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Blagojević, D.; Pejak, B.; Brdar, S.

Quantifying the Effects of Drought

Using the Crop Moisture Stress as an

Indicator of Maize and Sunflower

Yield Reduction in Serbia. Atmosphere

2022, 13, 1880. http://doi.org/

10.3390/atmos13111880

Academic Editor: Gianni Bellocchi

Received: 14 September 2022

Accepted: 8 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Quantifying the Effects of Drought Using the Crop Moisture
Stress as an Indicator of Maize and Sunflower Yield Reduction
in Serbia
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Abstract: The drought in Serbia in the summer of 2017 heavily affected agricultural production,
decreasing yields of maize, sunflower, soybean, and sugar beet. Monitoring moisture levels in crops
can provide timely information about potential risk within a growing season, thus helping to create
an early warning system for various stakeholders. The purpose of this study was to quantify the
level of moisture stress in crops during summer and the consequences that it can have on yields. For
that, maize and sunflower yield data provided by an agricultural company were used at specific
parcels in the Backa region of Vojvodina province (Serbia) for 2017, 2018, 2019, and 2020. The crop
moisture level was estimated at each parcel by calculating the normalized difference moisture index
(NDMI) from Sentinel-2 data during the summer months (June–July–August). Based on the average
NDMI value in July, the new crop moisture stress (CMS) index was introduced. The results showed
that the CMS values at a specific parcel could be used for within-season estimation of maize and
sunflower yield and the assessment of drought effects. The CMS index was tested for the current
growing season of 2022 as an early warning system for yield reduction, demonstrating the potential
to be included in a platform for digital agriculture, such as AgroSens, which is operational in Serbia.
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1. Introduction

Agricultural drought is a period with a soil moisture deficit resulting from the com-
bination of a shortage of precipitation and excess evapotranspiration in a specific region.
It can be considered a natural hazard if it appears during the growing season, as it has
negative effects on crop production. The drought in Serbia in the summer of 2017 heavily
affected agricultural production, decreasing yields of maize, sunflower, soybean, and sugar
beet by up to 30–60%, while the total loss was estimated at 1.5 billion USD, which had a
strong economic impact [1]. According to the Sixth Assessment Report of the Intergov-
ernmental Panel on Climate Change, there is an increase in agricultural droughts in the
Mediterranean region and Western and Central Europe based on the changes observed
in the total column of soil moisture. In addition, agricultural droughts are projected to
be at least twice as likely at 1.5 ◦C of global warming, while a decreased soil moisture
by up to 25% is expected in the annual mean total column soil moisture at 4 ◦C of global
warming [2].

Experts stated that improved drought monitoring, early warning, and decision-
support tools that would reduce the impact of drought on society and the environment
could be beneficial for the agricultural sector, and that these tools should be considered
as an integral part of drought preparedness and mitigation plans [3]. The Copernicus
Emergency Management Service launched the European Drought Observatory, which
provides a map of the combined drought indicator (CDI) for each ten-day period of the
month with a spatial resolution of 5 km [4]. The CDI is calculated by using the standardized
precipitation index for one month and three months, the soil moisture anomaly, and the
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anomaly of the fraction of absorbed photosynthetically active radiation [5]. The CDI has
the ability to discriminate areas in which the impacts of drought are most severe, although
the information is available at least 10 days later, and it is not localized for the fields.

Satellite-based remote sensing techniques can be used to measure the variations in
vegetation conditions at high spatial resolutions. The potential of Sentinel-2 satellite data
in assessing droughts was thoroughly reviewed, and the canopy water content was rec-
ognized as one of the key factors in estimating agricultural drought [6]. For example, the
normalized difference moisture index (NDMI) is based on the effect of water content in
canopy tissues on reflectance in the near-infrared (NIR) and shortwave infrared (SWIR)
bands [7]. Some authors proposed the vegetation temperature condition index for the mon-
itoring of agricultural drought, and it was calculated by using the land surface temperature
(LST) and normalized difference vegetation index (NDVI) from different satellites [8,9].
Others designed the geographically independent integrated drought index (GIIDI) by
using temperature, precipitation, soil moisture, and vegetation condition indices that were
obtained from multi-sensor satellite data [10]. There was a study that combined satellite
vegetation indices with meteorological data to calculate the Palmer drought severity index
(PDSI) and vegetation health index (VHI) [11], which were used to derive two indices for
the evaluation of the mitigation of agricultural drought [12].

