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Abstract: In recent years, atmospheric aerosol pollution has seriously affected the ecological envi-
ronment and human health. Understanding the spatial and temporal variation of AOD is essential
to revealing the impact of aerosols on the environment. Based on the MAIAC AOD 1 km product
from 2011 to 2020, we analyzed AOD’s distribution patterns and trends in different time series across
East Asia. The results showed that: (1) The annual average AOD in East Asia varied between 0.203
and 0.246, with a decrease of 14.029%. The areas with high AOD values were mainly located in the
North China Plain area, the Sichuan Basin area, and the Ganges Delta area, with 0.497, 0.514, and
0.527, respectively. Low AOD values were mainly found in the Tibetan Plateau and in mountainous
areas north of 40◦ N, with 0.061 in the Tibetan Plateau area. (2) The distribution of AOD showed a
logarithmic decreasing trend with increasing altitude. Meanwhile, the lower the altitude, the faster
the rate of AOD changes with altitude. (3) The AOD of East Asia showed different variations in
characteristics in different seasons. The maximum, minimum, and mean values of AOD in spring and
summer were much higher than those in autumn and winter. The monthly average AOD reached a
maximum of 0.326 in March and a minimum of 0.190 in November. The AOD showed a continuous
downward trend from March to September. The highest quarterly AOD values in the North China
Plain occurred in summer, while the highest quarterly AOD values in the Sichuan Basin, the Ganges
Delta, and the Tibetan Plateau all occurred in spring, similar to the overall seasonal variation in
East Asia.

Keywords: MAIAC AOD; East Asia; spatial-temporal pattern; trend analysis

1. Introduction

Aerosols are small solid and liquid particles suspended in the air, with aerodynamic
diameters ranging from 10−3 µm to 100 µm [1]. Aerosols have an important role in climate
and environment at regional and global scales. They can not only affect atmospheric
visibility [2] but also directly absorb and scatter solar radiation, which is an important
parameter for maintaining the Earth–atmosphere radiation balance [3]. Aerosols can
also directly affect cloud formation processes through aerosol–cloud interactions [4] and
indirectly amplify or dimmish warming caused by climate change [5]. In addition, aerosols
have important effects on human health [6,7]. Meanwhile, aerosols are highly variable in
space and time [8]. The long-term trends and interannual variability of aerosols are critical
for climate change and environmental quality assessment. Aerosol optical properties are
the main factors affecting atmospheric radiation. As one of the aerosol optical parameters,
Aerosol Optical Depth (AOD) can be used to represent regional aerosol loading [9] and
reveal the effects of aerosol on radiation, and thereby global climate.

The methods to monitor AOD mainly include ground-based and satellite-based meth-
ods. Ground-based monitoring networks have been used across countries and regions
worldwide. The observations they provided have improved the understanding of the
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spatial and temporal distribution of AOD and its impact on climate [10]. However, ground-
based networks have limitations in both spatial and temporal coverage. Satellite remote
sensing well avoids this drawback and provides systematic real-time AOD observation
from low to high spatial resolution [11,12]. It is considered an effective method for long-
term monitoring of AOD’s spatiotemporal distribution. Based on Landsat 8 Operational
Land Imager (OLI) images and MODIS09A1 surface reflectance products, Jin et al. [13]
retrieved and analyzed AOD’s distribution patterns in different seasons in Nanjing City
from 2017 to 2018 using the combined Dark Target (DT) and Deep Blue (DB) methods. At a
larger scale, Li et al. [14] analyzed the spatiotemporal distribution of aerosols and dust trans-
portation in the Tibet Plateau and Tarim Basin using Modern Era Retrospective-Analysis
for Research and Applications, Version 2 (MERRA-2) data, and Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) data. In addition, to monitor the AOD
over land, Wang et al. [15] analyzed the spatial patterns of the AOD and found a significant
north–south difference with a boundary of 25◦ N using the field observation data and
AVHRR remote sensing data over the Western Pacific Ocean.

