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Abstract: Fifteen cities across the world have been selected to investigate the public health co-benefits
of PM2.5 reduction, during a period when various non-pharmaceutical interventions (NPIs) were
adopted in the COVID-19 pandemic. Through applying a public health model, AirQ+, substantial
spatial variations of global public health co-benefits were identified. Differences in seasonal air
quality and population baselines were key underlying factors. For cities in North America, NPIs
were introduced during the low pollution season, generating no co-benefits. On the other hand,
tremendous health co-benefits were observed for cities in India and China, due to the high PM2.5

background with a large population. Among all, New Delhi has received the largest co-benefits,
which saved over 14,700 premature deaths. As the pollution level (i.e., 45 µg m−3) with NPIs still
exceeded the air quality standard, more rigorous emission controls are urgently needed to protect the
public′s health in India. At last, a novel and practical tool for co-benefit screening was developed
using data from one of the global measurement networks (i.e., IQAir).

Keywords: spatio-temporal dynamics of air pollution; COVID19; PM2.5; pandemic lockdown; public
health co-benefits; IQAir

1. Introduction

The rapid spread of COVID-19 has made the World Health Organization (WHO)
declare the outbreak of the disease as a Public Health Emergency of International Concern
on 30 January 2020, and a pandemic on 11 March 2020. In terms of the introduction of
non-pharmaceutical interventions (NPIs), China has taken the earliest precaution in late
January 2020, just before the lunar new year, to lockdown the affected cities (e.g., Wuhan),
preventing the further spread of the virus within China [1]. With the continuous spread
of COVID-19 and escalated confirmed cases globally, the world has taken the pandemic
seriously and implemented a series of stringent policies to cut off its transmission routes.
NPIs, such as restrictions on international travel, social distancing, work from home (WFH),
and mandatory quarantine, were adopted. With surges in confirmed cases, some adminis-
trations have implemented massive city-wide or country-based emergency lockdowns [2].
These NPIs caused significant impacts on the local economy and industrial activities, in
which travelling and gathering were suspended or heavily restricted [3]. It has been re-
ported that traffic volumes in various US and European cities in the first three months of
the pandemic were reduced by 48% to 86% [4]. In the UK, the reduction was about 41% to
55% [5]. In East Asia, limited reductions in traffic (i.e., 10–18%) and total passenger number
(i.e., 41.4%) were also observed in cities, such as Hong Kong [4,6,7]. Apart from the absolute
traffic volume reduction, decreases in traffic congestion (i.e., 14–20%) and total vehicle
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number (i.e., 21.5%) were also reported [6,8]. These traffic reductions have resulted in a
sharp decline in local air pollution and contributed to short-term public health co-benefits
from pollution reduction [9–11]. Overall, reductions in global air pollution (excluding O3)
and values of the air quality index (AQI) were reported, ranging from −15 to −60% and
−15.2 to −47%, respectively, with strong spatial heterogeneity [12–17]. Large pollution
reductions (i.e., AQI from “Unhealthy” to “Moderate”) were observed in East and South
Asia, while mild pollution reductions (i.e., AQI from “Moderate” to “Good”) were reported
for Europe and North America [11,12,18]. A distinct pattern of global pollution reduction
has emerged from the effect of NPIs. City-wide reductions in NO2, CO, PM10, and PM2.5,
with an increase in O3, were generally observed during the lockdown. The increase in O3
was attributed to the weakening of the titration effect from reducing NOx (NO + NO2)
emissions. Keller et al. [19] reported that 18% to 60% reductions in NO2 were observed
in 46 countries between January to June 2020, when compared with the case of business
as usual in 2019, while other studies reported drops in PM2.5 or PM10, between 4–32%
in US cities, 24–60% in Chinese cities, 24% to 31% in European cities, and 19% to 54% in
Indian cities [12,13,20–24]. In general, the percentage of reductions in roadside NO2 and
PM2.5 were more significant than those observed in ambient stations, due to a substantial
decrease in local vehicular traffic. In China, a strong correlation between NO2 reduction
and traffic volume was also reported for different cities [24]. Huang et al. [1] estimated that
about 70–80% of the reduction in NOx emission during the pandemic was attributable to
the reduction in traffic; and every 1% drop in intra-city travel intensity (TI) contributed
to about 2–4% NO2 reduction [15]. Clearly, these studies have demonstrated that a reduc-
tion in traffic emissions can have substantial influence on air pollution during COVID-19.
However, it should not be neglected that the level of pollution reduction in cities cannot
solely be explained by the decline in vehicular emissions. Other factors, such as industrial
emission in the region, change of local meteorology affecting pollution dispersion, urban
and rural composition, level of lockdown, and seasonal pollution baselines, could also
influence the pollution level observed during COVID-19 [24].

