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Abstract: Following the emergence of COVID-19, nations around the world implemented effective
restrictions that limited people’s movements and economic activity, which reportedly led to environ-
mental improvements. The lowering of air emissions is one environmental indicator that has been
connected to the pandemic. The diurnal temperature range (DTR) is one environmental indicator
that has been linked to air pollution. In this study, it was hypothesized that because of the pandemic
restrictions and slowdowns, the DTR in 2020 for a country that implemented major restrictive mea-
sures in reaction to the pandemic would be higher than in previous years, despite or in addition to
background climatic forcings. Based on information from weather stations in the contiguous United
States of America (USA), the DTR for the year 2020 was compared to the five years before it as a test
of this hypothesis. It was verified that the annual mean DTR of 2020 was higher than the three years
prior (2017–2019), but lower than the DTR of 2015 and 2016. Compared to historical trends (since
1911), the DTR change in 2020 is within past mean DTR variations that occurred over approx. 12-year
cycles, linked to sunspot activity (Schwabe solar cycle). Moreover, climatic effects such as El Niño, La
Niña and the prolonged trend of global warming reduce the confidence in the perceived effect of the
pandemic. To determine if or how anthropogenic and environmental factors can magnify the impact
of the COVID-19 restrictions on the regional mean DTR, five other parameters (annual snowfall
quantities, gross domestic product per capita, population density, latitude (northern/southern), and
longitude (coastal/inner)) were also examined against changes in DTR from 2015 to 2020. This
analysis pointed to the environmental and industrial factors being more strongly correlated with
short-term climate changes than societal factors and geographical location.

Keywords: climate change; anthropogenic impacts; radiative forcing; atmospheric albedo; weather
data analysis

1. Introduction

COVID-19 disease occurs from the strain of the coronavirus SARS-CoV-2, which stands
for severe acute respiratory syndrome coronavirus 2. General coronaviruses have been
studied for many years to understand their impact on society and the environment, as
they have the potential to turn into a pandemic at any time (El-Kafrawy et al., 2019) [1].
In January 2020, COVID-19 was declared as a public health emergency and, after two
months, in March it was declared as a pandemic by the World Health Organization (WHO).
Since then, countries have been taking effective measures for controlling the spread of this
virus. With its rapid spreading, extensive spatial coverage, and complicated characteristics,
this global disaster will be remembered as a unique event in history. If this pandemic is
compared with the other large epidemics that took place in the last several decades, those
prior pandemics appear insignificant compared to the COVID-19 pandemic in terms of the
area of the world affected, the societal effects, and the health and economic consequences
(Ali et al., 2020) [2].

The measures that most countries took against this pandemic include social distancing,
lockdowns, working from home, and limiting economic activities. Reportedly, these

Atmosphere 2022, 13, 2031. https://doi.org/10.3390/atmos13122031 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13122031
https://doi.org/10.3390/atmos13122031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-8368-8618
https://doi.org/10.3390/atmos13122031
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13122031?type=check_update&version=2


Atmosphere 2022, 13, 2031 2 of 21

measures have brought about positive and negative changes in the environment of urban
areas of different countries. For example, air and water quality of some urban areas have
improved, but on the contrary, shoreline pollution has increased due to the disposal of
personal protective equipment and other sanitary products (Cheval et al., 2020) [3]. It is very
evident that different aspects of the environment have been impacted by this long-lasting
pandemic as socio-ecological systems have been challenged by it.

Emissions caused by human activity have greatly impacted air quality and the climate.
Different industrial processes and road transportation sectors account for the emission of
huge quantities of particulate matter, NOx, SOx, volatile organic compounds, and green-
house gases (GHG). Countries throughout the world imposed restrictions on travel and
business to prevent the spread of COVID-19 throughout 2020 and beyond. As COVID-19
reduced economic activity during those times, it was predicted that there could have been a
positive impact on the air quality and a reduction in GHG emissions. Venter et al. (2020) [4]
studied data from more than ten thousand monitoring stations and satellites around the
world and found out that there was an improved air quality during the lockdown periods
compared with the same period in the previous year. Several other studies have been able
to conclude that the lockdowns enforced in response to COVID-19 have contributed to a
significant improvement in air quality (Berman and Ebisu, 2020; Singh et al. 2020; Higham
et al. 2021) [5–7]. A recent study by Aboagye et al. (2021) [8], however, concluded that the
air quality improvement benefits due to the lockdowns imposed in response to COVID-19
were a temporal phenomenon. In terms of GHG emissions, transport accounts for 26% of
CO2 emissions globally (Chapman, 2007) [9], and the number of flights were reduced by
more than 50% in 2020 because of COVID-19 (Cheval et al., 2020) [3]. Reduction in mobility
and long-range travel was thus one of the factors contributing to reduced GHG emissions
in the first half of 2020 (Le Quéré et al., 2020) [10].

It can be concluded that COVID-19′s impact on air quality and pollution, in turn,
impacts the DTR; the question is whether this impact is discernable given the other back-
ground climatic forcings, and whether it is as discernable over large land masses (conti-
nental) versus localized effects (e.g., urban). Observations from Cheng et al. (2020) [11]
in the Lanzhou city in China showed that increased air pollution results in a decreased
DTR. This study, which looked at the reduction of aerosols during the pandemic, found
that temperature increased during the daytime and decreased during the nighttime, thus
resulting in a greater DTR (Cheng et al., 2020) [11]. Similarly, another study looked at the
impact of aerosol levels on the climate. The study from Hu et al. (2021) [12] specifically
looked at the lower aerosol presence during the COVID-19 pandemic and concluded that
this resulted in a greater DTR during months with strict lockdowns when compared to
the preceding 20-year month-on-month DTR values. This connects to our hypothesis
that global lockdowns imposed in response to the COVID-19 pandemic increase the DTR
through decreased air pollution caused by a reduction in economic activity and travel.

