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Abstract: Global Navigation Satellite Systems (GNSS) tomography is a well-recognized modeling
technique for reconstruction, which can be used to investigate the spatial structure of water vapor
with a high spatiotemporal resolution. In this study, a refined near real-time tomographic model is
developed based on multi-source data including GNSS observations, Global Forecast System (GFS)
products and surface meteorological data. The refined tomographic model is studied using data
from Hong Kong from 2 to 11 October 2021. The result is compared with the traditional model
with physical constraints and is validated by the radiosonde data. It is shown that the root mean
square error (RMSE) values of the proposed model and traditional model are 0.950 and 1.763 g/m3,
respectively. The refined model can decrease the RMSE by about 46%, indicating a better performance
than the traditional one. In addition, the accuracy of the refined tomographic model is assessed under
both rainy and non-rainy conditions. The assessment shows that the RMSE in the rainy period is
0.817 g/m3, which outperforms the non-rainy period with the RMSE of 1.007 g/m3.

Keywords: near real-time model; water vapor tomography; water vapor density (WVD); GNSS

1. Introduction

Water vapor (WV) is considered as an essential climate variable [1], which not only
closely links to climate change, but also greatly affects the formation and evolution of con-
vective systems [2–5]. Although traditional techniques, e.g., radiosonde [6], water vapor
radiometer [7] and meteorological satellites [8], can be used to obtain WV information at
a high accuracy, they have apparent disadvantages, e.g., low spatiotemporal resolution,
high cost and low all-weather availability [9–11]. Over the last three decades, the emerg-
ing Global Navigation Satellite Systems (GNSS) have been used to retrieve precipitable
water vapor (PWV), which is the total atmospheric WV contained in a vertical column
of a unit area with a high spatiotemporal resolution and high accuracy [12–16]. This is
mainly due to the advantageous properties of GNSS atmospheric remote sensing, i.e.,
global coverage, long-term stability, cost effectiveness and all-weather capability [17–20]. It
should be noted that although GNSS-derived PWV has been widely used in atmospheric
research and the detection of various types of severe weather events [21–27], it cannot
reflect the multi-dimensional distribution of PWV. To address this limitation, the GNSS
tomographic technique was introduced during the past two decades [28] and has become
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an effective way for the determination of high-accuracy regional multi-dimensional at-
mospheric water vapor fields [29–31]. With the ongoing development of this technique,
GNSS-derived atmospheric products have also extended their applications, especially in the
meteorological community [32–35].

Flores et al. [28] first proposed the GNSS tomography technique and applied it to the
estimation of four-dimensional (4D) tropospheric wet refractivity (WR) field. According
to [28], the region of interest was discretized into several voxels, i.e., the so-called voxel-
based model, and by using the slant wet delays (SWD) estimated from the GNSS signals as
well as the intercepts in each voxel, the multi-dimensional WR field was obtained. However,
during the tomographic periods, subject to the spatial distributions of the GNSS satellites
and ground-based GNSS receivers in the local network, some designated voxels were
crossed by inadequate satellite signals, which often result in poor geometry of observed
signals and unsolvable problems [34], i.e., ill-posed tomographic equations. To resolve
the ill-posed problem, a common way adopted in traditional methods is to use physical
constraints, e.g., the horizontal constraints [36], vertical constraints [37] and adjacent
constraints [38]. Another method is to retrieve SWDs over a rather long period of time
to obtain more observations [2,39,40]. However, the use of a long period may miss a
large number of short-term features contained in the time series of WV due to its rapidly
changing characteristics in the spatiotemporal domains. The other method is to add a scale
factor [41,42], a height factor [43], a WV unit index [44] and other metrics to those GNSS
signals passing through the sides of the tomographic regions. It is noted that although the
inclusion of empirical values of WV or radiosonde data over a long period is necessary
for this method, these values may also depress the inversion accuracy due to the fact that
the empirical values are unable to accurately reflect the actual situations of those epochs.
With regard to the methodologies for a tomographic solution, various types of methods
have been proposed and applied, e.g., the least-squares method [45,46], the singular value
decomposition method [28], the Kalman filter [47,48] and the algebraic reconstruction
technique (ART) [44,49,50]. These methods are practicable for the ill-posed tomographic
equations but are unable to thoroughly eliminate the unsolvable problems due to the
insufficient number of GNSS observations in the tomographic model.