In this study, 15 cities worldwide were selected to investigate the impact of PM2.5 air
quality and its associated short-term health co-benefits (measured as premature deaths)
during the pandemic. The study examined the temporal and spatial variations of health co-
benefits during the first few months of the COVID-19 pandemic. Owning to the influence
of different meteorological conditions, four years (2017–2020) of ground-based PM2.5 air
quality data, obtained from various monitoring networks, were employed. Summaries
of generalized location patterns and a discussion of mechanisms concerning the baseline
pollution values with seasonal impact on the health co-benefits were performed. Through
a comparative analysis, the study established the relationship between cities’ baseline
concentration and level of premature deaths during the lockdown. The findings offer a
unique explanation to the spatial heterogeneity observed in the global air pollution data.
In addition, a novel screening method for public health co-benefits, using one of the global
measurement networks (i.e., IQAir), was introduced. The rest of the paper is organized as
follows. Section 2 covers data collection and analysis methodology. Section 3.1 examines the
geospatial variations of air quality change around the world. Finally, Section 3.2 discusses
PM2.5 reductions and their associated public health co-benefits, along with the development
of a co-benefit screening tool.

2. Data Collection, Observations, and Methodologies
2.1. Study Areas and Air Quality Data

Fifteen cities, from multiple air quality networks, were selected to investigate the
geospatial variations of PM2.5 and their associated short-term health effect before and
during the pandemic, when NPIs were in place. Figure 1 shows the chosen cities from
seven different air quality networks. Among them, three are in East Asia; four are in South
or Southeast Asia; one is in the Middle East; one is in Africa; three are in America; and
three are in Europe. Many of these cities, including Hong Kong, London, New York, Los
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Angeles, Beijing, Tokyo, and Zurich, were listed as the top 50 smart cities [25]. The reasons
for selecting these cities were mainly based on data availability, PM2.5 pollution level, and
global spatial coverage.
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Table 1 shows the selected cities with their corresponding networks. For the AIRNow
network, only one station per city was used due to data availability. All stations in the
network are categorized as urban ambient (not urban traffic/roadside) stations. MET One
BAM 1020 is used for continuous PM2.5 measurement [26]. For non-AIRNow stations, both
urban ambient (hereinafter referred to as “ambient station”) and urban traffic/roadside
stations (hereinafter referred to as “traffic station”) were selected. The inclusion of traffic
stations allows one to gauge the influence of changes in local transport on PM2.5 from
COVID-related NPIs. Depending on data availability, one to three stations were selected for
each city. Details of the selected PM2.5 air quality stations and their station characteristics
are listed in Table 1. For easy comparison among the stations, cities were divided into
three groups based on their annual PM2.5 concentrations from the 2019 IQAir report, as
shown in Figure 1 [27]. The IQAir report provides annual PM2.5 data from the top 100 most
polluted cities, and the data were summarized from over 10,000 stations around the world.
The first group is called “heavily polluted cities”, with an annual PM2.5 concentration
greater than 40 µg m−3. In our list, five cities fall into this category, including New Delhi
(98.6 µg m−3), Jakarta (51.7 µg m−3), Beijing (42.1 µg m−3), Abu Dhabi (42.4 µg m−3), and
Hanoi (46.9 µg m−3). They were being ranked among the top 10 polluted cities in the report.
The second group is called “medium polluted cities”, with an annual PM2.5 concentration
between 10 µg m−3 and 40 µg m−3. These cities include Colombo (25.2 µg m−3), Lima
(23.7 µg m−3), Pristina (23.5 µg m−3), Vientiane (23.1 µg m−3), Addis Ababa (20.1 µg m−3),
Los Angeles (12.7 µg m−3), Hong Kong (20.3 µg m−3), Tokyo (11.7 µg m−3), and London
(11.4 µg m−3). The last group is referred to as “relatively clean cities”. These cities include
New York and Zurich, with an annual PM2.5 concentration below 10 µg m−3, which meets
the annual standard of the WHO air quality guidelines (AQG). It should be noted that
the optical-based PM2.5 measurements (i.e., using optical particle counter) taken from
IQAir may be skewed toward the low-side of PM2.5, compared to the measurement data
gathered from official government networks (especially for groups in relatively heavily
polluted cities), as some of their instruments may be situated in a semi-indoor environment
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with a certain degree of PM2.5 removal from heating, ventilation, and air conditioning
(HVAC) units or indoor filtration systems. Moreover, their instruments (those placed inside
high-rise buildings) may be higher in station elevation than the official ambient air quality
stations. Hence, the values reported in the IQAir report may not fully reflect the seriousness
(i.e., maximum concentration) as the values reported from the official ambient air quality
stations. Nevertheless, the IQAir still provides relatively reliable concentration data for the
grouping and screening exercises.