Notable changes in the climate can take place over a relatively short period of time
(compared to the geologic time scale) because of human activity (Karl and Trenberth,
2003) [13]. On the scale of decades to centuries, we can now confidently link the emission
of GHG because of human activity with the observed increasing temperature, which we
term global warming (IPCC, 2021) [14]. In this study, our main objective is to study
annual data of diurnal temperature range (DTR). DTR is the measure of the difference
between the maximum temperature (Tmax) and the minimum temperature (Tmin) of a day.
A question was raised whether COVID-19 could have an influence on climate change and
the DTR. Therefore, to evaluate the popularity and acceptance of the DTR approach in
climate studies, and to inspect the potential readership of the present work, we performed a
bibliometric analysis using data collected from Web of Science that yielded Figure 1, which
illustrates the number of publications regarding DTR over the past 30 years. It is evident
that the number of publications about DTR is rising every year. This confirms that DTR is
a popular topic and a valid research approach that is useful and worthwhile to consider
determining whether COVID-19 had an impact on climate change and CO2 levels or not.
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Having confirmed this, we crafted our research hypothesis that the DTR can be a possible
parameter to showcase the impact of COVID-19 on the environment. To this end, our goal
was to collect DTR data from the pandemic year 2020 and compare it with the previous
several years, with the aim of inspiring further research on the impacts of the pandemic on
the Earth’s climate at regional, continental, and global scales using the DTR approach and
more complex climate models.
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Figure 1. Number of indexed publications on DTR as a topic in the last 30 years; data sourced
from the Web of Science and collected using the ‘topic’ search string {“diurnal temperature va*” OR
“diurnal temperature ra*” OR “diurnal temperature di*”}.

This study is inspired from the study of Travis et al. (2002) [15] who studied whether
contrails from aircrafts impacted the DTR. That study arose when a terrorist attack took
place in the United States and there was a three-day ban on all flights. They collected
temperature data from weather stations across the United States and compared the data of
the 3-day grounding period with data from the period from 1971 to 2000. Travis et al. found
out that average DTR was anomalously higher in the 3-day period of aircraft grounding.
The mechanism used to explain this finding was that the absence of contrails in the sky
changed the atmospheric energy balance; more sunlight could reach the ground during
the day (thus increasing the Tmax) and more infrared heat could return to space during the
night (thus decreasing the Tmin). Together, these affects were posed to have increased the
DTR on days without contrails.

Following the Travis et al. (2002) [15] study, various other studies were published
attempting to verify the validity of the result of Travis et al. (2002). Studies from Wijn-
gaarden (2012) [16] and Sandhu and Baldini (2018) [17] investigated the same hypothesis,
i.e., that contrails impact the DTR; however, by using higher quality data and considering
other factors, both concluded that weather system migration was the cause of the increase
in DTR during the grounding period. Hong et al. (2008) [18] also studied the validity of
the hypothesis proposed by Travis et al. (2002) [15] and found that the impact of DTR
during the grounding period could be attributed to low-altitude clouds, humidity, and
wind. A study from Dietmuller et al. (2012) [19] which also investigated the validity of
the hypothesis of Travis et al. (2002) [15], concluded that the 3-day anomaly during the
grounding period can happen due to natural fluctuations, and stated low-level clouds
as the reason for the decreased DTR. One study that agreed with the findings of Travis
et al. (2002) [15] looked at contrail outbreaks lowering DTR values when compared to a
clear-sky situation. This study concluded that long-lasting jet contrails should be taken in
consideration when weather forecasting is done for a short-term period. Although there
are several studies that disprove the findings of Travis et al. (2002) [15], it is evident that
DTR is a valuable and valid parameter to measure. In addition, these studies bring into
question what timeframe should be used when using DTR as a parameter, and whether the
timeframe used in the Travis et al. (2002) [15] study was too short to see the full picture
and whether a timeline that is closer to a year is more reliable.



Atmosphere 2022, 13, 2031 4 of 21

Studies performed all over the world have concluded that factors such as aerosols,
precipitation, water bodies, sunlight hours, cloud cover, local soil and vegetation conditions,
and land use may all impact the DTR (Cheng et al., 2020; Gallo et al., 1996; Roget and Khan
2018) [11,20,21]. This explains why there is spatial and temporal variability in the DTR. For
example, a study in Spain from 1950 to 2011 found that the DTR trends decrease on the
Mediterranean coast, versus the small changes in northern, Atlantic, and rural areas (Bilbao
et al., 2019) [22]. These changes could be attributed to relative humidity and precipitation,
with which the DTR values were negatively correlated. In addition, the study found that
anthropogenic factors such as increased aerosols in urban stations contributed to a decrease
in the DTR (Bilbao et al., 2019) [22]. A study by Liu et al. (2016) [23] noted the impact
of aerosols on the DTR in China by comparing observations from big cities with those in
nearby mountain regions, and found that aerosols decrease the DTR by lowering the Tmax.
Another study looked at the climate in the Aral Sea region (Roget and Khan, 2018) [21] and
documented how natural variability can impact the DTR. The results showed that water
bodies can have a great impact on DTR dynamics; greater differences between annual
DTR’s were observed in stations closest to the sea shoreline. Another natural cause of DTR
variability was studied in Iran by looking at the impact of sunshine duration and total
cloud cover, showing that from the 1960s into the 1980s, widespread dimming as well as a
decrease in the DTR was recorded (Rahimzadeh et al., 2015) [24]. This study also inquired
into the potential impact of aerosols on sunshine variations, showing that many of these
factors are interconnected.

Cloud cover and its impact on the DTR has been more extensively researched, with
Lauritsen and Rogers (2012) [25] finding that it accounts for up to 63.2% of DTR variance.
Looking more specifically at DTR changes with temporal variation, a study by Mall et al.
(2020) [26] in India from 1991 to 2016 found that the winter season had a decreasing
DTR trend, whereas the monsoon and pre-monsoon seasons correlated to an increasing
DTR trend. Several more studies have linked DTR changes to climatic changes using
simulations/modeling (Lewis and Karoly, 2013 [27]; Selman and Misra, 2015 [28]; Liu
et al. 2021 [29]), also attributing natural factors such as precipitation and cloud cover
as driving forces. However, the work of Hu et al. (2021) [12], examining precipitation,
wind speed, and dewpoint temperature as possible influencing factors on the greater DTR
from February to June in 2020 (compared to 2000–2019) in China, found that the national
mean values of these climatic parameters followed the historical range, suggesting that
climatological variations do not explain, at least as the main driver, the DTR uptick during
the early months of the COVID-19 pandemic.

