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Abstract: Alpine grassland in the Qinghai-Tibet Plateau is known to be sensitive to climate change. To
quantify the impacts of climate change on alpine ecosystems at small scale, Wulan County in Qinghai
Province was taken as the research object, and the relationships between vegetation dynamics and
climate changes and the direct and indirect effects of climate factors on vegetation dynamics were
analyzed using the methods of ordinary least squares, Pearson correlation analysis and path analysis,
on the basis of MOD13A3 data and meteorological data from 2001 to 2020. The results showed
that the Normalized Difference Vegetation Index (NDVI) in the growing season of the county and
5 vegetation types showed similar fluctuation processes and relationships with climate factors during
the study period. The growing season NDVI (GSN) of shrubland and desert steppe respectively
were the highest and lowest. The yearly mean values of GSN over the county ranged from 0.151
to 0.264, and increased extremely significantly with years at a rate of 0.0035 yr−1. Spatially, GSN
gradually decreased from northeast to southwest, and 97.2% of the county area showed an increasing
trend in GSN. With years, growing season evaporation (GSE) decreased extremely significantly
at a rate of 29.6 mm yr−1, while growing season average relative humidity (GSARH) showed a
significant increasing trend at a rate of 0.16% yr−1. The correlations and effects of GSE, GSARH, and
growing season precipitation (GSP) on vegetation dynamics were weakened in turn. GSE was the
main direct effect factor, and the latter two were the indirect effect factors through GSE. The total
contribution rates of GSE, GSARH and GSP to vegetation dynamics was about 78.0%. However,
growing season average temperature (GSAT) had little effect on vegetation dynamics. This study
provides information for understanding the characteristics of vegetation dynamics of alpine grassland
in the Qinghai-Tibet Plateau at a small scale.

Keywords: alpine grassland; NDVI; climate change; growing season; path analysis; Qinghai-
Tibet Plateau

1. Introduction

Global climate change has an extremely significant impact on surface vegetation
cover. At the same time, the changing characteristics of surface vegetation cover will
have corresponding feedback on regional climate and global climate systems [1–4]. As a
key component of the terrestrial ecosystem [5,6], grassland is one of the most common
vegetation types, providing various ecosystem and social service functions [7–9]. With a
total area of 2.38 million square kilometers of grasslands in Northern China (about 9.92%
of the world’s total grasslands), they are not only the important strategic resources and
the basis for developing animal husbandry production in China, but also the important
ecological defense line to maintain ecological balance [10,11]. Therefore, understanding
the vegetation dynamics of grassland and exploring its response to climate factors are very
important and necessary for the protection of the grassland ecosystem in China.

The Qinghai-Tibet Plateau, known as the “Third Pole” of the earth, is an ecological
barrier for China and even Asia dominated by alpine grassland [12]. Alpine grassland
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covers more than 66% of the area of the Qinghai-Tibetan plateau with the highest altitude
and the largest area in the world, and plays an important role in biodiversity maintenance,
carbon fixation and regional climate regulation [13,14]. Nevertheless, alpine grassland
in the Qinghai-Tibet Plateau has a simple composition of vegetation community and suf-
fers adverse living conditions, such as high altitude, barren land, lack of available water
resources and sparse vegetation distribution [15–17], thus the stability of the ecosystem
in alpine grassland is poor, and the vegetation growth is more sensitive to regional cli-
mate change [18–20]. With the continuous progress of earth observation technology and
observation means, the research contents and methods for vegetation on climate change
are becoming more and more diverse [21–23]. The Normalized Difference Vegetation In-
dex (NDVI), a widely used indicator of vegetation cover, is derived from remote sensing
and has been shown to be a sufficiently stable indicator for monitoring the intra- and
inter-annual variations of vegetation greenness [24–27]. And the growing season NDVI
(GSN) is often used by scholars to examine the relationships between vegetation dynamics
and climate changes for alpine grasslands in the Qinghai-Tibet Plateau, for the reason
that GSN has more accurate expression significance for vegetation dynamics [24,26,28–30].
Guo et al. [28] reported that a decrease in growing season precipitation mainly affects the
vegetation ecosystems with low precipitation and worse vegetation condition, however, an
increase in growing season temperature could improve vegetation growth conditions in
some higher/rugged regions of the Yellow River, China, on the basis of GSN generated by
the 1 km advanced very high-resolution radiometer (AVHRR) NDVI data during 1990–2000.
Hu et al. [29] concluded that water condition and temperature were found to be the most
important factors affecting the variation of GSN in both the semi-arid and the semi-humid
areas in the three-river-source region using NOAA/AVHRR 10-day composite NDVI data
during 1982–2000. Bai et al. [30] found that climate warming benefits alpine vegetation
growth in Three-River Headwater Region since 2000 with GSN acquired from multiple
high-resolution satellite data. Huang et al. [31] reported that the effects of different climatic
factors on alpine vegetation growth are significantly different in the Tibetan Plateau with
the increase of the study period, based on GSN calculated from the MOD09A1 data product
of a moderate-resolution imaging spectroradiometer (MODIS).