Table 1. Selected cities with their air quality stations.

Region Cities Sites Sources

SEA, SA, EA,
SAM, ME, NA,

and AF

New Delhi, India; Jakarta, Indonesia; Beijing, China;
Hanoi, Vietnam; Colombo, Sri Lanka; Lima, Peru; Pristina,

Kosovo; Addis Ababa, Ethiopia, and Abu Dhabi, UAE

AIRNow, Department of State, USA:
https://www.airnow.gov/international/us-

embassies-and-consulates/ (accessed on
26 May 2020)

NA Los Angeles, USA Long Beach 1, LA-North, and
Riverside-Rubidoux

South Coast Air Quality Management District:
https://www.arb.ca.gov/aqmis2/aqdselect.php

(accessed on 26 May 2020)

NA New York, USA PS314 1, Queens Near Road 1,
and Maspeth 1

New York State Department of Environmental
Conservation: http://www.nyaqinow.net

(accessed on 26 May 2020)

EA Hong Kong, China Shum Shui Po, Mongkok1,
Shatin and Yuen Long

Hong Kong Environmental Protection Department
https://cd.epic.epd.gov.hk/EPICDI/air/station/

?lang=en (accessed on 26 May 2020)

EA Tokyo, Japan
Daiichi Keihin Takanawa 1,
Takanawa, Minato-ku, and

Daiba, Minato-ku

Minato City Council, Tokyo:
https://www.city.minato.tokyo.jp/

kankyoushidouasesutan/2016date.html (accessed
on 26 May 2020)

EU London, UK
Marylebone Road 1,

Kensington, Haringey Park 1,
and Camden Kerbside 1

Department for Environment Food & Rural Affairs
https://uk-air.defra.gov.uk/data/data_selector

(accessed on 26 May 2020)

EU Zurich, Switzerland Zürich-Kaserne (only station
in Zurich)

National Air Pollution Monitoring Network,
Switzerland

https://www.bafu.admin.ch/bafu/en/home/
topics/air/state/data/historical-data.html

(accessed on 26 May 2020)
1 Roadside/urban traffic station; SEA—Southeast Asia; SA—South Asia; EA—East Asia; East; AF—Africa;
NA.—North America; ME.—Middle East; EU—Europe; SAM—South America.

In this study, the hourly air quality data in the first two months (about 60 days) after the
announcement of the COVID-19 pandemic were collected. The common period of 1 April to
15 May 2020 (45 days), when all cities have implemented some forms of NPIs, was adopted
for the analysis. For evaluating the short-term co-benefits of air pollution reduction during
the study period, air quality data from 2017 to 2019 on the same calendar period were
also collected. All data (2017–2020) were processed to obtain a uniform format to analyze
the influence of emission change on air quality. The selection of three earlier historical
years allows a better reflection on the effect of meteorological variations in air quality
comparison. It is common to evaluate air quality changes in such a way for the observation
comparison [6,12,14,17]. After the air quality evaluation, the processed data was then
further applied to a public health model, AirQ+, to estimate the potential short-term health
benefit from the pandemic. As multiple cities were considered, spatial variations of health
co-benefits and how background pollution concentration influences the health co-benefits
were investigated. Details of AirQ+ are discussed in the next section. At last, with the case
studies of New Delhi, London, Hong Kong, New York, and Zurich, the relationship of
local traffic change and PM2.5 air quality were examined. Data from TomTom vehicular

https://www.airnow.gov/international/us-embassies-and-consulates/
https://www.airnow.gov/international/us-embassies-and-consulates/
https://www.arb.ca.gov/aqmis2/aqdselect.php
http://www.nyaqinow.net
https://cd.epic.epd.gov.hk/EPICDI/air/station/?lang=en
https://cd.epic.epd.gov.hk/EPICDI/air/station/?lang=en
https://www.city.minato.tokyo.jp/kankyoushidouasesutan/2016date.html
https://www.city.minato.tokyo.jp/kankyoushidouasesutan/2016date.html
https://uk-air.defra.gov.uk/data/data_selector
https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/historical-data.html
https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/historical-data.html
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GPS network, which contains the nearly real-time hourly congestion level for individual
streets, was used to evaluate traffic reduction and the change in congestion level during the
pandemic [28]. The proposed analysis with local air quality data provides insights into how
the COVID-related NPIs affect the local traffic and subsequently influence the temporal
and spatial patterns of air pollution around the world.