Objectives

In this study, to investigate the impact of the COVID-19 pandemic on DTR changes,
we have studied weather data from the contiguous United States of America (USA). These
data were collected from several weather stations in 48 states and the District of Columbia
(DC). The DTR was calculated daily by determining the difference between the maximum
temperature during the day and the minimum temperature during the night. We have
compared the DTR data from the year 2020 with the DTR data from the previous 5 years
(2015–2019). The data collected were split into three alternative ways to confirm and
magnify the effects on the DTR during the COVID-19 pandemic. The data were classified
at the state level according to mean annual snowfall amount, GDP (gross domestic product)
per capita, and population density. Annual snowfall amount was selected as a classification
factor as it is linked to other environmental factors such as temperature, humidity, wind
speed, cloud cover, and hours of sunlight, and to geographical factors such as terrain
geography and land elevation (Zhang et al., 2019) [30]. Snowfall amount also has long-term
links to climate change, and thus acts as both an environmental and climate indicator,
especially at higher latitudes and altitudes (Zhang et al., 2020) [31]. The hypothesis is that
annual snowfall amount, as an environmental proxy for other climate and geographical
factors associated with this state mean parameter, will impact the DTR. The motivation
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for splitting the data based on GDP per capita is to assess how wealth, which influences
anthropogenic and economic behavior, may impact the DTR. The hypothesis for the impact
of GDP per capita is that wealthier states may have been affected more greatly by the
pandemic due to more restrictions on economic activities. Lastly, data were split based on
population density. Population density is known to impact certain environmental factors
such as air pollution (Chen et al., 2020) [32]. The hypothesis here is that more densely
populated states may have seen a bigger impact from the pandemic as with more COVID-19
transmission and disease, longer lockdowns may have more greatly impacted the DTR.

2. Methodology
2.1. Data Collection

Temperature data were collected from the National Climatic Data Center (NCDC)
(NCDC, 2021) [33]. It is considered as the world’s largest archive of data regarding weather.
For this study, data were collected from the years of 2015 to 2020. Data were taken from the
48 states of the contiguous USA and DC. For 42 of these states, 4 stations were analyzed per
state. For 6 of these states and DC, 3 stations were analyzed from each. In total, data from
189 stations across the USA were collected (Supplementary Materials-Part II illustrates
the location of each station on a map). The approaches used for collecting and ordering
data from the NCDC website are outlined in the Supplementary Material. Table S1 in the
Supplementary Material illustrates a summary of the data collected. Data points were
excluded if either one or both of Tmax or Tmin were missing.

2.2. Data Processing

Four different approaches were considered for calculating DTR. The first approach
calculated DTR by simply subtracting the minimum temperature from the maximum
temperature of each day (i.e., both temperature readings coming from the same 24-h period
between 0:00 and 23:59). The second approach found the DTR by subtracting the previous
day’s minimum temperature from the maximum temperature of the following day (e.g.,
the minimum temperature on a Sunday and the maximum temperature on a Monday).
The third approach subtracted the next day’s minimum temperature from the maximum
temperature of the previous day (e.g., the minimum temperature on a Tuesday and the
maximum temperature on a Monday). Lastly, the fourth approach found the average
minimum temperature of the previous, current, and next day, and subtracted that from the
current day’s maximum temperature. The purpose of considering four different approaches
to calculate the daily DTR is to account for the fact that weather events, such as transient
warm or cold fronts, can alter the temperature of certain locations more rapidly than others,
so by calculating the DTR by multiple ways it is possible to see if the annual trends are
significantly affected by underlying effects that occur on a scale of hours to days. That is,
the goal is to ascertain that annual DTR trends are unaffected by how DTR is determined at
each location each day.

2.3. Data Splitting

In this study a selection of weather stations were used per state to acquire data; thus,
the full data set was split randomly into two sets with the intent of analyzing if the used
data set is big enough to represent the overall climate in the region of study. The idea of
this analysis is that if the split sets show the same annual DTR trends and similar DTR
mean annual values to the full set, then the full set is likely a good representation of the
overall climate in the region of study (i.e., the contiguous USA).

Data were also split based on other factors including snowfall, population, GDP
per capita, latitude, and longitude. This was done so to evaluate how changes in DTR
associated to the COVID-19 pandemic may have both environmental and anthropogenic
reasonings. The parsing of the data in various ways was used to test different hypotheses
and magnify how different factors may impact the annual mean DTR. Data on average
snowfall amount in a year, GDP per capita (for 2019), and population density (for 2010)
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from the 48 states and DC were obtained from World Media Group (2022) [34] and the
National Weather Service (2021) [35], Bureau of Economic Analysis (2019) [36], and US
Census Bureau (2010) [37], respectively. The data on average latitude and longitude of each
state were obtained from Google Maps. The data were split into top and bottom 24 states
for each factor, and DC was added to the half that it belonged to.

Data were split based on population density as denser states have shown to have put
in place stricter restrictions throughout the COVID-19 pandemic, which we hypothesized
would result in greater DTR changes due to decreased economic activity and travel. Many
states in the ‘top 24 + DC’ split are also the states that implemented the most restrictions
(in terms of strictness and/or duration) in 2020; conversely, many states in the ‘bottom 24’
split correlate with fewer restrictions. Hallas et al. (2021) [38] reported the Stringency Index
values for each state; this index takes into account several factors that include school and
workplace closures, cancellation of public events, restrictions on internal and international
travel, stay-at-home requirements, and public information campaigns. To exemplify how
population density correlates with stringency, all eight states that did not issue any state-
wide stay-at-home orders also all belonged to the ‘bottom 24’ half (Delbert, 2020) [39].
Furthermore, nine out of the ten states that had that longest stay-at-home orders belong to
the ‘top 24’ half (Delbert, 2020) [39]. Most states in the ‘top 24’ half also spent more time
between January 2020 and April 2021 under a Stringency Index score of >60 (out of 100),
while most of those in the ‘bottom 24’ half spent more time with a score of <60 (Hallas et al.,
2021) [38].