The drought severity index (DSI) was computed based on the NDVI and evapo-
transpiration datasets, and the mean values of the DSI during the growing season were
correlated with maize and wheat yield in China, showing that yield anomalies were re-
lated to drought [13]. One study examined the correlations of the precipitation, NDVI,
and LST with maize and soybean yields at the county level in the United States. The
NDVI during mid-summer was found to be positively correlated with crop yields, while
daytime LST was negatively correlated at the same time. Together, they were used to
build a regression tree model for within-season yield prediction, which had reasonable
results, even in a drought year [14]. Optical data from Landsat, MODIS, and the Sentinel-2
satellite were used to derive indicators such as the LST, NDVI, and NDMI, along with the
Sentinel-1-based backscattering intensity, in order to analyze the length of a drought and
drought-impacted agricultural areas in Ukraine. Based on a comparison of parameters
from different conditions, the authors used logistic regressions to classify three levels of
disturbance, i.e., mild, moderate, and severe drought, in fields of maize, sunflower, and
soybean [15]. Although it was shown that the monitoring of moisture levels in crops can
provide timely information about potential risks within a growing season, to the best of
our knowledge, none of the aforementioned indicators were used as a part of an early
warning system.

Agricultural production is one of the most important sectors of the economy in the
Republic of Serbia, with a share of approximately 10% in the gross domestic product
(GDP). Crop production makes up about 67% of the structure of value of agricultural
production [16], causing Serbia to be highly ranked on the list of the top maize exporters in
the world. Maize is the most cultivated grain crop, and sunflower is the most cultivated
oil crop. For example, the maize-planted area in 2018 was reported to be 900,000 ha, while
sunflower was planted on 250,000 ha in the same year [17].

The purpose of this study was to quantify the level of moisture stress in maize and
sunflower during summer by exploiting the NDMI and to examine the consequences that
stress can have on yields. Thus, the new crop moisture stress (CMS) index was introduced,
and it was able to discern between different classes of yield. The CMS was tested for the
current growing season of 2022 as an early warning system for agricultural drought and
the following yield reduction.

2. Materials and Methods
2.1. Study Area

Vojvodina province represents the northern part of Serbia, with a total surface area
of 2,150,600 ha, and it is located in the southern part of the Pannonian Plain (Figure 1). It
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has a moderate continental climate, with cold winters and hot and humid summers, and it
has a mean annual temperature of 11.1 ◦C and mean annual precipitation of 606 mm [18].
Regarding its geomorphology, it is characterized by loess and sand plateaus, loess terraces,
and river plains. Vojvodina is predominantly agricultural land (83%), most of which is
cropland (77%), and it is, thus, characterized by intensive agriculture [19]. Backa is the
largest region of Vojvodina, covering the northwestern part, where mostly maize, wheat,
soybean, and sunflower are cultivated.

Figure 1. Location of Serbia in Southeastern Europe (A) and the study area (B).

2.2. Dataset

Maize and sunflower yield data were given in tonnes per hectare (t/ha) at the parcel
level, together with the shapefiles of the parcels in Backa region. Data were provided by
an agricultural company for the seasons of 2017, 2018, 2019, and 2020 (Figure 2). There
were 71 samples of maize yield from 18 hybrids and 37 samples of sunflower yield from
13 hybrids in total. The yield varied from 1.4 to 16.8 t/ha for maize with a median of
10.7 t/ha and from 1.2 to 5.9 t/ha for sunflower with a median of 3.2 t/ha. For the specific
year, the numbers of maize parcels were 22 (2017), 22 (2018), 16 (2019), and 11 (2020), while
the numbers of sunflower parcels were 14 (2017), 11 (2018), 8 (2019), and 4 (2020). The data
on the application of fertilizers and the information on which parcels were irrigated, if any,
were not provided by the agricultural company.

The NDMI uses the NIR and SWIR bands to detect changes in the water content of
leaves. The SWIR reflectance is negatively related to the amount of water available in the
internal leaf structure, while the NIR reflectance is affected by the internal leaf structure
and leaf dry matter. The combination of the two bands improves the accuracy in retrieving
the vegetation water content [20]. Multispectral imagery from Sentinel-2 for the T34TCR
granule covering the Backa region was downloaded from the Copernicus Open Access
Hub [21]. Images were collected from 1 June to 31 August for the years 2017, 2018, 2019,
2020, and 2022. The NDMI was calculated using the B8A (central wavelength at 865 nm)
and B11 (central wavelength at 1610 nm) bands at a 20 m spatial resolution with the
following ratio:

NDMI = (B8A− B11)/(B8A + B11). (1)
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All images were filtered by using the appropriate scene classification (SC) layer for
cloud masking of Sentinel-2 images. Pixels contaminated by cloud cover within each parcel
were discarded from the analysis. Further on, the mean value of the NDMI was calculated
at the parcel level. This way, NDMI time series for summer months were created.