2.2. The Health Co-Benefit Model, AirQ+

AirQ+ quantifies the health burden and impact of air pollution. It was developed by
the WHO regional office for Europe. The model utilizes regional public health data with a
pollutant exposure methodology to assess the health effects from air pollutant exposure.
The health-related outcomes, including mortality and morbidity, can be determined through
the model. The model has been validated and used in various air quality and health-related
studies [29–31]. In this study, the 24-h PM2.5 data from 2017 to 2020 (1 April to 15 May) in
the selected cities (i.e., 15) was used as inputs. Simulations of pre-COVID cases (i.e., 2017,
2018, and 2019) were performed independently for individual years. The multiple-year
observations allow us to evaluate the impact of meteorological variations on air quality and
health related impacts. The COVID-19 situation was simulated based on data in 2020. The
differences between the pre-COVID and COVID-19 situations were then used to estimate
the short-term health co-benefits during the pandemic. To calculate the air quality health
impact (i.e., mortality rate) from the model, city-level population data obtained from the
United Nations [32] was applied. The default value of 25 µg m−3 (24-h mean) was applied
as the cut-off concentration, aligning with the WHO AQG for the 24-h PM2.5 standard [33].
Based on the data obtained from Western Europe and North American studies, a relative
risk (RR) value of 1.0123 for all-cause mortality was used [34].

3. Results and Discussion
3.1. Geospatial Variations of Air Quality Change before and during the Pandemic

The NPIs were more popular among countries and cities in America, Europe, and
East Asia at the beginning of the pandemic. The intention was to break the transmission
pathways of COVID-19, aiming to lower the rising trend and ease the shortage of resources
(i.e., physicians and surgical masks) in the public health sector. As many cities suffered
from a strong hit in the first wave of the pandemic, the large number of confirmed cases,
combined with a lack of medical resources, forced governments to implement NPIs to curb
the spread of the virus. Table 2 summarizes the average PM2.5, as well as the percentage
change of pollutant concentrations between the pandemic and business-as-usual condition
(BAU) situation in 2017–2019, for the same calendar period. The grey color highlights cities
with a full lockdown, which restricted people from leaving their homes freely, and “#”
indicates cities with non-lockdown NPIs, where policies such as school closure, suspension
of public services, or social distancing were in force. As reflected in the table, the full
lockdown (cities with grey color) has resulted in appreciable PM2.5 reductions (shown
as negative) on both ambient and traffic air quality stations, regardless of their regions.
The percentage change in PM2.5 from cities with lockdown ranged from −12% to −49%
in the ambient stations, with Beijing, New Delhi, London, Los Angeles, Lima, and New
York being −28%, −49%, −12%, −14%, −48%, and −24% on 3-year averaging (2017–2019),
respectively. For traffic stations, the range of change was between −18% and −25%. The
observed low value of the change at the top range (−25%) among traffic stations may create
a misconception of less drastic reductions at traffic stations than ambient stations. However,
when we carefully analyzed the traffic station data, the low value at the top range was
caused by data missing for some cities with heavy PM2.5 reductions. Excluding those cities
that did not have data from traffic stations in calculating the percentage change in the
ambient stations, the upper range has become −24%, which is comparable with that of
traffic stations.



Atmosphere 2022, 13, 18 6 of 15

Table 2. Summary of PM2.5 air quality for selected cities.

Group Reg. 1 City St. Type 2
Average PM25 Conc. (µg m−3) % Change from 2020

2020 2019 2018 2017 2019 2018 2017 2017–2019

Heavily
polluted

city

EA Beijing, CN Amb. 43 51.9 65.9 61.8 −17 −35 −30 −28
SEA Jakarta, Indonesia 2 Amb. 50.4 46.5 51.8 32.2 8 −3 57 16
SEA Hanoi, Vietnam Amb. 42.4 - 33.3 - - 27 - -
SA New Delhi, India Amb. 42.2 91 70.8 88.1 −54 −40 −52 −49
ME Abu Dhabi, UAE 2 Amb. 20.1 42.7 48.9 - −53 −59 - −56

EA Hong Kong, CN 2 Tra. 19.3 21.2 23.4 29.6 −9 −18 −35 −22
Amb. 15.6 14.9 19.6 21.8 5 −20 −28 −17

EA Tokyo, Japan Tra. 13.5 12.2 15.3 14.7 11 −12 −8 −4
Amb. 10.5 11.8 17.7 14.3 −11 −41 −27 −28

SA Colombo, Sri Lanka Amb. 14.6 21.7 22 - −33 −34 - −33
AF Addis Ababa, Ethiopia Amb. 19.4 19.2 22.2 19.1 1 −13 2 −4
EU Pristina, Kosovo Amb. 18.3 16.3 15.3 16.3 12 20 12 15

Tra. 12.7 20.5 14.8 15.1 −38 −14 −16 −24
EU London, UK Amb. 11.7 16.5 11.3 12.2 −29 4 −4 −12