For comparison with other countries in the same period, according to Sekar et al.
(2021) [40], the north part of India, where very strict COVID-19 measures were implemented,
reported a sharp decline in pollution concentration; during the lockdown, there was an
average 22% drop in concentration when compared to prior years. East India reported
the same dramatic drop in CO content as the northern half of India. Additionally, the O3
content was outstanding, at 77% and 89% greater than it was in 2019 and 2017, respectively.
The most populous city in India, Delhi, was examined by Mahato et al. (2020) [41] using
the seven pollutants criteria, PM2.5, PM10, NO2, SO2, CO, O3, and NH3. In China, 2020’s
overall air quality index (AQI) indicated some air pollution reduction compared to 2019
after China’s Spring Festival; it was noted that lockdown cities saw reductions in AQI and
PM2.5 of 18% and 17%, respectively [40].

In addition to the three methods of parsing the data above, data were also split using
the average latitude and longitude of each state. Using average latitudes, the data were split
into two sets to represent the “24 most northern states” and DC and the “24 most southern
states”. This allows for an investigation into whether colder climates (i.e., northern US)
faced more significant changes to DTR when compared to warmer climates (i.e., southern
US). Using the average longitude of each state, the data were also split into two sets to
represent the “24 most coastal states” and DC and the “24 most inner states”. Rather than
taking 12 states with the right-most longitude and 12-states with the left more longitude
to make up the “coastal states” split, land area was also accounted for, which resulted in
using the 18 right-most and 6 left-most states to make up the “coastal states”. All of the
remaining states were placed in the “inner states” set.

3. Results and Discussion
3.1. Analysis of Full Data Set

Figure 2 depicts the yearly average DTR over the 6-year span (from 2015 to 2020). The
DTR was calculated using the conventional approach of Tmax minus Tmin of the same day.
The highest DTR values were observed in years 2015 and 2016 with a decreasing trend
thereafter, up to and including 2018. In the preceding 5 years (from 2010 to 2014), as shown
in Figure 3, four of them had a higher DTR than in 2015–2016, indicating a general decadal
downward trend in yearly DTR.
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Figure 3. Yearly mean average DTR for years 1911–2020; data from 2010 to 2020 is collected by this
study, and data from 1911 to 2009 is scaled (by factor: 0.6043*DTR + 4.3184, to account for difference
in stations and number of stations per state used in the two studies) from data presented by Qu et al.
(2014) [42] based on data collected by this study from 2010 to 2012.

The trend of decreasing DTR from 2010 to 2018 may be attributable to global warming,
as long-range changes in the DTR have been linked to daily minimum temperatures
increasing faster than daily maximum temperatures (Roget and Khan, 2018) [21]. Notably,
from 2015 to 2016 and from 2019 to 2020 are considered periods of El Niño, whereas from
2017 to 2018 is considered a period of La Niña (Figure 4). These ENSO phenomena are
known to impact regional climates in the contiguous USA differently (Figure 5), so their
effect on DTR is also known to be regional. That is, in regions where ENSO leads to drier or
warmer weather, the DTR can rise, and conversely colder and wetter regions can see a DTR
decline. This is exemplified in the study by Gilford et al. (2013) [43] in the Southeastern
USA, who found that in that region higher DTR occurs more frequently in El Niño (due to
drier weather) and lower DTR occurs more frequently in La Niña (due to wetter weather).
Given that both El Niño and La Niña affect various parts of the contiguous USA differently,
their overall impact on the annual mean average DTR is not easily predictable. Possibly
either the declining DTR trend we see for 2016 to 2018, or the reversal of this trend pre-
pandemic between 2018 and 2019, could be at least in part attributable to the presence or
absence of ENSO events.
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Furthermore, there is a cycle that occurs approximately every 11 to 12 years that is
called the Schwabe solar cycle, which has been shown to have significant impact on climate
extremes, DTR excursions, and artic oscillation (You et al., 2013; Walsh and Patterson,
2022a and 2022b) [46–48], especially at certain points of each cycle. The cycle results
from an oscillation in the annual number of sunspots, which in turns affects the total
solar irradiance; the resulting climatic forcing is that sunspot occurrence maxima lead to
increases in temperature, and sunspot minima lead to decreases in temperature; hence, the
cycle results in various links to rainfall and snowfall-related effects (Walsh and Patternson,
2022c) [49]. One of the factors that could have led to the increase in the DTR in 2020 when
compared to 2019 is the Schwabe solar cycle. The 24th solar cycle ended in late 2019, when
the 25th cycle started. Between 2010 and 2019, the 24th solar cycle had a maximum in
sunspots between 2012 and 2014 and the number of sunspots started to decrease from 2015
to 2019, which coincides with the DTR drop from 2015 to 2018. In 2019 and 2020, however,
the cycle was at what is called a solar minimum which means that the sun had the least
number of sunspots. As such, it is concluded that the upticks in DTR in 2019 and to a
greater extent in 2020 were independent of the solar cycle. Hence, the Schwabe solar cycle
is thought to not have masked the effect of the pandemic on DTR, if such an effect were to
exist as we will further discuss.

It is important to recognize that global climatic phenomena are significant underlying
governing forces throughout the 6-year span of the study and may impact how we can
interpret the influence of the COVID-19 pandemic on the DTR. A basic mechanistic un-
derstanding of the atmospheric factors that control the space–atmosphere–surface energy
balance and thus affecting the DTR, helps to comprehend how changes in atmospheric
composition can be linked to human activities, and thus to the activities halted or re-
duced during the period of the pandemic. This can be accomplished by inspecting the
one-dimensional steady-state climate model composed of Equations (1) and (2) (Vanek and
Albright, 2008) [50].