Throughout the above studies, most of them focus on large-scale study areas, such as
headwater of the Yellow River, Three-River Headwater Region and Qinghai-Tibet Plateau.
Few studies, however, have reported the quantitative analysis of the relationship between
vegetation dynamics and climate change in the alpine grassland of the Qinghai-Tibet
Plateau at a small scale. The climate characteristics in large-scale areas are more complex
and changeable than those in small-scale areas because the climates have significant spatial
heterogeneity with lots of microclimates in large-scale areas. For the microclimate differ-
ences, it is difficult to accurately identify the driving effects of climate change on vegetation
dynamics in large-scale study areas [30,32]. While in small-scale areas, the spatial difference
of climate can be almost ignored. And compared with the studies for alpine grassland at
large scales, small-scale studies could reveal the driving mechanism of climate change on
vegetation dynamics more deeply [33]. In addition, previous studies mostly focused on the
impact of temperature and precipitation on vegetation change in alpine grassland, while
less on other climate factors. The impact of multiple climate factors and their direct and
indirect effects on vegetation dynamics are more complex and cannot be ignored, which
are still not clear enough and need to be further explored.

Based on the above analysis, Wulan County, located in the northeast of the Qinghai-
Tibet Plateau, was selected as the typical study area to quantitatively detect the effects of
climate change on vegetation dynamics in alpine grassland of the Qinghai-Tibet Plateau at
a small-scale area. Wulan County is rich in alpine grassland, the area of which accounts for
about 88% of the county area. It is a typical alpine grassland pasture with animal husbandry
as the main economic pillar. Affected by the Qaidam Basin Desert, the grassland ecosystem
of Wulan County is more fragile and sensitive to climate change [34]. Besides, a county
is the smallest unit for the management, utilization, and protection of alpine grassland
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in China [35]. This work is necessary for the utilization and sustainable development of
alpine grassland in Wulan County. At the same time, it can also provide reference for
the research of alpine grassland protection in other small regions of the Qinghai-Tibet
Plateau. In order to explore the effects of the interaction of multiple climate factors on the
vegetation dynamics, the Path analysis was introduced into our study, which is widely used
for variable analysis in medicine, economy, biology, agriculture and other fields with good
identification effects [2,36,37]. It is a technique to determine to what extent the independent
variable affects directly the dependent variable, and to what extent the independent variable
affects the dependent variable indirectly through the other independent variable. Path
analysis can provide a theoretical basis for scientific statistical decision-making, which
is useful for quantitatively evaluating the driving effects of temperature, precipitation,
evaporation, and average relative humidity on GSN, so as to explore the main driving
factors of vegetation growth in alpine grassland of the Qinghai-Tibet Plateau at small scale.
Overall, the objectives were to: (i) accurately describe the change features of vegetation in
alpine grasslands from 2001 to 2020 in the study area; (ii) assess the variations of 4 climate
factors in alpine grasslands from 2001 to 2020 in the study area; and (iii) quantitatively
identify the relationship between climate factors and vegetation dynamics, and the direct
and indirect effects of climate factors on vegetation dynamics in the study area.