Tra. 9.9 11.4 12.9 11.9 −13 −23 −17 −18
NA LA, USA Amb. 11.1 11.1 15.5 11.9 0 −28 −7 −14

Medium
polluted

city

SAM Lima, Peru Amb. 15 24.4 29.8 32 −39 −50 −53 −48
EU Zurich, Switzerland 2 Amb. 8.5 10.4 9 8.6 −18 −6 −1 −9

Tra. 3.9 5.1 5.8 4.6 −24 −33 −15 −25Relatively
clean city NA New York, USA Amb. 3.3 3.5 5.2 4.3 −6 −39 −23 −24

1 Reg. = region; Amb. = urban ambient station; Tra. = urban traffic/roadside station; Grey area: cities with
lockdown policy; CN—China; LA—Los Angeles; 2 cities that have implemented other NPIs (not full lockdown
policy), and Bold font indicates negative numbers.

For cities with non-lockdown NPIs, reductions in ambient PM2.5 were also observed.
These cities include Hong Kong (−17%), Tokyo (−28%), Abu Dhabi (−56%), and Zurich
(−9%). In Japan, the declaration of a state of emergency with school closure and restricted
international travel was adopted, while Abu Dhabi and Zurich implemented multiple
mini-lockdowns with staging (3 days to 1 week). All non-food stores, restaurants, bars, and
gyms were closed. In Tokyo, the original congestion level of 60–70% in February and March
2020 was down to 30–40%, after implementing the policy in April. The traffic volumes of
driving, walking, and taking transit reduced by −25%, −36%, and −41%, respectively [35].
In Zurich, a reduction in personal trips within the city was also observed [36,37]. Although
these policies were less restrictive than a full lockdown, they still reduced the willingness
of people to go out for activities. With the volunteer programs for staying at home or WFH
offered by various industries to protect their employees, the traffic volume and emissions
were brought down in these cities. Within a city, more PM2.5 reduction was generally
observed at traffic stations than at ambient stations, regardless of the type of NPIs. This
result is expected as the reduction in traffic emissions caused by those policies should be
more visible at traffic stations, due to their proximity to the emission source. In London,
the percentage of changes in PM2.5 were −24% and −12% for traffic and ambient stations
during the full lockdown, respectively. The difference in percentage change between
them was close to double. A similar phenomenon was observed for a place with non-
lockdown NPIs, such as Hong Kong. The reduction in PM2.5 at traffic stations (−22%)
was also larger than the reduction at ambient stations (−17%), though the difference was
less remarkable than that observed in cities with the full lockdown. School shutdown,
WFH, and social distancing have caused some observed reductions in both daily traffic
volume (−14% to −22%) and rush-hour congestion level (~−15 to −20%) [27,28,38]. For
some cities, an increase in pollution levels was observed. In Jakarta, the ambient PM2.5
has increased by +16%. With the reported monthly average concentration (50.4 µg m−3) in
2020, between the minimum and maximum concentrations of 32.2 µg m−3 and 51.8 µg m−3

observed in 2017–2019, there is some possibility that the increase in PM2.5 concentration
may be caused by the variation of meteorological conditions, instead of being induced by
changes made during the pandemic. On the other hand, for Pristina, an increasing trend of
PM2.5 was clearly observed between 2020 and 2017–2019. One possible reason may be the
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implementation of city quarantine (no going in and out of the city), which elevates citizens’
anxiety on resource scarcity (e.g., food, gasoline, etc.) and results in more trips for resource
hunting within the city. The induced traffic congestion has elevated traffic emissions and
triggered an increase in PM2.5. The situation is similar to the pre-hurricane or -typhoon
conditions, where people go out for food and consumables. Such actions would worsen air
quality in the affected cities.

Overall, no clear signal of continental or regional dependence on “the percentage of
PM2.5 reduction” among the cities. The percentage reduction was calculated based on the
difference between the reported concentrations in 2020 and concentrations in 2017–2019,
under the BAU condition; therefore, the influence of location dependence has been dimin-
ished when evaluating using percentage of PM2.5 reduction. On the other hand, in terms of
the absolute value of PM2.5 reduction, the heavily polluted cities seemed to receive more
reduction in PM2.5 than the other two groups. As these polluted cities were concentrated
in East and South Asia, there was a clear regional pattern. For the heavily polluted cities,
the reduction from the COVID-related NPIs ranged from −16.9 µg m−3 to −41.1 µg m−3.
In contrast, for the medium polluted and relatively clean cities, the reductions were from
−1.6 µg m−3 to −13.7 µg m−3 and −1.1 µg m−3 to 1.3 µg m−3, respectively. The observed
trend was mainly caused by the difference in the baseline concentrations under the BAU
condition, where high concentrations were observed in Asia cities, due to the rapid eco-
nomic development with limited pollution controls, as well as low concentrations in Europe
and North America, due to the success of continuous efforts of implementing air pollution
controls in their cities.