Space-Atmosphere 1-D Energy Balance: (1 − αa − ta (1 − αs)) So ⁄4 + C (Ts − Ta) + σTs
4 (1 − ta

IR − αa
IR) − 2σTa

4 = 0 (1)

Atmosphere-Surface 1-D Energy Balance: ta (1 − αs) So ⁄4 − C (Ts − Ta) − σTs
4 (1 − αa

IR) + σTa
4 = 0 (2)

where α is the albedo; σ is the Stefan–Boltzman constant; t is the transmissivity; T is the
temperature; S is the solar flux; C is the convective heat transfer coefficient; the subscripts
s and a stand for surface and atmosphere, respectively; and the superscript IR stands for
longwave infrared radiation (parameters without subscript relate to shortwave ultravio-
let radiation).

The effect of pollutants on the energy balance, and thus on the surface temperature
(Ts) and the DTR, is accounted for changes in the atmosphere’s transmissivity and albedo;
gaseous pollutants absorb certain wavelengths of electromagnetic radiation (i.e., the GHG
effect), thus altering ta and ta

IR, and particulate pollutants absorb or reflect electromagnetic
radiation (similar to cloud cover effect), thus altering αa and αa

IR (Twomey et al., 1984; Jia
et al., 2020) [51,52]. Furthermore, several studies have concluded that DTR can be used as
an index of climate change as decreases in the DTR have been observed over the twentieth
century as a result of global warming (Braganza et al., 2004; Sun et al., 2019; Qu et al.,
2014) [42,53,54]. This is illustrated in Figure 3, where data from 1911 to 2020 show that the
10-year moving average has been moving downwards since 1971, and even more so since
1995. There is the presence of slight oscillations in the downward trend, which is indicative
that the DTR is susceptible to change when a smaller forcing factor, such as the pandemic,
overcomes the overall climate trend.

Fitting with the hypothesis, the DTR spikes in 2020. The increased DTR in 2020 may
have COVID-19 related reasons, such as decreased air and land travel and overall economic
shutdowns. An important aspect to note is that it is possible that the effect of the COVID-19
pandemic on the DTR may not happen immediately, that is, within the calendar year of
2020, since changes in climate can lag other changes in the environment (Ricke and Caldeira,
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2014) [55]. The effect of the pandemic may be shown in later years or be spread over more
than a single year.

Error bars depicting the standard deviation of the DTR for each year are added in
Figure 2. The aim of this is the show how the upper and lower limits of the error bars follow
the same trends as the mean. That is, an overall decreasing trend from 2016 to 2018, and a
spike in DTR in 2020. Additionally, the standard deviations give a sense of how variable
the DTR values are within a year, which makes sense, given how geographically large the
contiguous USA is.

Figure 6 depicts the monthly mean DTR for each of the six years. There is an observable
trend that the DTR is higher during summer months and lower during winter months. This
trend may be attributed to environmental factors such as sunlight hours and cloud cover,
which are factors known to impact DTR (Lauritsen and Rogers, 2012) [25]. These results are
fitting with other studies that found the maxima DTR were observed in spring and summer
months (Roget and Khan, 2018) [21]. There is a large degree of variability from year to year
for any given month, complicating the ability to reach very precise conclusions.
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Figure 6. Monthly mean average DTR for the years 2015–2020.

Yet, with respect to the pandemic, it is notable from Figure 6 that the DTR for nine
months of 2020 were greater than the same months in 2019; these were February, April, May,
June, August, October, November, and December. Furthermore, of these nine months, the
largest DTR differences between 2019 and 2020 occurred in February, April, May, November,
and December. April and May coincide with the first wave of COVID-19 cases in the USA,
and November and December coincide with the much larger third wave of cases that year
(Our World in Data, 2021) [56], as illustrated in Figure 7. The various states instituted far
more restrictions during these two waves than during the second summer wave that peaked
in July, which may explain their magnified DTR difference. November does coincide with
the month of most solar flare activity in 2020, as part of the commencement of the Solar
Cycle 25 (SpaceWeatherLive, 2020) [57]; hence, that could also partly explain the DTR
uptick that month.
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number of COVID-19 cases in the USA in 2020 (Source: Centers for Disease Control and Prevention
(CDC, 2021) [58]).
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In the study by Hu et al. (2021) [12], on a national level in China, the monthly mean
DTRs for the months of February, March, April, May, and June of 2020 are all much higher
than the values for the years from 2001 to 2019 under the status quo. Considering in that
study a 21st century anomaly, DTRs in all five of these months of the COVID-19 pandemic
are more than three standard deviations above the climatological mean DTR. For instance,
the DTR in April 2020 was 13.74 ◦C, which is 1.28 ◦C higher than the maximum value
recorded in the past and 2.01 ◦C higher than the month’s climatological norm (12.46 ◦C).
In contrast, with the exception of December 2019, monthly mean DTRs in the seven
months before the COVID-19 pandemic often lay within the climatological range (Hu
et al., 2021) [12]. DTRs in the Beijing and Chengdu regions were, during the five months
of the shutdown, from two to four standard deviations or more above the climatological
mean. DTRs in the Wuhan and Shanghai regions, in contrast, showed a clear increase of
two to three standard deviations from February to May of 2020, followed by a significant
decline compared to the prior level in June. The easing of limitations when the pandemic
eventually got under control was suggested by Hu et al. (2021) [12] to possibly be the cause.

Figure 8 depicts the yearly average DTR from a selection of 14 out of the 189 stations.
The graphs for the remaining stations are shown in Figures S1–S12 in the Supplementary
Materials. These figures show that spatially, there are clear variabilities in annual mean
DTR values across the contiguous USA. For example, in Figure S3, the Aztec Ruins Na-
tional Monument station in New Mexico has yearly DTR values that are about twice the
magnitude as those for the Barrington 3 SW station in Illinois, shown in Figure S1. These
station-by-station data do not provide meaningful trends related to the pandemic. For
various stations the year 2020 saw a spike in DTR, but for others did not. Therefore, others
mean of splitting the full data set according to environmental and anthropogenic factors
are further investigated in Section 3.3.
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Figure 8. Station-wise yearly average DTR for the years 2015–2020 from 14 out of 189 stations; other
stations data are provided in the Supplementary Materials.
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3.2. Analysis of Different DTR Calculation Approaches and Randomly Split Data for
Validity Check

Table 1 shows that the two randomly split sets of each year are very similar. This is
shown by the column ‘% of the difference compared to yearly average’, which statistically
shows there is no meaningful difference between the two sets (i.e., that the uncertainty of the
annual DTR values of the full set lies in the second decimal place and is less than ±0.05 ◦C).
This analysis is evidence that the data set utilized, consisting of 189 stations across the
contiguous USA, is large enough to represent the true mean DTR of the geographical
region with acceptable uncertainty. The standard deviation of the full set and the standard
deviation of the split sets are very similar, again confirming that the selected stations
represent well the climatic conditions across all states and DC. It is also noted that the
percent difference between sets is smaller than the percent deviation of the full set, meaning
the variability of the six years is larger than the variability between the two split sets.

