultraviolet image of the exhaust plume
taken by a UV camera. The predictive model of sulfur content resulted in the effective
prediction of sulfur content of ship fuel oil. The results showed that the prediction accuracy
of sulfur content was the highest at 310 nm, reaching 94%. This work proved the feasibility
of using UV absorption characteristics of SO2 to invert SO2 concentration and then predict
sulfur content in marine fuel oil combined with engine power. Our method could predict
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FSC without obtaining CO2 or a model of the fuel consumption. This method could reduce
the complexity of the equipment. As a result, the method is easy to use for marine fuel oil
compliance inspection. In this paper, only the single-wavelength ship exhaust imaging
detection method was studied. In future research, dual-wavelength ship exhaust imaging
detection experiments will be carried out to establish a dual-wavelength ship exhaust
SO2 concentration prediction model, so as to provide more accurate SO2 concentration
prediction results. Furthermore, the deep neural network will be further improved to
enhance the prediction accuracy of sulfur content in marine fuel oil.
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