2. Materials and Methods
2.1. Study Area

Wulan County (97◦01′ E–99◦27′ E, 36◦19′ N–37◦20′ N) governs four towns with a
total population of about 40,000 and covers a total area of 1.29 × 104 km2 with an average
altitude of about 4000 m in Qinghai Province, China (Figure 1). It is one of the main study
areas of our team’s National Key Research and Development Program of China (grant
number 2016YFC0400301), with strong availability and reliability of basic data, providing
a good foundation for this study. Wulan County has a typical dry continental climate
characterized by a short frostless period, sufficient sunshine, a large temperature difference
between day and night, as well as rain and heat in the same season. The average annual
precipitation is 187.5 mm, the average annual temperature is 1.6–3.3 ◦C, and the average
annual water surface evaporation is 2000–3000 mm. The area of grassland in Wulan County
is about 112.8 × 104 ha, and the dominant vegetation types are shrubland (8.9%), steppe
(18.4%), meadow (11.7%), and desert steppe (57.0%), while forest, moor, cultural vegetation,
and other alpine vegetation covering low size are merged into ‘rest vegetation’ (4.0%)
(Figure 2a) [38]. We conducted the on-site investigations on the grassland in Wulan County
in 2018 and 2020, respectively. Figure 2b,c shows photos taken during the investigations,
showing the two vegetation types and that sheep are the main livestock in the pastoral
area of Wulan County. Desert steppe covers the largest area in Wulan County containing
the western desert areas with sparse vegetation. The permanent non-vegetation area, e.g.,
water bodies, glaciers, and snow, were excluded in this study.

2.2. Data Collection and Pre-Processing

Vegetation status over the study area is measured in terms of the Normalized Differ-
ence Vegetation Index (NDVI), which is a widely used proxy of vegetation canopy greenness.
In this study, the moderate-resolution imaging spectroradiometer MODIS-derived monthly
composite product (MOD13A3) with a spatial resolution of 1 km was selected to generate a
long time series of NDVI dataset from 2001 to 2020, which was pre-processed and released
by the Atmosphere Archive and Distribution System (LAADS) of the National Aero-
nautics and Space Administration (NASA) (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 9 August 2021).

https://ladsweb.modaps.eosdis.nasa.gov/
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Meteorological data from 2001 to 2020, including temperature, precipitation, evapora-
tion, and average relative humidity, were collected from 3 meteorological stations, namely,
Wulan Station, Chaka Station, and Dulan Station, and the data were available from China
Meteorological Data Service Center (http://data.cma.cn/, accessed on 9 August 2021).

As we focused on vegetation change among annual growing seasons, we defined
the yearly period of April-October as the plant growing season. The NDVI data were
extracted from raw hierarchy format (HDF) images and converted into TIFF format with a
new projection coordinate of WGS_1984_UTM_Zone_47N by using HDF-EOS to GeoTIFF
Conversion Tool (HEG). The monthly NDVI raster images of the study area in the growing
season from 2001 to 2020 were obtained by using the “Mask extraction” tool of ArcGIS
combing with Python. The annual NDVI images were composited based on the monthly
NDVI raster data in the growing season with the method of maximum value composite
(MVC) [39,40]. Subsequently, the growing season NDVI (GSN) data of the county and
all vegetation types were generated by calculating the mean value of pixel NDVI for the
corresponding areas [41]. Considering that the spatial scale of the study area is a county,
the climate in Wulan County was regarded as a single and uniform microclimate in this
study. Growing season average temperature (GSAT), precipitation (GSP), evaporation

http://data.cma.cn/
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(GSE), and average relative humidity (GSARH) annually from 2001 to 2020, as well as
multi-year mean values of average temperature (MAT), precipitation (MP), evaporation
(ME), and average relative humidity (MARH), were calculated for further analysis based
on the monthly meteorological data calculated by Voronoi diagram method [36].