Figure 2. Location of the parcels with maize and sunflower yield provided by the agricultural com-
pany.

Data were processed and analyzed in Python, while QGIS (version 3.22.6) was used
for visualization.

2.3. Crop Moisture Stress Index

Theoretically, NDMI values range within the interval from −1 to 1. Hence, their
interpretation requires land-use information, since it is a significant moisture index for
cases in which vegetation is dominant, while it has negative values for bare soil and water
bodies [7]. The Sentinel Hub provides a moisture stress classification map based on four
classes of the NDMI [22]. It can be used to detect irrigation in agricultural parcels, especially
in the summer months after several weeks without rain [23]. For every image, classes are
identified based on the specified threshold.

Moisture Stress =


Dry, NDMI ≤ 0
Low moisture, 0 < NDMI ≤ 0.2
Moderate moisture, 0.2 < NDMI ≤ 0.4
High moisture, NDMI > 0.4

(2)

However, investigation of the relationship between the moisture stress and the yield
of specific crops still cannot be found in the scientific literature. For that reason, the level of
moisture stress was quantified in maize and sunflower fields during summer with respect
to the consequences for the yield.

Both maize and sunflower are crops that are sensitive to drought, especially in their
reproductive stages of development [24,25]. Drought accompanied with heat stress during
silking, pollination, and grain filling can affect maize yield at the end of the season [26,27].
Sunflower is more resistant to drought, since it has better efficiency of uptake of water
from the soil because the root system develops into deeper layers. However, exposure to
drought at some specific stages, such as anthesis and achene filling, is the most critical
factor, causing up to 50% yield reduction in sunflower [28]. According to the agricultural
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practice in Vojvodina province, maize and sunflower are planted approximately in April
and harvested approximately in October, although that depends on the hybrids, as well as
soil and weather conditions during the year. Thus, this study focused on the NDMI values
in July, where the reproductive stages of both crops overlapped. Since total cloud cover can
reduce the number of satellite images, the average NDMI value was calculated based on
the available data in July for each parcel. The new crop moisture stress (CMS) index was
defined in the following way:

CMS =



0, 〈NDMI〉July ≤ 0

1, 0 < 〈NDMI〉July ≤ 0.1

2, 0.1 < 〈NDMI〉July ≤ 0.2

3, 0.2 < 〈NDMI〉July ≤ 0.3

4, 0.3 < 〈NDMI〉July ≤ 0.4

5, 〈NDMI〉July > 0.4

(3)

Further, for each crop, the mean yield and standard deviation (std) were calculated
for every class of CMS. To decrease the standard deviation of the yield estimation, outliers
above the 95th percentile were removed from each class. Records with very high yields
could be consequences of human error, i.e., the agricultural technician entering the wrong
data, or from drought-tolerant hybrids that were bred to perform well under extreme
conditions [29].

The method was validated using leave-one-year-out cross-validation, which is an
application of the leave-one-out approach [30] and is a more rigorous technique in the
case of yield estimation compared to a cross-validation that would mix samples from all
available years. Since the total number of yield samples in the four seasons was not large,
yield data from three seasons were used for training, while data from one season were
left over for validation, and all of the possible combinations were examined. Standard
statistical metrics were used for validation, such as the mean bias error (MBE), which
provides the general trend towards over- or underestimation, mean absolute error (MAE),
and root-mean-square error (RMSE), with both quantifying the amount of error and with
RMSE being more sensitive to outliers [31–34]. The results were given as the average of all
different combinations.

During the campaign of scouting fields in the Backa region in June 2022, the locations
of 340 maize fields and 89 sunflower fields were recorded. The polygons of the exact parcels
were created in QGIS using Sentinel-2 images with the RGB channel. Thus, it was possible
to calculate the CMS at the specific fields and give yield estimations for the current growing
season.

3. Results

Time series of the NDMI values in four different summer seasons (1 June–31 August)
for maize and sunflower parcels are shown in Figures 3 and 4, respectively. Different
shades of the background correspond to the classes of moisture stress. The dots represent
the exact NDMI values on the given date of observation, while the lines are simple linear
interpolations that are used for the purpose of visualization. The discontinuity of the lines
is explained by the fact that on certain dates, some parcels were totally covered by clouds
and, thus, were not used for the NDMI calculation.