Table 1. DTR calculations of random data splitting; the ratios of set difference to yearly average are
substantially smaller than the ratios of yearly average to 6-year standard deviation, indicating that
DTR changes from year to year are more significant than the uncertainty of the DTR values.

Year Average (◦C) Set 1 (◦C) Set 2 (◦C)
Difference1

(Avg.—Set 1)
(◦C)

Difference2
(Avg.—Set 2)

(◦C)

Set Difference
(Set 1–Set 2)
(Absolute)

(◦C)

Ratio Set
Difference:
Yearly Avg.

(%)

2020 11.88 11.90 11.87 −0.018 0.018 0.037 0.308%

2019 11.69 11.71 11.67 −0.021 0.021 0.042 0.356%

2018 11.56 11.57 11.55 −0.011 0.011 0.022 0.192%

2017 11.85 11.86 11.85 −0.003 0.003 0.005 0.046%

2016 12.01 12.03 11.98 −0.022 0.022 0.043 0.362%

2015 11.99 12.01 11.97 −0.022 0.022 0.044 0.371%

6-yr avg. 11.83 11.85 11.81

6-yr std. dev. 0.176 0.176 0.176

Ratio yearly avg.:
6-yr std.dev. (%) 1.49% 1.49% 1.49%

Figure 9 is a visual representation of the difference between the two randomly split
groups. Both data sets follow a very similar trend compared to Figure 2 over the 6-year span,
with similar values for each set in each year. Error bars depicting the standard deviation
of each set for each year were also added to Figure 9. Similar to Figure 2, the standard
deviation’s upper and lower limits follow the same trends as the mean for each year.
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Figure 9. Yearly mean average DTR for the years 2015–2020 randomly split into two sets; error bars
reflect the variation of DTR values in each yearly data set and are meant to be used for comparison of
end-values rather than for evaluation of statistical significance of DTR changes (see Section 3.2).

Table 2 demonstrates the annual DTR values calculated by four different approaches,
including the conventional method, as described in Section 2.2. The differences between
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the various DTR values calculated for each year are small, in the range of 0.013 to 0.036 ◦C,
which are smaller changes than the aforementioned estimated level of significance of 0.05 ◦C.
In fact, for the average of all six years, the largest difference between the conventional and
alternative approaches is 0.015 ◦C. This analysis does not lead to a conclusive indication of
which DTR method is most accurate (the conventional method, which fits the definition
of ‘diurnal’, is sound), but it does serve the purpose of providing additional confidence
that the data set trends are robust and differences between years are of the same order of
magnitude regardless of how DTR is defined.

Table 2. Calculations of four approaches to determine daily DTR (◦C).

Year Conventional Previous Tmin Next Tmin 3-Day Avg. Tmin

Largest Difference
vs. Conventional

(◦C Absolute)

2020 11.88 11.89 11.89 11.89 0.014

2019 11.69 11.70 11.69 11.70 0.013

2018 11.56 11.59 11.53 11.57 0.036

2017 11.85 11.83 11.89 11.87 0.032

2016 12.01 12.02 12.01 12.02 0.015

2015 11.99 12.01 11.99 12.01 0.022

6-yr avg. 11.83 11.84 11.83 11.85 0.015

3.3. Analysis of Environmental and Anthropogenic Factors
3.3.1. Annual Snowfall Amount

Figure 10a depicts the annual mean average DTR for the 6-year span split into two
groups depending on the average annual snowfall amount recorded in each state and
DC. The ‘Top 24’ set comprises the 24 states with the most snowfall (for the year of the
snowfall record utilized), while conversely the ‘Bottom 24’ set are the 24 states (plus DC)
that recorded the least snowfall; Figure 10b maps this classification. Figure 10a shows a
positive correlation between snowfall and DTR. This is contrary to what was expected, as
in the literature a negatively correlated precipitation with DTR (Bilbao et al., 2019) [22]
was found. Furthermore, environmental factors such as temperature and cloud cover
are associated with snow and have been shown to reduce DTR (Lauritsen and Rogers,
2012 [25]; Rahimzadeh et al., 2015 [24]) much the same as the contrail effect suggested by
Travis et al. (2002) [15]. The opposite trend showed in Figure 10a may be explained by
looking at the individual states within each set. For example, Illinois and Indiana, two
states in the ‘bottom 24’ half, have low DTRs that brought down the average for the split.
Conversely, Colorado and New Mexico, two states in the ‘top 24’ half, have DTRs much
higher than the average, which brought up the overall average for this split. Therefore,
individual states may have skewed the overall average, changing the trends that may have
been expected otherwise.
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Figure 10. (a) Yearly mean average DTR split according to annual snowfall amounts; (b) US map
illustrating the top 24 and bottom 24 states for annual snowfall amounts; (c) Yearly mean average
DTR split according to GDP per capita; (d) US map illustrating the top 24 and bottom 24 states for
GDP per capita; (e) Yearly mean average DTR split according to population density; (f) US map
illustrating the top 24 and bottom 24 states for population density; (g) Yearly mean average DTR
split according to mean state latitude; (h) US map illustrating the 24 most northern and 24 most
southern states (according to mean state latitude); (i) Yearly mean average DTR split according to
coastal distance of mean state longitude; (j) US map illustrating the 24 most coastal and 24 most inner
states (according to coastal distance of mean state longitude).