2.3. Study Method

The ordinary least squares method and Pearson correlation analysis were employed
to explore the temporal dynamics of growing season NDVI (GSN) and climate factors
and detect the relationships between them [30,42–45]. Then, we further evaluate the
direct and indirect effects of climate variables on vegetation GSN with the method of path
analysis. Path analysis was proposed by American geneticist Sewall Wright in 1921. By
decomposing the apparent direct correlation, the correlation coefficient between causal
variables can be divided into direct effect (direct path coefficient) and indirect effect (indirect
path coefficient), so as to study the data structure of causality and analyze the direct and
indirect importance of independent variables to dependent variables. The principles of
path analysis are as follows.

For an interrelated system, if there is a linear relationship between a dependent
variable and independent variables, the regression equation is:

y = a0 + a1 × x1 + a2 × x2 + · · ·+ am × xm (1)

where y is the dependent variable, i.e., GSN.; xm is the independent variables, i.e., climate
factors, and m is the number of independent variables.

The effect of each variable on the dependent variable can be characterized by the path
coefficient, which can be expressed as:

1 rx1x2 · · · rx1xm

rx2x1 1 · · · rx2xm
...

...
. . .

...
rxm1 rxmx2 · · · 1




a1
a2
...

am

 =


rx1y
rx2y

...
rxmy

 (2)

where rxixj is the simple correlation coefficient of the variables xi and xj, i, j ≤ m; ai is the
direct path coefficient between the independent variable xi and dependent variable y, that
is, the partial correlation coefficient after the standardization of xi and y, indicating the
direct effect of xi on y; rxixj × aj is the indirect path coefficient that indicates the indirect
effect of xi on dependent variable y through xj; ∑

i 6=j
rxixj × aj represents the total indirect

effect of xi on the dependent variable y through other variables; rxiy is the simple correlation
coefficient between the independent variable xi and dependent variable y; ai × rxiy is the
contribution rate of independent variable xi on dependent variable y.

3. Results
3.1. Vegetation Dynamics Analyzed by Growing Season NDVI

The yearly changes in growing season NDVI (GSN) of the county and each vegetation
type showed similar trends of wavelike increase with consistent fluctuation processes from
2001 to 2020, and their GSN values ranking from high to low were shrubland (0.385 ± 0.052),
rest vegetation (0.365 ± 0.045), meadow (0.327 ± 0.032), steppe (0.258 ± 0.042), county
(0.222± 0.029) and desert steppe (0.153± 0.020) (Figure 3). GSN of the whole county ranged
from 0.151 (2001) to 0.264 (2012) and demonstrated an extremely significant increasing trend
with an increasing rate of 0.0035 yr−1 over the study period. Similarly, GSN of different
vegetation types also had extremely significant increasing trends and their increasing rates
were shown in Table 1.
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Figure 3. (a) Yearly changes in growing season NDVI (GSN) of Wulan County and each vegetation
type in Wulan County from 2001 to 2020; (b) Distributions of GSN values from 2001 to 2020. CT,
SH, ST, ME, DS, and RV represent county, shrubland, steppe, meadow, desert steppe, and rest
vegetation, respectively.

Table 1. Changing trend classification of growing season NDVI for different vegetation types from
2001 to 2020.

Vegetation Type Slope (yr−1) R2 p-Value Description

Shrubland 0.0058 0.426 0.0018 Extremely significant increase
Rest vegetation 0.0049 0.420 0.0020 Extremely significant increase

Meadow 0.0034 0.399 0.0028 Extremely significant increase
Steppe 0.0049 0.463 0.0009 Extremely significant increase