The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and
Aqua satellites provides daily global aerosol data [16]. As one of the most commonly
used satellite sensors, MODIS provides available terrestrial aerosol products based on
the DT [17] and DB algorithms [18]. The AOD products performed well regionally and
globally [19] and have been used in relevant studies worldwide. Cheng et al. [20] produced
a dataset to unravel the spatiotemporal characteristics of aerosols over the Pan Yangtze
River Delta region from 2014 to 2017 by merging the MODIS 3 km resolution DT AOD with
the 10 km resolution DB AOD data by linear regression. Similarly, Shen et al. [21] analyzed
spatiotemporal variations of aerosol optical properties over the Yellow and Bohai Seas from
2002 to 2017 using MODIS DT AOD observations at 550 nm. Boiyo et al. [22] compared
and analyzed the long-term (2002–2016) spatiotemporal distribution and trends of AOD
over East Africa retrieved from the MODIS Aqua (DT and DB) and multi-angle imaging
spectroradiometer (MISR). Besides MODIS DT and DB AOD products, the MCD19A2, a
Multi-Angle Implementation of Atmospheric Correction (MAIAC) terrestrial AOD gridded
level 2 product, also shows high spatial coverage, retrieval frequency, and accuracy. The
MCD19A2, with a spatial resolution of 1 km, combines MODIS Terra and Aqua [23]. It has
the ability to distinguish aerosol sources and identify fine aerosol features [24]. Soleimany
et al. [25] verified the MCD19A2 AOD product and proved that MCD19A2 could accurately
indicate the aerosol distribution in the Khuzestan province of Iran. In a recent study, Dong
et al. [26] identified the temporal and spatial distribution of AOD, Ångström wavelength
index (AE), and aerosol types in the Beijing–Tianjin–Hebei region based on the ecological
functional zones from 2015 to 2020, using MCD19A2 and MOD04_3K products.

East Asia is one of the major source regions of dust aerosols on Earth, producing a
large number of dust particles each year [27]. The growing economies, dense populations,
and industrialization have led to increased aerosols and affected air quality, agriculture,
and water resources in East Asia [28,29]. East Asia has become an aerosol hot spot where
natural and anthropogenic aerosols co-exist [30,31]. The patterns of AOD are in a state of
flux and remain unknown due to spatiotemporal variations. Understanding the spatial and
temporal variability of AOD in East Asia is important for atmospheric environmental and
life health protection.

This study aims to thoroughly assess the spatiotemporal variations of AOD in East
Asia from 2011 to 2020. We used the MCD19A2 AOD data with 1 km spatial resolution to
examine the annual, seasonal, and monthly variations and trends of AOD in East Asia.

2. Data and Methods

This study area includes eastern and central China, Mongolia, the Democratic People’s
Republic of Korea, the Republic of Korea, Laos, Cambodia, the Philippines, Thailand, and
Vietnam, and some regions in Myanmar, Japan, and Malaysia, as shown in Figure 1.
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Figure 1. Study area A: the North China Plain area, B: the Sichuan Basin area, C: the Qinghai-Tibet
Plateau area, D: the Ganges Delta area.

2.1. Data
2.1.1. MAIAC AOD

In this study, we used the MCD19A2 (2011–2020) dataset at 550 nm. MCD19A2
Collection 6 (MAIAC aerosol product) was obtained from the National Aeronautics and
Space Administration (NASA) Goddard Space Flight Center (https://earthdata.nasa.gov/,
accessed on 7 June 2021). The data with 1 km spatial resolution is a daily terrestrial
atmospheric aerosol product generated by MODIS and a multi-angle atmospheric correction
algorithm. It is featured with wider coverage and higher spatial and temporal resolution
compared with other AOD products. Both MODIS instruments onboard the Terra and
Aqua spacecraft provide daily AOD measurements [32]. To maximize the availability of
AOD values, the combined values of Terra and Aqua were used to explore the spatial and
temporal distribution patterns of AOD in East Asia.

2.1.2. DEM

The Digital Elevation Model (DEM) data used in this study is the Global Multi-
Resolution Terrain Elevation Data (GMTED) from 2010, with a 200 m spatial resolution. We
downloaded the data from the USGS and the NGA of the United States National Geological
and Geographic Information Service (https://topotools.cr.usgs.gov/gmted_viewer/viewer.
htm, accessed on 15 May 2021).

2.2. Statistical Methods
2.2.1. Linear Regression Trend Analysis

In this study, the linear tendency estimation method is used to analyze the long-term
trend of the AOD at each pixel from 2011 to 2020. The X-axis is the year (time series), the
Y-axis is the AOD, and the slope of the linear regression equation (y = kx + b), represents
the tendency rate. When k > 0, the result indicates that the AOD exhibits a trend of growth,
and vice versa. The formula for calculating the k is as follows:

k = (n
n

∑
i=1

iXi −
n

∑
i=1

i
n

∑
n

Xi)/

[
n

n

∑
i=1
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n

∑
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2]

(1)

In the formula, n is the number of years (i.e., 10 in this study); i is the ith year (i.e., 2011
is the first year); and Xi is the annual average value of the AOD in the ith year.