Previous studies have demonstrated that extending the tomographic cycle or adding re-
constructed observations can effectively increase the number of GNSS observations [39–44].
Nowadays, with the increasing number of multi-constellation GNSS satellites, including the
Global Positioning System (GPS), Galileo, Global Navigation Satellite System (GLONASS)
and BeiDou Navigation Satellite System (BDS), it is possible to observe more GNSS signals
in each epoch. For example, Bender et al. [51] simulated the GNSS data, including the
GPS, GLONASS, and Galileo for tomographic modeling, and results showed that using a
combination of the above three systems, the number of SWDs greatly increased in compari-
son to the case that only a single system was used. Benevides et al. [52] also performed a
similar study, in which a combination of GPS and Galileo data was adopted, and its results
demonstrated that the anomalies in the distribution of PWV were recovered by using the
combined data. It should be noted that the aforementioned studies were all conducted
using the simulated dataset. Although the simulated data can be used to demonstrate
the superiority of the data from multi-GNSS constellations to some extent, the adverse
impacts caused by the observation errors obtained in the GNSS observations are not easy
to analyze. To test the above-mentioned advantages of using a combination of multiple
GNSS constellations, several researchers have also conducted similar experiments using
GNSS observations [53–55]. For example, Zhao et al. [53] adopted observations from a
combination of GPS, BDS and GLONASS, and results showed that the number of the
satellite rays increased, but the accuracy of the constructed three-dimensional (3D) WV
fields was not greatly improved. Dong et al. [54] also performed a similar experiment using
data from GPS, BDS and GLONASS to construct a 3D WV field, and results demonstrated
that the performance resulting from multi-GNSS data was similar to or slightly better than
that obtained from a GPS-only system.
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Using the above-mentioned approaches, the observing geometry can be optimized,
but the inverse problem of the ill-posed matrix still cannot be effectively resolved, since
some voxels are not crossed by a sufficient number of GNSS signals, especially at lower
layers. To avoid the inversion problem with an ill-posed matrix, apart from the voxel-
based tomography [56], other methods can be used to obtain the water-vapor density
(WVD) in a tomographic region, e.g., the parameterization approach [57,58], function-
based method [59,60] and high flexibility GNSS tomographic (HFGT) technique [61].

The physical constraints adopted in tomographic models assume that the distribution
of WV follows specific rules, which may not necessarily agree well with real situations. To
deal with this issue, multi-source data, e.g., data from different observing techniques
and from different institutions, can be used as prior information in the tomographic
system to improve the accuracy of the constructed WV field. Pany [62] introduced the
inclusion of GNSS-derived slant total delays (STDs) and slant hydrostatic delays (SHDs)
estimated from the European Centre for Medium-Range Weather Forecast (ECMWF) model
to the tomographic observations to effectively compensate the loss brought by the signals
observed at lower elevation angles. Zhang et al. [63] developed a GNSS-remote sensing
(GNSS-RS) tomographic model, which fully exploited the observations from GNSS and RS
measurements, and results showed that the use of the RS data led to a 28% decrease in the
mean of the root mean square error (RMSE) of the WV profiles in comparison to the use of
GNSS-only results. Heublein et al. [45] adopted the SWDs estimated from the combination
of GNSS and the Interferometric Synthetic Aperture Radar (InSAR) technique due to the
fact that the horizontal resolution of the InSAR-derived products is much higher than that
of GNSS. Furthermore, apart from the InSAR-derived SWDs, surface meteorological data
obtained from three meteorological stations were also included as the prior information
of the tomographic model, which could improve the accuracy of the WVDs in the bottom
layer [64]. However, the above studies were generally conducted using reanalysis data
with latency; thus, these data cannot be applied to a real-time or near real-time (NRT)
tomographic modeling process. For near real-time tomographic modeling, a number of
experiments have been conducted using data from various sources. Zhang et al. [65]
also developed an NRT tropospheric system using additional data obtained from the
Global Forecast System (GFS) model provided by the National Centers for Environmental
Prediction (NCEP), and a WR field with a horizontal resolution of 0.5◦ was reconstructed
over a large area.