Desert steppe 0.0026 0.597 0.0001 Extremely significant increase

The multi-year mean values of GSN, ranging from 0.027 to 0.717, had obvious spatial
heterogeneity and gradually decreased from northeast to southwest in the study area
(Figure 4). The low values of GSN between 0 and 0.1 accounted for 17.0% of the total area
and were mainly distributed in the western desert region; GSN between 0.1 and 0.2 had the
highest proportion, about 40.0% of the total area, and the primary vegetation type was the
desert steppe, which mainly distributed in the middle and southeast of the county; GSN
over 0.2 were mainly distributed in the northeast of the county with a proportion of 42.6%
of the total area. GSN changes in individual pixels over the study period were fitted by the
method of ordinary least squares (Figure 5). The fitting slope ranged from −0.016 to 0.032,
and decreased gradually from northeast to southwest as a whole; the area with GSN fitting
slope greater than 0 accounted for 97.2% of the total, indicating that the vegetation covers of
almost the whole county were in the process of improvement, even in the desert areas at the
northwest of the county. The vegetation dynamics were divided into 6 changing patterns
based on the fitting slope and significance (Figure 6), namely, Extremely significant increase
(ESI, Slope > 0 and p < 0.01), Significant increase (SI, Slope > 0 and 0.01 ≤ p < 0.05),
Non-significant increase (NSI, Slope > 0 and p ≥ 0.05), Non-significant decrease (NDI,
Slope < 0 and p ≥ 0.05), Significant decrease (SD, Slope < 0 and 0.01 ≤ p < 0.05),
Extremely significant decrease (ESD, Slope < 0 and p < 0.01). Approximately 53.9% of the
total area showed ESI and 22.5% was SI from 2001 to 2020 and their corresponding pixels
were evenly distributed throughout the county; for different vegetation types, about 80% of
shrubland, steppe, and desert steppe were ESI and SI, while meadow and rest vegetation
were about 50% and 60%, respectively.
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3.2. Characteristics of Climatic Factors

Monthly variations of meteorological factors in the study area showed that temper-
ature, precipitation and relative humidity reached the peak in July, while evaporation
reached the largest in April; over the vegetation growing season, average temperature
was 2.7 times of annual average temperature, precipitation accounted for 94.0% of annual
precipitation, evaporation was 75.8% of annual evaporation, and average relative humidity
was significantly higher than that in non-growing season (Figure 7).
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The yearly changes in climate factors over the growing season showed different
variation processes (Figure 8). Growing season average temperature (GSAT) ranged from
10.0 ◦C to 11.6 ◦C with a mean value of 10.5 ◦C, the minimum and maximum value appeared
in 2020 and 2016, respectively; growing season precipitation (GSP) ranged from 118.9 to
299.6 mm with a mean value of 220.9 mm, and the minimum and maximum value appeared
in 2001 and 2018, respectively; growing season evaporation (GSE) was in the ranges of
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944.2–1697.4 mm with a mean value of 1183.2 mm, and the minimum and maximum
value appeared in 2019 and 2001 respectively; growing season average relative humidity
(GSARH) was between 42.1% and 50.0% with a mean value of 46.1%, and the minimum
and maximum value appeared in 2001 and 2019, respectively. The general linear regression
analysis of the 4 climate factors revealed that the changing processes of GSAT and GSP had
insignificant increase or decrease trends; GSE decreased extremely significantly with the
year having a reduction rate of 29.6 mm yr−1 (R2 = 0.780, p = 0), and the GSE in 2020 had
decreased by 786 mm compared with 2001; GSARH showed a significant increasing trend
with an increase rate of 0.16% yr−1 (R2 = 0.237, p = 0.030).
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3.3. Relationships between GSN Change and Climate Factors

The Pearson’s correlation analysis illustrated high correlations among GSP, GSE,
and GSARH, while low correlations between GSAT and other 3 climate factors; fur-
thermore, GSN of the county and 5 vegetation types exhibited evident relationships
with GSP, GSE, and GSARH (Figure 9). GSP showed a significant negative correlation
with GSE (r = −0.51, p < 0.05), while a significant positive correlation with GSARH
(r = 0.54, p < 0.05); and there was an extremely significant negative correlation be-
tween GSE and GSARH (r = −0.58, p < 0.01). This indicated that the climatic factors were
mutually affected. As the above result that GSN of the county and different vegetation
types had similar fluctuation process with years, GSN of the county and different vegetation
types also had similar relationships with climate factors. GSN trends of the county and the
5 vegetation types had no obvious correlation with GSAT, extremely significant negative
correlation with GSE (−0.89 < r < −0.81, p < 0.01), and extremely significant positive
correlation with GSARH (0.71 < r < 0.76, p < 0.01). For GSP, GSN trends of the county,
shrubland, steppe, meadow, and desert steppe exhibited an extremely significant positive
correlation with it (0.59 < r < 0.61, p < 0.01), while that of rest vegetation was a significant
positive correlation with it (r = 0.56, p < 0.05).