2.2.2. Fitting Model

To better show the association between AOD and elevation, we used five fitting models
to detect the variation of AOD with elevation, including linear, quadratic polynomial,
logarithmic, exponential, and power functions.

https://earthdata.nasa.gov/
https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm
https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm
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To evaluate the goodness-of-fit more reasonably, the error sum of squares (SSE) and
R-squared (R2) are applied here. SSE is the error between the predicted value and the
original value (MCD19A2 AOD). The size of SSE can be used to indicate how well the
function is fitted. When the value of SSE is smaller, the fit is better. The opposite is worse.
The calculation of SSE is shown in Equation (2).

SSE =
n

∑
i=1

(yi − ŷi)
2 (2)

R2 is used to indicate the model’s goodness-of-fit, with values ranging from 0 to 1.
R2 is calculated from the sum of squared residuals (SSR) and the sum of squared total
(SST). The closer R2 is to 1, the better the model fit is. The calculation of R2 is shown in
Equation (5).

SSR =
n

∑
i=1

(ŷi − y)2 (3)

SST = SSE + SSR =
n

∑
i=1

(yi − y)2 (4)

R2 =
SSR
SST

= 1 − SSE
SST

= 1 −
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − y)2 (5)

In Equations (2)–(5), i denotes the ith data; yi and ŷi denote the true and fitted values
of the ith AOD, respectively; and y is the mean of the true AOD values.

3. Results and Discussion
3.1. Interannual Variation of AOD

Figure 2 shows the annual pattern of AOD in East Asia from 2011 to 2020. AOD in
East Asia fluctuates between 0.203 and 0.246 from 2011 to 2020, with a mean value of 0.228.
Since 2011, AOD in East Asia has been spiraling downward. The annual average AOD
decreased by 0.034 (from 0.244 to 0.210), with an overall decrease of 14.029%. This indicates
a significant improvement in atmospheric conditions.
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The spatial distribution of AOD varies considerably in different regions of East Asia
(Figure 3). The distribution of AOD varies along with natural geographical conditions and
human activities. The AOD values are lower than 0.2 in the Qinghai–Tibet Plateau and
the areas north of 40◦ N. There are several reasons for the low AOD value in these regions.
First, aerosols are mainly from local emissions, with little influence from dusty weather
and surrounding transport in these areas [33]. Second, the population density is low, and
there are few anthropogenic activities. The areas with high AOD values over 0.5 are mainly
concentrated in the North China Plain area, the Sichuan Basin area, and the Ganges Delta
area. Low and flat topography, a dense population, a high intensity of human activities,
emissions of surface pollutants, and climate change in recent years are the main factors
contributing to the high AOD values in these areas [34].
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Figure 3. Spatial distribution of the AOD in East Asia averaged from 2011 to 2020.

The variation of the mean AOD values with altitude in East Asia shows that there is a
significant difference in AOD values at different altitudes over the last 10 years (Figure 4).
The mean AOD values at low altitudes are significantly higher than those at high altitudes,
mainly due to the fact that low terrain makes aerosols less diffusible [35]. It also shows
the ecological barrier role of higher altitude areas in resisting aerosols. Moreover, it shows
that the centers of high AOD values are generally located in places with high population
concentrations, developed economies, and lower elevations [36]. To explore the association
between AOD and altitude from 2011 to 2020, we fitted them using different fitting models
(Table 1). Under the five different fitting models, the results show that all the fitting curves
have a good fitting effect except for the power fitting curve. Among them, the logarithmic
function is the best model, with an R2 of 0.9210 and SSE of 0.0245. It indicates that the
distribution of AOD shows a logarithmic decreasing trend with increasing altitude in East
Asia. Meanwhile, the lower the altitude, the faster the rate of AOD change with altitude
(Figure 4).
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Figure 4. Variation of mean AOD with altitude over East Asia from 2011 to 2020 (Pixel Count is the 
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Figure 4. Variation of mean AOD with altitude over East Asia from 2011 to 2020 (Pixel Count is the
number of image elements).

Table 1. Five different fitting models between AOD and altitude.