In 2018, the images for the Backa region had total cloud cover during June and the
first half of July; therefore, they were not eligible for calculation. The prime example of a
complete time series during the summer season is the year 2020.
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Figure 3. Time series of NDMI values at maize parcels in four growing seasons: 2020 (A), 2019 (B),
2018 (C), and 2017 (D).

The NDMI reached its maximum values during July when the canopy cover was
fully developed, which is also the period with a critical moisture requirement, since it
overlapped with the reproductive stages of maize (Figure 3). The NDMI started to decline
in the beginning of August, but the decline was steeper during dry summer seasons with a
rainfall deficit, such as in 2017 [35]. For the same season, it was notable that the time series
among the parcels varied the most, assuming that some parcels were irrigated. The parcels
that had NDMI values of less than 0.2 during July corresponded to lower yields that were
recorded in the ground-truth data. Therefore, a moisture deficit can lead to a significant
yield reduction. For all other seasons, the time series showed moderate moisture content in
the canopy as a result of average (2019, 2020) and above-average (2018) rainfall in June and
July [36–38]. Although sunflower is more resilient to dry conditions than maize, the NDMI
also showed lower values during July 2017 when compared to the values in other seasons,
while it generally started to decline in the second half of July (Figure 4).

The average NDMI value in July was calculated at each parcel, and adequate moisture
stress classes were assigned. Thus, it was possible to compare the mean yield for each class
of moisture stress and CMS. The mean yields for maize and sunflower are presented in
Tables 1 and 2, respectively. By definition, a high level of moisture in the moisture stress
corresponded to class 5 of the CMS, while dry conditions corresponded to class 0 of the
CMS. In the 2017–2020 seasons, classes 1 and 0 of the CMS were not observed for maize
and sunflower. The difference between moisture stress and CMS could be seen in the cases
of moderate moisture, since CMS gave a more detailed estimation of yield. The mean yield
of maize increased with each class of CMS. A similar trend could be seen in the case of
sunflower, except for the mean yield for class 5 of the CMS, which was less than the one
for class 4 with a difference of 0.606 t/ha. Class 5 of the CMS included only three parcels
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with average NDMI values in July that were slightly above the predefined threshold (0.428,
0.411, and 0.412); hence, the mean yield for class 5 of the CMS was calculated using only
three available records, and it was not reliable for the yield estimation in 2022.

Figure 4. Time series of NDMI values at sunflower parcels in four growing seasons: 2020 (A), 2019 (B),
2018 (C), and 2017 (D).

Table 1. Comparison between moisture stress in July and CMS for maize yields.

Moisture
Stress Yield (t/ha) Std (t/ha) CMS Yield (t/ha) Std (t/ha)

Dry - - 0 - -
Low 4.168 4.604 1 - -

Moderate 9.491 3.019 2 4.168 4.604
High 11.310 1.738 3 7.415 2.902

4 10.594 2.479
5 11.310 1.738

Table 2. Comparison between moisture stress in July and CMS for sunflower yields.

Moisture
Stress Yield (t/ha) Std (t/ha) CMS Yield (t/ha) Std (t/ha)

Dry - - 0 - -
Low 2.510 0.501 1 - -

Moderate 3.440 0.841 2 2.510 0.501
High 3.015 0.244 3 3.167 0.802

4 3.621 0.842
5 3.015 0.244
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After excluding yield outliers for each CMS class, the validation was performed.
The results of leave-one-year-out cross-validation are presented in Table 3 with standard
statistical metrics. MBE indicated that for maize, the estimations were slightly overfitted
for the observed yields, while for sunflower, the estimations were slightly underfitted for
the observations. The MAE was less than 1 t/ha for both crops, with a value for sunflower
that was a bit lower, which was expected due to the higher average yields of maize. The
same pattern could be seen for RMSE.

Table 3. Validation scores given with standard statistical metrics.

Crop MBE (t/ha) MAE (t/ha) RMSE (t/ha)

Maize 0.0497 0.8498 1.0867
Sunflower −0.1894 0.6051 0.8288

Further on, the yield was estimated for the 2022 season and given with the standard
deviation. Since there were no parcels detected in class 5 for either maize or sunflower, yield
estimation was not applicable (N/A). In accordance with the extremely dry conditions
observed during July 2022 in Vojvodina province [4], most of the maize fields were in
classes 1, 2, and 3, with an expected yields of 7.154 t/ha for class 3 and 1.873 t/ha for class
2 (Table 4). Since classes 1 and 0 were not observed in the 2017–2020 seasons, it can only
be assumed that the yield would be less than 1.873 t/ha or even that there would be no
yield at those parcels due to dry conditions in the critical reproductive period of maize.
There were 39 parcels in class 4, and presumably, those were the irrigated fields. In the
case of sunflower, the expected yield for all CMS classes did not vary as much as in maize
(Table 5). The majority of the parcels belonged to classes 2 and 1, with expected yields of
2.421 t/ha and lower or no yield at all. At the parcels classified as classes 4 and 3 of the
CMS, the expected yields were 3.456 and 3.070 t/ha, respectively, with a standard deviation
of less than 1 t/h.