According to the Path Analysis, the direct and indirect effects of climate factors on
vegetation dynamics were revealed (Table 2). For the county and 5 vegetation types,
GSE had the maximum absolute values of direct path coefficients on GSN, ranging from
0.559 to 0.663, which were significantly higher than its absolute values of indirect path
coefficients through other climate factors; moreover, the contribution rates of GSE to
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vegetation dynamics were also the largest, ranging from 42.4% to 58.8%; it can be seen
that GSE was the primary climate factor affecting vegetation dynamics, and its effect on
desert steppe was the most prominent. GSARH had the sub-maximum absolute values of
direct path coefficients (0.197–0.329) on GSN but the maximum absolute values of indirect
path coefficients through GSE (0.303–0.382), and the contribution rates of GSARH ranged
from 13.9% to 25.0% and ranked second, that is, GSARH was the second important climate
factor affecting vegetation dynamics and its effects was mainly generated through GSE.
The effect of GSP on GSN was mainly through the indirect effect of GSE, because the
absolute values of its indirect path coefficients through GSE ranked second with the range
of 0.268–0.338, however, the contribution rate of GSP on vegetation dynamics were only
3.1%–10.2%. GSAT had low absolute values of direct and indirect path coefficients as well
as contribution rates, indicating that the direct and indirect effects of GSAT on vegetation
dynamics both were weak.
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Figure 9. Correlation analysis between growing season NDVI (GSN) and 4 climatic factors over
growing season. CT, SH, ST, ME, DS and RV represent county, shrubland, steppe, meadow, desert
steppe and rest vegetation, respectively. The symbols below the diagonal were the correlation
coefficient, and the symbols above the diagonal were the corresponding significance. * and **
represented a significant relationship at p = 0.05, p = 0.01 level, respectively.
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Table 2. Path analysis between growing season NDVI and climate factors.

Type Factor
Direct Path
Coefficient

Indirect Path Coefficient Contribution
Rate (%)GSAT GSP GSE GSARH Total

County

GSAT −0.150 −0.018 −0.103 −0.098 −0.219 5.5
GSP 0.119 0.022 0.315 0.147 0.484 7.2
GSE −0.617 −0.025 −0.061 −0.157 −0.243 53.1

GSARH 0.273 0.054 0.064 0.356 0.474 20.4

Shrubland

GSAT −0.160 −0.021 −0.093 −0.101 −0.215 6.0
GSP 0.139 0.024 0.285 0.152 0.461 8.4
GSE −0.559 −0.027 −0.071 −0.163 −0.261 45.8

GSARH 0.283 0.057 0.075 0.322 0.454 20.9

Steppe

GSAT −0.195 −0.025 −0.102 −0.070 −0.197 7.6
GSP 0.167 0.029 0.311 0.106 0.446 10.2
GSE −0.610 −0.032 −0.085 −0.114 −0.231 51.3

GSARH 0.197 0.070 0.090 0.352 0.512 13.9

Meadow

GSAT −0.112 −0.022 −0.088 −0.116 −0.226 3.8
GSP 0.144 0.017 0.268 0.174 0.459 8.7
GSE −0.526 −0.019 −0.073 −0.187 −0.279 42.4

GSARH 0.324 0.040 0.078 0.303 0.421 24.2

Desert
steppe

GSAT −0.114 −0.011 −0.110 −0.103 −0.224 3.9
GSP 0.076 0.017 0.338 0.155 0.510 4.5
GSE −0.663 −0.019 −0.039 −0.166 −0.224 58.8

GSARH 0.288 0.041 0.041 0.382 0.464 21.7

Rest
vegetation

GSAT −0.194 −0.008 −0.096 −0.118 −0.222 8.1
GSP 0.055 0.029 0.294 0.177 0.500 3.1
GSE −0.577 −0.032 −0.028 −0.190 −0.250 47.7

GSARH 0.329 0.069 0.030 0.333 0.432 25.0

Notes: GSAT, GSP, GSE, and GSARH represent Growing Season Average Temperature, Growing Season Precipita-
tion, Growing Season Evaporation, and Growing Season Average Relative Humidity, respectively.