Fitting Model Fitting Equation R2 SSE

Linear y = −0.0108x + 0.309 0.8511 0.0462
Quadratic polynomial y = 0.0003x2 − 0.0199x + 0.3574 0.8883 0.0350

Logarithmic y = −0.117ln(x) + 0.4314 0.9210 0.0245
Exponential y = 0.4812e−0.104x 0.8078 0.0456

Power y = 1.0083x−0.942 0.6242 0.4470

As shown in Figure 2, the annual area-averaged AOD shows an approximately stan-
dard symmetrical “M” curve from 2011 to 2015, and the trend is down–up–down from
2016 to 2020 in East Asia. We compared the spatial distribution patterns of the AOD each
year (Figure 5). Overall, there is a general decline in AOD values in Eastern Asia. The
eastern and southeastern regions of China, as well as the Sichuan basin, exhibited higher
AOD values from 2011 to 2015. The AOD values decreased significantly in these regions
subsequently, which is consistent with the trend we identified in Figure 2. Previous studies
revealed that the main aerosol types in East Asia are sulfate and dust [37]. The emission of
sulfur dioxide in China has been decreasing year by year [38], which may have resulted
in the decrease in AOD in this region. In contrast, aerosol pollution was higher in regions
such as India and Bangladesh in the last decade [39]. Related studies have shown that
South Asia is often considered one of the globally important aerosol hotspots [40–42]. In
addition, the AOD values in Southeast Asia, mainly in Laos and Thailand, changed more
significantly, which is related to the large-scale biomass-burning activities in Southeast
Asia [43].
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(c) 2013, (d) 2014, (e) 2015, (f) 2016, (g) 2017, (h) 2018, (i) 2019, and (j) 2020.

It shows the spatial trends of AOD in East Asia in the last decade (Figure 6, Table 2).
The results indicate that most areas of East Asia exhibited a decreasing trend in AOD from
2011 to 2020. The trends of AOD in East Asia differ considerably. More than 74% of this
study area shows a decreasing trend in AOD, indicating a significant improvement in
the environmental conditions in East Asia. The rate of AOD decrease is greater than 0.01
in the eastern and southeastern regions of China, and the fastest rate of AOD decrease
is greater than 0.05 in the Sichuan basin. It proves that China has produced effective
progress in energy conservation and emission reduction in recent years. In contrast, parts
of South Asia and Southeast Asia are strongly influenced by human activities due to their
large populations. Meanwhile, aerosol concentrations are influenced by meteorological
conditions [35] and natural disasters [44], leading to an increase in AOD values in the areas.
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Table 2. Percentage share of AOD trends in East Asia from 2011 to 2020.

K Percentage (%) Trend Total (%)

−0.2~−0.05 0.502

Decrease 74.627
−0.05~−0.01 17.291
−0.01~−0.001 38.478

−0.001~0 18.355

0~0.001 24.071
Increase 25.3730.001~0.05 1.299

0.05~0.2 0.003

3.2. Intra-Annual Variations of AOD

To better explore the monthly and seasonal variations of AOD in East Asia, the region
is divided into four seasons: spring, summer, autumn, and winter. The four seasons
are from March to May, June to August, September to November, and December to the
following January and February, respectively.

The maximum, minimum, and mean values of AOD in East Asia are much higher
in spring and summer than those in autumn and winter (Table 3). The average AOD
in East Asia over the past 10 years is 0.282 and 0.244 in spring and summer, while the
average AOD in autumn and winter is 0.184 and 0.211, respectively. There is a high
possibility for dusty weather when dry conditions and relatively strong winds combine
in the spring. Dust aerosols have a strong influence on spring aerosols [45]. These lead to
larger aerosol concentrations in this region in the spring. Due to the hot and rainy climate
during summer in most parts of this study area, high temperatures and high humidity
further promote the formation of high aerosol concentrations [46]. The range of AOD
in winter is slightly different from that in autumn. Compared to autumn, the relatively
high AOD values in winter may be due to the coal or fossil fuel combustion for heating in
winter in East Asia. The consumption of large amounts of coal and fossil fuels has released
large amounts of industrial aerosols, which have an impact on the regional atmosphere
and result in high AOD values. The largest decadal decreases in AOD values in East Asia
are in summer and autumn, with 25.887% and 23.697%, respectively. During this period,
the increased insolation levels cause significant warming over the land in East Asia [47].
Surface warming triggers an enhanced rise of warm air masses over the Asian continent. It
invokes a strong transport of clean water vapor masses from the oceans into the interior
of the Asian continent [48] and thus contributes to a decreased AOD [49]. Especially in
summer and autumn, anthropogenic aerosols, which play a dominant role in East Asia, are
an important factor in the weakening of the summer monsoon (July to September) in recent
decades. During the period when anthropogenic aerosols are low, sulfate aerosols, etc., are
also a major factor in the weakening trend of the monsoon [50]. The weakening of the Asian
summer monsoon in turn severely affects the meteorological environment in East Asia,
such as through reduced water vapor transport, which weakens aerosol concentrations [51].