Case Studies on the Relationship of Traffic Reduction and PM2.5 Concentration

To better understand the relationship between traffic reduction and change in PM2.5
during the COVID pandemic, PM2.5 observations and TomTom traffic data in 2019 and
2020 were collected for the detailed analysis [28]. Figure 2 shows the correlations between
a change in PM2.5 and congestion level for (a) all cities and (b) cities with a full lockdown
policy in place. Detailed TomTom data for congestion level is available in Appendix A
Figure A1. In general, only a minor signal (R2 of 0.24) was observed when all stations
were considered. Low R2 (closer to 0) reflects a low correlation between traffic congestion
and air quality. As mentioned earlier, some cities even showed an increase in ambient
concentration during the period. Figure 2b shows the case for the stations with lockdown
(greyed in Table 2). By excluding stations which did not implement the lockdown policy,
the estimated correlation has increased by more than 50%. In general, the correlation for
traffic stations (R2 of 0.53) is a bit higher than for ambient stations (R2 of 0.49). It reflects
that PM2.5 reduction is strongly tied to the improvement of traffic congestion during the
lockdown. As vehicles driving at low speeds (below 15 km h−1) produce two times more
emissions than the vehicles moving at cruising speed (40–80 km h−1), alleviating traffic
congestion would reduce PM2.5 air pollution in cities [39,40]. It should be noted that, since
no traffic volume data was available from the selected cities, the reduction contribution in
PM2.5 from the change in traffic congestion and volume cannot be separated. Moreover, due
to the limited number of cities/stations (i.e., less than 10) being included in each analysis
group (i.e., 11 samples for (a) and 5 and 3 for (b)), no statistical significance from regression
analysis was performed.

To better illustrate the relationship between traffic congestion level and PM2.5, six
cities, including New Delhi, Beijing, London, Hong Kong, Zurich, and New York, with
detailed data were selected for a closer examination. All selected cities have implemented
various forms of COVID-related NPIs. Among them, New Delhi and Beijing are in the
group of heavily polluted cities, while London and Hong Kong are medium polluted cities,
and New York and Zurich are relatively clean cities. Figure 3 shows the daily 24-h PM2.5
concentrations for 2019 (blue dash line) and 2020 (solid orange line), from January to 15 May.
To make the comparison more apparent and visible, while showing the seasonal variations,
data from January to 31 March 2019 was omitted. Moreover, black lines indicating the
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WHO AQG of 25 µg m−3 were added to illustrate whether the PM2.5 concentration data
had exceeded the AQG.
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Overall, there were apparent seasonal variations of PM2.5 in all stations, except Zurich,
in 2020. For New Delhi (a), Beijing (c), and New York (f), PM2.5 pollution was more severe
in winter than in spring. For London (b) and Hong Kong (d), spring seems to have higher
PM2.5 than winter. It is commonly known that the winter PM2.5 in Hong Kong is usually
higher than in spring. However, due to the lockdown policy enforced in late January in
China and the lack of facemask supplies during the Chinese New Year (25 January), the
emission of PM2.5 from both local traffic and the long-range transport of PM25 and its
precursors had been reduced drastically. Hence, it has resulted in low PM2.5 in January and
February 2020. In general, the average and rush-hour congestion levels have been down
by 10% to 45% and 8% to 62%, respectively. For cities without the full lockdown, such as
Hong Kong and Zurich, changes of congestion level were about −10% (from 38% to 28%)
and −12% (from 37% to 25%), which corresponds to −9% (21.2 to 19.3 µg m−3) and −17%
(10.4 to 8.6 µg m−3) reductions in PM2.5, respectively. In Hong Kong, the policy of WFH,
initiated by the government, with the closure of public and private schools reduced the
traffic volume by 12%.

Overall, cities with “no lockdown” did not exhibit a substantial reduction in PM2.5.
For cities with a full lockdown, such as New Delhi, London, New York, and Beijing, there
were −45% (from 50% to 5%), −31% (from 48% to 17%), −29% (from 42% to 13%), and
−21% (from 30% to 9%) in congestion level, which corresponds to −49.4%, −48.4%, −4.7%,
and −21.2% in PM2.5 reductions, respectively. The low reduction (e.g., −4.7%) observed in
New York was attributed to a low baseline value (average of 4.3 µg m−3 in 2019).