3.3.2. GDP per Capita

According to Figure 10c, the annual mean average DTR is consistently higher in the
‘bottom 24’ states for GDP per capita, and lower in the ‘top 24’ states and DC. This trend
correlates with the findings of studies that link economic activity and resulting air emissions
with lower DTR. Additionally, there is a more notable increase of +0.36 ◦C in the DTR
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in the ‘top 24’ states from 2019 to 2020, versus a far smaller increase of +0.04 ◦C in the
other group. Wealthier states were likely more affected by the COVID-19 pandemic as a
result of more impactful and widespread industrial activity and business shutdowns, more
airplanes grounded, and overall, more economic closures. Anecdotally, from Figure 10d, it
can also be commented that a larger number of states in the ‘top 24’ group had Democratic
party-controlled legislature in 2020, which could be a driving factor in the implementation
of more strict pandemic restrictions during 2020; though there are examples, if less frequent,
of Republican party-controlled state governments having been stringent with pandemic
restrictions. All these factors would contribute to decreased pollution during several
months of 2020, and as a result, a rise in the annual mean DTR in those regions.

3.3.3. Population Density

Similar to Figure 10a,c, the population density data split shown in Figure 10e shows
significant differences in the annual mean DTR of the ‘top 24’ versus the ‘bottom 24’ (here
DC in the ‘top’ group). The group with the most densely populated states has lower DTR
values compared to those of the least densely populated states. As population density,
economic activity, and air pollution are strongly correlated, this trend is in agreement. The
hypothesis, however, was that more densely populated states would observe a greater
impact from the pandemic due to increased disease transmission causing longer lockdowns.
However, this does not hold true when solely looking at DTR; the ‘top 24’ states and DC
did not see a rise in the DTR in year 2020 versus 2019 (–0.14 ◦C), while the ‘bottom 24’
group experienced a significant rise (+0.53 ◦C).

To identify correlations among the factors used to split the DTR data, four parameters
were additionally calculated: (i) ∆DTR2020–2019 (the difference between the DTR of 2020 and
2019 of each split set); (ii) ∆DTR2020_mean-2020 (the difference between the mean DTR of 2020,
11.88 ◦C, and the 2020 DTR of each split set); (iii) ∆DTRtop-bottom (the absolute value of the
difference between the DTR’s of each split set in each year); and (iv) 5-year (2015–2020)
and 4-year (2015–2019) averages of ∆DTRtop-bottom values for each factor. These values are
tabulated in Table 3 and shown in Figure 11. Most notably from Figure 11 the factor that
splits the data into the most different sets of states is the population density, while the two
sets of states based on snowfall amount have the smallest DTR differences. However, from
Table 3 it is concluded that snowfall amount and GDP per capita were the two factors that
managed to concentrate the DTR uptick states into one set, leaving the other set with nearly
constant DTR from 2019 to 2020.

Table 3. Correlations of split factors and factor sets in terms of year-over-year DTR differences
(∆DTR2020–2019) and intra-year differences between factor set mean and contiguous USA mean
(∆DTR2020_mean-2020).

Split Factors Factor Sets ∆DTR2020–2019 ∆DTR2020_Mean-2020

Snowfall amount Top 24 0.41 0.25
Bottom 24 and DC −0.01 −0.23

GDP per capita Top 24 and DC 0.36 −0.10
Bottom 24 0.03 0.11

Population density Top 24 and DC −0.14 −0.96
Bottom 24 0.53 0.99

Latitude 24 Most Northern States 0.48 −0.22
24 Most Southern States and DC −0.09 0.24

Longitude 24 Most Coastal States and DC 0.02 −0.48
24 Most Inner States 0.36 0.47
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The previous analyses suggest that the environmental and industrial factors, correlated
with the annual snowfall amounts and GDP per capita data, are more strongly correlated
with short-term climate changes, as indicated by the annual mean DTR, than with societal
factors such as population density. It is also possible that the population density data
split resulted in more concentrated regions being part of one group than the other. For
instance, Figure 10f has groups more evenly split between coastal and inlands regions than
Figure 10b,d. Cloud cover and pollution dispersion mechanisms in coastal regions of the
USA are expectedly more complex (e.g., affected by oceanic currents, ocean moisture, etc.)
than those in the flatter Midwest regions of the USA with fewer major water bodies; hence,
the anthropogenic effect on DTR may have been magnified in the latter. Global warming
is another important factor to consider. The states in the ‘bottom 24’ group in Figure 10f
are also those that have experienced the greatest maximum temperature anomalies in 2020
(versus the 20th century average), as shown in Figure 12. Hence, greater Tmax contributes
to a greater DTR in those regions.
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3.3.4. Latitude

Figure 10h shows how the US was split into northern and southern regions based
on average latitude. Figure 10g illustrates the average DTR for each set over the past
6 years showing that southern states consistently have a greater average DTR compared to
the northern states. This is consistent with various other studies that have shown colder
weather, which is seen in northern states, is associated with a lower DTR (Mall et al.,
2020 [26]; Qu et al., 2014 [42]). Looking specifically at 2020, the northern states showed an
increase in DTR from 2019, whereas the southern states’ DTR stayed fairly consistent from
2019 to 2020. This may indicate that northern and typically colder states, faced changes
during the pandemic that more greatly impacted the DTR. This trend is similar to the
trend of annual snowfall amount, where there is a substantial increase in DTR from 2019 to
2020 in the ‘top 24’ set which may be attributed to the same phenomena. That is, colder
states, typically northern states, rely on coal-based heating systems and with the pandemic
shutting down businesses and institutions there was a decreased need for heating and
coal (He et al., 2020) [60]. Thus, these states faced greater environmental changes that led
to an increased DTR. As these results are more consistent with conclusions found in the
literature, it may be splitting the data based on latitude is preferable over splitting via
annual snowfall amount, which showed the opposite trend. This may be attributed to the
fact that annual snowfall amount is less correlated to geographical location.

3.3.5. Longitude

Using the average longitude of each state and DC, the US could be split into two sets,
more coastal states and more inner states, to evaluate the impact of large bodies of water
on DTR. Figure 10i shows that the inner states consistently have a higher DTR. This is
consistent with studies on the maritime influence on DTR that shows coastal regions report
the lowest DTR, and the DTR increases with distance from the ocean (Scheitlin, 2013) [61].