The spatial patterns of AOD in different regions differ greatly across East Asia during
the four seasons (Figures 7 and 8). Most regions have large seasonal variations in AOD.
Because of numerous natural hazards and extreme weather in spring [52], the mean AOD
in spring is higher in different parts of this study area. Among them, AOD values peak
in Southeast Asia and Southeast China [43]. Biomass burning in Southeast Asia in spring
can also affect aerosol concentrations in Southwest China and the Pearl River Delta region
through long-range transport [53,54]. In contrast, the Tibetan Plateau region and areas
north of 40◦ N have lower AOD values and variability. The South Asia region, mainly India
and Bangladesh, maintains high AOD values throughout the seasons. The high aerosol
contribution from natural emissions and local anthropogenic emissions is the main driver
of high AOD in these regions for the four seasons [33,55]. The Qinghai–Tibet Plateau region
maintains a low AOD value throughout the seasons. The reason is that the Qinghai–Tibet
Plateau forms a natural barrier due to its high altitude and natural environment [39].
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Table 3. Quarterly mean AOD in East Asia from 2011 to 2020.

Year Spring Summer Autumn Winter

2011 0.285 0.282 0.211 0.241
2012 0.324 0.277 0.185 0.215
2013 0.303 0.217 0.200 0.249
2014 0.310 0.281 0.198 0.183
2015 0.281 0.260 0.186 0.228
2016 0.298 0.222 0.184 0.203
2017 0.239 0.233 0.173 0.194
2018 0.261 0.218 0.158 0.186
2019 0.259 0.237 0.180 0.204
2020 0.259 0.209 0.161 0.209

Mean 0.282 0.244 0.184 0.211
Maximum 0.324 0.282 0.211 0.249
Minimum 0.239 0.209 0.158 0.183

Decreases of decade 0.026 0.073 0.050 0.032
Degree of decreases 9.123% 25.887% 23.697% 13.278%
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The monthly average AOD values from 2011 to 2020 were very different (Figure 9,
Table 4). The monthly average of AOD has been 0.242 over the past decade. For different
months, the AOD values peak at 0.326 in March and are as low as 0.189 in November. The
monthly average of AOD from August to December is below the monthly average. It is
possible because the frequent cold air activity accelerated the diffusion and transport of
aerosol particles during this period [56]. From November to February, the AOD showed
an increasing trend. Due to the demand for heating in the north and unfavorable mete-
orological conditions, severe haze pollution events are prone to occur [57,58]. The AOD
values in East Asia show a continuous decreasing trend from March to September. The
possible reason is the reduction in coal burning during the non-heating period. At the same
time, the rainfall during the rainy season helps flush pollutants from the atmosphere [59].
From 2011 to 2020, the overall trend of monthly AOD values has decreased. However, the
fluctuation of the monthly AOD is diverse, and the magnitude of the decline also varies
greatly from month to month. In East Asia, April is during the period when cold and warm
currents meet frequently, and its AOD values fluctuate most dramatically due to climate
changes such as increased temperature and precipitation. In addition, fluctuations in AOD
values during this period are influenced by fuel and biomass combustion and dust [60]. The
largest decline is 33.840% in August and the smallest decline is 0.658% in March. Energy
savings have led to a decrease in residentially and industrially generated aerosols.
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3.3. Spatiotemporal Variations of AOD in High and Low Hotspots