4. Discussion

The Normalized Difference Vegetation Index (NDVI) in growing season is widely
used to explore the vegetation dynamics of grasslands [24–27,46]. In this study, the annual
mean values of the growing season NDVI (GSN) in Wulan County are obviously different
from previous studies at large spatial scales. The multi-year mean values of GSN in Wulan
County are significantly lower than the results obtained by Dai et al. [47] in Qinghai
Province from 2000 to 2015 (0.37–0.42), Huang et al. [31] in Qinghai Plateau from 2001 to
2017 (0.48–0.51), and Zhang et al. [48] in northern Tibet (0.112–0.492). The mean reasons
are that Wulan County is located at the eastern edge of Qaidam Basin Desert, where
the soil texture is mostly sandy soil and the vegetation is sparse. Desert grassland, the
dominant grassland type, with low GSN accounts for more than half of the area of the
county, resulting in the obviously low vegetation GSN of the whole county. The values
reported by Bai et al. [30] were in the range of 0.232–0.266 from 1982 to 2015 in the Three-
River Headwater Region, close to the results of this study, but the minimum value was
significantly higher than that in Wulan County. On the one hand, due to the difference in
vegetation types, Wulan County is dominated by desert steppe with low GSN that governs
the lowest level of GSN. On the other hand, the research period in Bai et al. [30] is longer
and spans two centuries. The increase of population and livestock led to over reclamation
and overgrazing, resulting in the expansion of grassland degradation and low GSN in
the Three-River Headwater Region during 1982–2000, then gradually improved with the
implementation of a series of ecological recovery programs after 2000 [49–51].

For temporal trends, the overall increasing trend of GSN in Wulan County is consistent
with the above reports. However, the increasing rate of GSN in Wulan County was
significantly higher than those for Qinghai province [47], Northern Tibet [48], and Qinghai-
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Tibet Plateau [31,52], but a little lower than that for Three-River Headwater Region [30].
The scale of the study area is related to the complexity of regional vegetation community
composition, the determination of the duration of vegetation growing season, the difference
of climate and environmental conditions, etc. Thus, it had a nonnegligible impact on the
regional GSN level and its changing rate in alpine grassland. Of course, there were some
other impacting factors, such as the study period, the type and resolution of remote sensing
data, the data processing methods as well as the implementation of a series of ecological
restoration projects. With regard to the spatial distribution of GSN in Wulan County, the
spatial heterogeneity was mainly explained by the distribution of vegetation types. The
shrubland, steppe, meadow and rest vegetation with high values of GSN were mostly
distributed in the northeast and a small amount in the southeast and middle of the county,
while the desert steppe with low values of GSN was mainly distributed in the Midwest
of the county and gradually sparse with the decrease of latitude. In addition, 97.2% of
GSN showed an increasing trend, and 76.4% exhibited a significantly increasing trend
with even distribution throughout the county. This indicated that the improvement of
vegetation coverage was obviously better than that in Qinghai Province [47] and Qinghai-
Tibet Plateau [31,52].