3.2. Potential Health Co-Benefits and PM2.5 Reduction
3.2.1. Health Co-Benefits and PM2.5 Reduction

Figures 4 and 5 show the summary of PM2.5 and corresponding proportion of mortality
attributable (MA) from AirQ+, as well as the mortality rate for the six selected cities,
respectively. A higher average daily PM2.5 level would generally result in a higher MA,
when it is beyond the WHO AQG level of 25 µg m−3 for the 24-h standard. For the
mortality rate, a higher MA with a higher city population would trigger a higher number
of premature deaths from air pollution. The MA is defined as the proportion of deaths
attributed to the exposure to PM2.5. In Figure 4, high MA values (in %) (blue dots in the
figure) are observed mainly in heavily polluted cities, such as New Delhi, Jakarta, Beijing,
and Abu Dhabi. Among these cities, New Delhi has the highest MA, ranging from 3%
to 12.3% in 2017–2019, with a yearly average of 6.3%. The maximum value of 12.3% is
attributed to extended periods exceeding 200 µg m−3 on 24-h PM2.5. As PM2.5 in 2020 were
cut by 49%, due to the lockdown, significant differences in MA values between 2017–2019
(blue dots) and 2020 (orange dot) were observed. The average MA in 2020 was 2%, three
times lower than the average in 2017–2019. As shown in Figure 5, the short-term co-benefits
of air quality improvement from the lockdown saved 14,718 premature deaths in New
Delhi. For Beijing, another heavily polluted city, the average MA ranged between 2% and
8.7%, with an average of 4.1% in 2017–2019, which was two-thirds of the value observed in
New Delhi. However, it is noted that Beijing has a much wider range of PM2.5 (i.e., 10 to
390 µg m−3), partly due to the adverse meteorological conditions in spring (e.g., regional
dust storms). As the calculation of MA value considered both the magnitude of 24-h PM2.5
and frequency of exceedance, infrequent super high PM2.5 (i.e., 390 µg m−3) did not trigger
a high MA value.

The difference in MA values for Beijing between 2020 and 2017–2019 was about 1.6%
(from 4.1% to 2.5%), and the co-benefits of air quality improvement from the lockdown have
saved 3946 premature deaths in Beijing. For medium polluted cities, since the 24-h concen-
tration of PM2.5 ranged between 10 to 25 µg m−3, with occasional incidents exceeding the
24-h WHO AQG, the MA values in 2017–2019 were in the low range, between 0 to 1%. The
top three highest MAs from this group were Lima, Hong Kong, and London. Appreciable
MA reduction was observed in Lima, while less was found in HK and London. Overall,
about 77 and 28 premature deaths were saved in London and Hong Kong, respectively. For
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the relatively clean cities, with nearly no 24-h PM2.5 concentration exceeding the AQG, the
MA values were closed to zero. Hence, almost no health co-benefits were observed in New
York and Zurich.
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Overall, there are appreciable health co-benefits observed in heavily polluted cities,
such as New Delhi and Beijing, while mild health co-benefits are found in medium polluted
cities. In cities with heavy pollution and a large population, their health co-benefits could
be enormous. In this study, baseline concentration is found to be an important benchmark
in determining the level of public health co-benefits from the pandemic. As the baseline
concentration is highly dependent on the city′s location (e.g., Asia or Europe) and economic
status, it is expected that some geospatial connection among the cities can be established.

3.2.2. Discussion of Seasonal Variations of Air Quality on Health Co-Benefits

Various studies have demonstrated that COVID-related NPIs have provided some
short-term health co-benefits for cities in Europe and China, while there was less discussion
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in North America. The reported magnitudes and results of health co-benefits in literature
were highly variable and dependent on the selected period and characteristics of the
targeted location. The influence of meteorology on the effect of pollutant concentrations is
also important. As recalled from the earlier discussion, there was a considerable difference
in the short-term health co-benefits among different cities, where New Delhi received
the largest co-benefits; no co-benefits were found in New York. In general, a higher
monthly PM2.5 concentration suggests a higher overall 24-h concentration and proportion
of mortality attributable and, hence, a higher mortality rate. As air quality data commonly
follows a log-normal distribution, where the frequency of having a high PM2.5 concentration
is relatively small [41,42], the average monthly concentration can be a good proxy to
estimate the short-term health co-benefits (in here, mortality).