Although there is a consistent difference between the average DTR of coastal states
versus inner states, there is no significant increase in DTR in the year 2020. This suggests
that the geographic location of the state bears little impact on how COVID-19 affects the
DTR, and rather environmental and anthropogenic factors have a greater influence.

3.4. Limitations of This DTR Versus Pandemic Study

Although this analysis produces novel and insightful results on the impact of restric-
tions put in place in response to COVID-19 on regional and continental climates, it is
worthwhile acknowledging the limitations and uncertainties that exist and that can be
topics for further study. Firstly, only one climatic factor (temperature), and one calcu-
lated value (DTR), were used in this analysis, whereas climate and its changes of interest
also encompass other factors such as the length of dry or wet seasons, the frequency of
floods, hurricanes and tornados, the rate of glacier melt, among many other effects of
environmental and societal concern. It is not possible to use DTR alone to understand
if the pandemic restrictions had other climatic and environmental impacts, and many
studies on various factors are certain to be performed for years to come. Another important
limitation of this study is that the temperature data were obtained from weather station
data, which is limited to a few locations per state. There is likely remote sensing climate
data (Tomlinson et al., 2011) [62] that can be used for the temporal period of interest to
investigate more thoroughly if the DTR effects observed from station data matches what
real data also recorded. Temperature data collected from the weather stations may have
an uncertainty associated with them; however, with the large volume of data collected,
these small uncertainties will be insignificant in this analysis. Finally, as discussed earlier,
with climate change accelerating, the deconvolution of what changes in DTR are due to
ongoing natural and anthropogenic climate change versus other forcing effects becomes
more important; thus, data analysis and modeling techniques to enable this discernment
accurately are needed.
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4. Conclusions

After the emergence of COVID-19, there were significant lockdowns across the world
leading to economic closures, limited social gatherings, and decreased travel. Limiting
certain economic sectors, such as transport and other heavy industries, can directly affect
the environment. Though COVID-19 has had vast negative impacts on the societal and
economic lives of people, it has led to some environmental improvement, if only temporary,
of scientific interest.

Limited economic and other activities due to COVID-19 in the first six to nine months
of 2020 created an opportunity to analyze the DTR during this period, much as Travis et al.
(2002) [15] did to study the role of contrails on DTR. In the present study, data from 189
weather stations from 48 states and DC of the contiguous USA were considered. Data
from 2020 were primarily compared with identical data from the preceding ten years (with
a focus on the preceding five years) and to historical trends since 1911. A data splitting
method was employed to show that the data set was large and diverse enough to represent
the geographical area of study, seeing as yearly trends of the split sets were in accordance
with those of the full set. The results show that there was a noticeable increase in DTR in
2020 compared to the two previous years, reversing a trend of a reducing DTR that started
in 2016, linked, at least in part, to the influence of global warming, to the occurrence of La
Niña, and to the latter stages of the 24th Schwabe solar cycle with declining solar radio flux.
The results of the present study are supportive, even if not conclusive, of the hypothesis that
lockdowns and decreased travel increased the DTR as a result of reduced air emissions and
thus a reduction in the effect of particulates and aerosols on the atmospheric heat balance.
Similar conclusions, with respect to the effect of the pandemic on air emissions in other
regions and contexts, have been recently reached by works such as those of Mahato et al.
(2020) [41], Aboagye et al. (2021) [8], Hu et al. (2021) [12], and Sekar et al. (2021) [40]. Most
notably, Hu et al. [12] found that monthly DTR values between February and June 2020
were greater than the climatological mean DTR by a statistically significant measure. The
present work is the first to investigate the link of the pandemic restrictions and slowdown
to the DTR in the contiguous USA.

It is known that DTR as a climate indicator can be affected by underlying factors other
than anthropogenic impacts (such as the pandemic), most notably environmental (e.g., El
Niño, La Niña, and the Schwabe solar cycle) and geographical factors. To identify if 2020
is a particularly notable year in terms of its annual mean average DTR, other methods
of data splitting (to generate two data sets for comparison) were used based on annual
snowfall amounts, GDP per capita, and population density per state (and DC). This allowed
for the opportunity to investigate if the pandemic’s effect on DTR could be magnified in
certain regions of the contiguous USA according to their environmental, industrial, or
societal classification. Most notably, by looking at the DTR changes from 2019 to 2020,
for both annual snowfall amounts and GDP per capita, the ‘bottom 24’ groupings saw
much smaller DTR changes than the ‘top 24’ groupings. The reason for the increase in
DTR in colder climates in 2020 is theorized to be linked to the pandemic-related economic
closures that lowered the need for coal-based heating systems, thus resulting in reduced air
emissions. The increase in DTR in wealthier states in 2020 may also be attributed to greater
pandemic-related economy and industry shutdowns, leading to less air pollutants and thus
a rise in the DTR. Population density was not found to yield meaningful trends due to
a strong link of this classification to geographical factors (coastal versus inland location
of states).

Nonetheless, considering historical trends since 1911, caution should be exercised
when making causal conclusions related to year-on-year changes in the mean DTR over
specific areas. The DTR change detected in 2020 is within past mean DTR variations that
occurred over approx. 12-year cycles that match the Schwabe solar cycles. Climatic effects
such as El Niño, La Niña, and the prolonged trend of global warming reduce the confidence
in the perceived effect of the pandemic. A conclusive result can only be obtained with
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complex climate modeling capable of accounting for various short- and long-order natural
and anthropogenic forcings that can drive the mean DTR up or down in any given year.

Notwithstanding its limitations, this study serves to exemplify that the DTR, despite
being a simple climate indicator, has a role to play as a tool in sensing major anthropogenic
impacts, such as in the case of the COVID-19 pandemic, even if more comprehensive
climate modeling is needed to confirm its indications. This study complements others
that have verified how the pandemic has had widespread impacts on human society well
beyond the healthcare sector and human lives. The pandemic has had environmental
impacts, even if only temporary, and the study of these phenomena can help to advance
our understanding of the climate, in an age where climate change mitigation will be a major
societal challenge for decades to come.
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