The area of Wulan County accounts for only 0.52% and 1.85% of the Qinghai-Tibet
Plateau and Qinghai province, respectively [53,54]. The climate in Wulan County was
relatively uniform and unique and was inconsistent with those reported by several previous
studies at larger spatial scales [30,53,55–57]. In particular, the change of temperature is
obviously in disagreement with the overall rising trend of temperature in the Qinghai-
Tibet Plateau [58,59]. These results suggest that relatively small-scale areas may undergo
significant changes in climate [30,60]. As for the effects of multiple climatic factors on
vegetation growth, our results showed that growing season evaporation (GSE) and growing
season average Relative Humidity (GSARH) could better explain the vegetation dynamics
than growing season average temperature (GSAT) and growing season precipitation (GSP)
at small scale. Vegetation dynamics had an extremely significant negative correlation with
GSE, while had extremely significant positive correlations with GSARH and GSP. The path
analysis indicated that GSE was the direct factor affecting the vegetation growth, while
GSARH and GSP were the indirect factors mainly through GSE. Wulan County is located
in the arid climate area in the northeast of the Qinghai-Tibet Plateau, the evaporation is
much higher than the precipitation, and the vegetation growth mainly depends on the
available water [51,61]. When the GSP and GSAT remain relatively stable, the continuous
decline of GSE slows down the dissipation of precipitation and soil moisture and increases
the average relative humidity, indicating that the climate in Wulan County is developing
towards warm and humid [58,62]. It is supposed that decreasing GSE will increase alpine
grassland GSN due to easing water constraints and improving water use efficiency on
vegetation growth [2,63]. Describing it differently, the increase of GSARH and GSP could
limit GSE and form advantageous climatic conditions for the restoration of alpine grassland.
Moreover, the total contribution rates of GSE, GSARH and GSP to vegetation dynamics
was only about 78.0%, indicating that the factors affecting vegetation dynamics had not
been fully considered, such as other climate factors, land use, grazing, soil and water
conservation, and so on, which need to be further strengthened in future studies.

5. Conclusions

Vegetation is the key index of alpine grassland in the Qinghai-Tibet Plateau. Its condi-
tion can reduce or aggravate climate disasters and determine the regional livestock carrying
capacity. Taking Wulan County as the example, this study quantitatively analyzed the
vegetation dynamics of alpine grassland on the Qinghai-Tibet Plateau and the relationships
with multiple climate factors at small scale on the basis of Normalized Difference Vege-
tation Index (NDVI) in growing season. The results deepened our understanding of the
driving mechanism of climate change on the vegetation dynamics of alpine grassland in
the Qinghai-Tibet Plateau.
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(1) The annual growing season NDVI of the study area ranged between 0.151 to 0.264
from 2001 to 2020, and extremely significant wavelike increased at a rate of 0.0035 yr−1.
For the 5 vegetation types, the annual growing season NDVI ranking from high to
low were shrubland, rest vegetation, meadow, steppe, and desert steppe, and showed
similar increasing trends with the whole area at rates of 0.0058 yr−1, 0.0049 yr−1,
0.0034 yr−1, 0.0049 yr−1, and 0.0026 yr−1, respectively.

(2) Over the study area, growing season NDVI gradually decreased from northeast to
southwest with ranging values of 0.027–0.717. The fitting slopes of growing season
NDVI in individual pixels from 2001 to 2020 were between −0.016 and 0.032, and
the positive slopes account for 97.2% of the county area, and growing season NDVI
increased significantly in about 76.4% of the county area.

(3) During the study period, growing season evaporation decreased extremely signifi-
cantly at a rate of 29.6 mm yr−1, growing season average relative humidity increased
significantly at a rate of 0.16% yr−1, while growing season average temperature and
growing season precipitation were relatively stable.

(4) For the whole study area and 5 vegetations types, growing season evaporation had
an extremely significant negative correlation with growing season NDVI, and was
the primary climate factor that had a direct effect on vegetation dynamics with a
contribution rate of 42.4%–58.8%; growing season average relative humidity had an
extremely significant positive correlation with growing season NDVI, and had an
indirect effect on vegetation dynamics through growing season evaporation with a
contribution rate of 13.9%–25.0%; growing season precipitation had extremely signifi-
cant positive correlation with growing season NDVI, and also had an indirect effect
on vegetation dynamics through growing season evaporation, but its contribution
rates were less than 11.0%; growing season average temperature had no significant
effect on vegetation dynamics.
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