Table 4. Yield estimation for maize in the 2022 growing season.

CMS Class Field Count Yield (t/ha) Std (t/ha)

0 7 - -
1 94 - -
2 100 1.873 0.440
3 100 7.154 2.784
4 39 10.254 2.140
5 0 N/A N/A

Table 5. Yield estimation for sunflower in the 2022 growing season.

CMS Class Field Count Yield (t/ha) Std (t/ha)

0 2 - -
1 32 - -
2 22 2.421 0.469
3 18 3.070 0.786
4 15 3.456 0.572
5 0 N/A N/A

Figures 5 and 6 represent maps of parcels with the CMS classes in the 2022 growing
season. Only the northern part of the Backa region is shown, since the majority of the
scouted maize and sunflower fields were located there. Notwithstanding that the parcels
were scouted randomly, it can be seen that most of them were in classes 2 and 1 of the CMS
for both maize and sunflower, indicating serious agricultural drought and a yield reduction
in the current growing season. With CMS, this information is potentially available in the
middle of August, and yield estimation is given early within the growing season.
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Figure 5. Map of maize fields with CMS classes for 2022.

Figure 6. Map of sunflower fields with CMS classes for 2022.
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4. Discussion

The results of this research align with the findings of [15], who showed that maize was
the most sensitive to a drought of one month occurring in July, which corresponded to its
early reproductive stages. For the same period, researchers managed to demonstrate how
remotely sensed indices are sensitive to drought by showing their positive relationship
with low soil moisture values [39]. Moreover, a period between mid-July and mid-August
is considered the most suitable for maize yield prediction within a growing season [40]. In
a recent paper [41], the authors used data of 10 multi-spectral bands from Sentinel-2 during
the growing season to feed a random forest model for the prediction of sunflower yield at
the pixel level within a field. Yield data with a high spatial resolution were obtained from
a combine harvester. The lowest root-mean-square error (RMSE) of yield prediction was
achieved using images from the end of June and middle of July, in which the most sensitive
periods of development overlap. However, they did not discuss the effects of drought on
sunflower yield. These effects are harmful to sunflower leaf area, leading to a decrease in
the photosynthetic substances needed for adequate seed formation. Finally, this kind of
plant stress results in yield reduction [42].

The CMS demonstrated potential as an early warning system for agricultural drought
and yield reduction. Thus, it can be integrated into AgroSens [43], a platform for digital
agriculture that is freely available for farmers in Serbia. To use the platform, the only thing
required is registration. Then, farmers draw a parcel at the exact location in which they grow
specific crops during a season. From Sentinel-2 satellite images, NDMI values are calculated
for each pixel within a parcel. Based on the data available on the platform, additional
information about the CMS and the expected yield can be given to the farmers. In the first
decade of August 2022, 47% of the territory of the European Union was under warning
conditions due to soil moisture deficit, while there was an alert for most of Vojvodina
province, which indicated vegetation stress [4]. Hence, agricultural drought is expected,
leading to a decreased yield and possible shortages in food production. Farmers can even
ask the question of if it makes sense to carry out a harvest at all or to save the costs of
diesel if maize has not been able to be properly pollinated in some fields. As an agricultural
drought indicator for yield reduction, the CMS can help in making this kind of decision
on time.

Crop classification maps for the current growing season could be obtained through
crop monitoring in the Vojvodina region by using artificial intelligence algorithms and
satellite images [44]. Based on that, CMS maps could be created, and they can provide
timely information to governmental institutions about the expected amount of crop yield,
which is important for planning storage space and exports.

There are several directions for future research:

(1) The CMS index is data-hungry, and an enriched dataset of maize and sunflower yield
covering many seasons and a wider area of Vojvodina province would lead to more
precise yield estimations within growing seasons;

(2) The CMS index can be tested for maize and sunflower in other regions/countries
based on local yield records and depending on the hybrids used in those areas;

(3) The CMS could potentially be improved by combining the NDMI with some other
vegetation index, e.g., the normalized multi-band drought index (NMDI), which is
also based on the NIR and SWIR bands sensitive to the leaf water content [45].
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