According to Figure 3 and Table 5, it shows that relatively high values of AOD are
concentrated in the North China Plain, the Sichuan Basin, and the Ganges Delta. The
highest mean values of AOD are found in the Sichuan basin and the Ganges Delta, with
0.514 and 0.527, respectively. In addition to local emissions, a significant portion of aerosols
are transmitted from other regions due to the low altitude of the central Sichuan basin [61].
It is difficult to diffuse after aerosol aggregation, which easily leads to the accumulation
of different types of aerosol particles in the Sichuan basin. The Ganges Delta is the largest
delta in the world. Its large population, large-scale industrial and agricultural development,
and natural disasters such as dust storms have led to persistently high AOD values in
this region. In contrast, the annual average AOD values in the Qinghai–Tibet Plateau area
are significantly lower. Due to the low population density in this area, the contribution
of anthropogenic aerosols to AOD is small. The highest value of the quarterly AOD in
the North China Plain occurs in summer. In addition to the major contributions made
by anthropogenic aerosol [62,63] and long-range transported aerosol [64], the high water
content in the atmosphere caused by the hot and rainy summers in the region and the
hygroscopic nature of the aerosols promote the increase in AOD and the transformation of
secondary aerosols [9]. The highest values of quarterly AOD in the Sichuan Basin, Ganges
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Delta, and Tibetan Plateau all occur in spring, similar to the overall seasonal variation in
East Asia.

Table 5. Yearly and quarterly averaged AOD in different regions of East Asia from 2011 to 2020.

Region Annual Mean AOD
Seasonal Mean AOD

Spring Summer Autumn Winter

North China Plain area 0.497 0.523 0.573 0.469 0.406
Sichuan Basin area 0.514 0.573 0.428 0.428 0.510
Ganges Delta area 0.527 0.569 0.535 0.438 0.519
Qinghai-Tibetan

Plateau area 0.061 0.077 0.076 0.053 0.051

In the last decade, the annual variation of AOD in the three hot spots has been
significantly different (Figure 10). In the last decade, AOD values in the Sichuan basin
and the North China plain all decreased, while they increased in the Ganges delta. The
AOD value of the Sichuan basin decreases by 0.317, a decrease of 45.14%. This region has
the largest decrease in high values of AOD. There was a large aerosol accumulation in the
Sichuan Basin in earlier years. After the effective implementation of China’s environmental
management policies in recent years, it has led to a significant decrease in AOD values in
the Sichuan Basin [65]. The increasing trend in the Ganges Delta can be attributed to the
increase in emissions from biomass burning (e.g., wood fuel and agricultural waste) [66].
Under the influence of human activities and the natural environment, there are pressing
environmental problems in the Ganges Delta.
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4. Conclusions

Through this study, it was found that the distribution of AOD in East Asia varied
greatly. Overall, the average AOD value in East Asia in the last decade was 0.228. The high
AOD areas were mainly distributed in the North China Plain region, the Sichuan Basin
region, and the Ganges Delta region, while the low AOD areas were mainly distributed
in the Qinghai–Tibet Plateau region. The obvious altitude characteristics of these regions
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prompted us to understand the association between AOD and altitude. It was found that
the distribution of AOD showed a logarithmic decreasing trend with increasing altitude
and that the rate of change of AOD was faster in low-altitude areas. This result made us
clearer about the pattern of the spatial distribution of AOD in East Asia in terms of altitude.

By analyzing the spatial-temporal variation of AOD in East Asia, we found that the
atmospheric environmental conditions in East Asia have significantly improved. Tempo-
rally, the decreasing trend of annual average AOD in East Asia is obvious in the last decade.
Spatially, the AOD in most of East Asia is on a downward trend. Large areas, mainly
including eastern and southeastern China, experienced a decline in AOD at a rate greater
than 0.01, due to the effective implementation of China’s energy conservation and emission
reduction policies. The fastest decline in AOD values was in the Sichuan basin, which
exceeded 0.05. In contrast, in India and parts of Southeast Asia, AOD values increased due
to the impact of human activities, meteorological conditions, and natural disasters.

We explored the characteristics of its intra-annual variation through quarterly and
monthly AOD analyses. The results showed that AOD values showed significant differ-
ences among the four seasons. The maximum, minimum, and mean AOD values were
much higher in spring and summer than in autumn and winter due to the meteorological
environment and anthropogenic activities. In terms of the spatial distribution of quarterly
AOD, there are significant peaks in spring in Southeast Asia and Southeast China due to
climate, biomass burning, and long-range transport. In the three typical areas of high AOD
values in East Asia, the highest quarterly AOD values in the North China Plain occurred in
summer. The highest quarterly AOD values in the Sichuan Basin, the Ganges Delta, and the
Tibetan Plateau all occurred in spring, similar to the overall seasonal variation in East Asia.
In terms of the monthly variation of AOD, it peaked in March and was lowest in November.
During the period from March to September, AOD showed a continuous decreasing trend.
This is generally consistent with the distribution pattern of the quarterly AOD.
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