Next, a simple method for screening the short-term health co-benefits across cities
and seasons, using the reported monthly average PM2.5 concentrations, is introduced. To
better explain and illustrate the process, Figure 6 shows the summary of monthly PM2.5
from 2019, which also served as the pollution baseline for each city. The colors indicate
the US air quality index (AQI) levels for 24-h PM2.5. Green, yellow, orange, red, purple,
and brown are referred to as good, moderate, unhealthy for sensitive groups, unhealthy,
very unhealthy, and hazardous conditions, respectively. In the figure, New Delhi had the
highest monthly average concentrations of 71.4 µg m−3 and 76.6 µg m−3 in April and
May 2019, respectively, shown in red, which was much higher than the WHO AQG of
25 µg m−3. In all 12 months, the average monthly concentrations in New Delhi were higher
than the WHO AQG, meaning that, regardless of which month the lockdown occurred,
there should be some associated health co-benefits. Strictly speaking, there are more health
co-benefits in November, December, and January. Let us look at another example. For
London, the previous analysis shows that some health co-benefits were observed during
the lockdown, with the monthly PM2.5 concentration of 22.3 µg m−3 in April (slightly
higher than 21.7 µg m−3 shown in Figure 6). As shown in Figure 3b), all PM2.5 exceedances
occurred in April but not in May. Hence, if the lockdown occurred only in May, no co-
benefits would be expected. This logic can be applied to all months and cities, in order to
quickly determine whether public health co-benefits are present.
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To make the analysis more conservative, instead of using 25 µg m−3, a suggestion
of using the monthly average of 12 µg m−3 as the benchmark is proposed. The average
monthly PM2.5 of 12 µg m−3 means that there are still some occasions where the concentra-
tion may still exceed 12 µg m−3 (as shown in Figure 3e) but is less likely to exceed the WHO
AQG of 25 µg m−3. The suggested value aligns well with the AQI index of the healthy
class, which has also considered the PM2.5 data distribution, based on the US air quality
data. With this approach, we can readily apply monthly PM2.5 data to determine whether
health co-benefits exist when a lockdown or other COVID-related NPIs are implemented
at a particular place or time. Take the case of Zurich (see Figure 3e), the monthly average
concentrations in January and April 2019 were 11.4 µg m−3 and 12.4 µg m−3, respectively
(See Figure 6), which were below and above 12 µg m−3. With that, co-benefits are likely
to exist in Zurich in April but not in January. Using New York as another example, the
monthly PM2.5 in all months in New York are all below 12 µg m−3 (see Figure 6). Hence,
no health co-benefits would be expected from the COVID-related NPIs in New York at all.
With this method, public authorities may apply monthly PM2.5 from the IQAir website or
their local monitoring networks to see if any short-term co-benefits can be observed in their
cities by considering whether some NPIs, associated with COVID-19, may be kept and
refined to obtain public health co-benefits. While a recommendation of lockdown simply
to obtain health co-benefits is not sensible, measures, such as WFH and staggered work
hours, should be more actively pursued in cities where substantial public health co-benefits
are expected.

4. Conclusions

In this study, air quality data from 15 selected cities were collected to study the
influence of the pandemic on PM2.5 air quality and its relationship to traffic congestion and
short-term health co-benefits. The study found a limited continental or regional dependence
on the percentage change in PM2.5, between April 2017–2019 and April 2020. A strong
dependence was observed on the absolute difference in PM2.5, which was associated
with the baseline concentration. In general, heavily polluted cities in Asia received more
PM2.5 reduction and health co-benefits under COVID-19 NPIs. In contrast, relatively clean
cities in Europe and North America received minor (or even no) health co-benefits. The
short-term health co-benefits received in a particular city are strongly tied to its baseline
concentration, which varies by location and season. In this analysis, New Delhi and
Beijing have received tremendous health co-benefits from the implementation of NPIs.
The saving of premature deaths was estimated at over ~3900 and ~14,700 in this period,
respectively. One observation was made about New Delhi, where the pollution level (i.e., an
average of 45 µg m−3) during the lockdown was still much higher than the WHO AQG
for the 24-h PM2.5 standard (i.e., 25 µg m−3). It reflects that, even with minimal economic
activities, pollution in New Delhi will still be problematic (in winter). Hence, stranger
emission control measures, with technological improvements, should be applied in India
to drastically reduce primary emission of PM2.5 to safeguard the public′s health.

In this study, a simple screening method was also developed to evaluate whether
a city would receive the health co-benefits or not under the NPIs implementation. The
screening approach utilizes the monthly PM2.5 concentration (i.e., 24-h data) of a city from
the IQAir network with the pre-determined cut-off value of 12 µg m−3 as a benchmark for
the evaluation. Although several test cases have been adopted to validate the approach, it
should be aware that the statistical distribution of PM2.5 may vary from city to city, due to
different meteorological conditions, pollution sources, and reception relationships. Hence,
the cut-off value may need to be adjusted. At last, for the relationship between PM2.5 and
traffic congestion, there exists a stronger correlation (i.e., ~0.5) between the reduction in
congestion level and PM2.5 reduction during COVID-19 for cities with the full lockdown
than cities without. Although a significant difference in R2 is observed between “all
data” (i.e., 0.24) and “full lockdown” (i.e., 0.49) cases, no analysis of statistical significance
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is conducted, due to limited sample sizes (i.e., <10). Hence, for future studies, more
cities/stations should be added to allow a more robust statistical analysis to be conducted.
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