According to all the aforementioned analyses, the main problem in GNSS tomography
is the ill-posed tomographic matrix. As a result, multi-source post-processing data from the
RS, InSAR, radiosonde and reanalysis products can effectively improve the accuracy of the
WV field, but it may not perform well in the NRT tomographic modeling. A tomographic
model using GFS data was proposed for the NRT tropospheric tomography, which shows a
better performance compared to the regular post-processing data [65]. In this study, a new
NRT tomographic model with high spatial resolution was developed using multi-source
data, including GNSS observations, GFS data and surface meteorological data, and the
performance of the new model was also assessed.

The rest of this paper is organized as follows. Section 2 describes the multi-source data
used in the tomographic system, including surface meteorological observations and those
data obtained from the GFS. Section 3 presents data-processing strategies and principles
for constructing a tomographic model. The development of the NRT tomographic model
proposed in this study is described in Section 4. Conclusions are given in Section 5.

2. Data

In this study, GNSS observations, surface meteorological observations and the GFS
model provided by the NCEP were used for the tomographic model and radiosonde data
were used for validation of the tomographic result. In addition, precipitation data obtained
from the operational rainfall stations in the Hong Kong region were also used for the
model assessment.
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GNSS observations obtained at 15 stations from the Hong Kong Continuously Op-
erating Reference Stations (CORS) network (https://www.geodetic.gov.hk/sc/satref/
rawstream.htm, accessed on 11 October 2021) over the 10-day period 2–11 October, i.e.,
day-of-year (DOY) 274–283, were processed to obtain tropospheric products for tomo-
graphic modeling. The CORS network receives signals from multi-GNSS, including the
GPS, GLONASS, Galileo and BDS systems over the period studied. The real-time orbit
and clock corrections (SSRA00WHU0) and other essential products from the IGS analysis
data center at Wuhan University were used for real-time ZTD estimation. According to
a comparison of ZTD estimations over the HKSC station with those derived from the
radiosonde observations over its in situ radiosonde station, the RMSEs of the GPS-only and
multi-GNSS ZTD estimations are 21.62 and 20.68 mm, respectively.

Since the meteorological observations are required for data processing and the con-
straints of a tomographic model, in this study, meteorological data including temperature,
pressure and relative humidity with a 1 min sampling rate were collected from 11 surface
weather stations in the Hong Kong, which can be downloaded from the Geodetic Survey Sec-
tion of Survey and Mapping Office (https://www.geodetic.gov.hk/en/satref/satref.htm,
accessed on 11 October 2021). Figure 1 shows the designated tomographic region and the
geographical distribution of GNSS, weather and radiosonde stations used in this study.

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 17 
 

 

were used for validation of the tomographic result. In addition, precipitation data 
obtained from the operational rainfall stations in the Hong Kong region were also used 
for the model assessment. 

GNSS observations obtained at 15 stations from the Hong Kong Continuously 
Operating Reference Stations (CORS) network 
(https://www.geodetic.gov.hk/sc/satref/rawstream.htm, accessed on 11 October 2021) 
over the 10-day period 2–11 October, i.e., day-of-year (DOY) 274–283, were processed to 
obtain tropospheric products for tomographic modeling. The CORS network receives 
signals from multi-GNSS, including the GPS, GLONASS, Galileo and BDS systems over 
the period studied. The real-time orbit and clock corrections (SSRA00WHU0) and other 
essential products from the IGS analysis data center at Wuhan University were used for 
real-time ZTD estimation. According to a comparison of ZTD estimations over the HKSC 
station with those derived from the radiosonde observations over its in situ radiosonde 
station, the RMSEs of the GPS-only and multi-GNSS ZTD estimations are 21.62 and 20.68 
mm, respectively. 

Since the meteorological observations are required for data processing and the 
constraints of a tomographic model, in this study, meteorological data including 
temperature, pressure and relative humidity with a 1 min sampling rate were collected 
from 11 surface weather stations in the Hong Kong, which can be downloaded from the 
Geodetic Survey Section of Survey and Mapping Office 
(https://www.geodetic.gov.hk/en/satref/satref.htm, accessed on 11 October 2021). Figure 
1 shows the designated tomographic region and the geographical distribution of GNSS, 
weather and radiosonde stations used in this study. 

 
Figure 1. Tomographic region (square with red outline) and geographical distribution of GNSS, 
meteorological and radiosonde stations. The yellow triangles denote the GNSS stations without 
meteorological sensors; the purple triangles denote the GNSS stations with meteorological 
observations; the red star denotes the radiosonde station. 

GFS provides 384 h forecast grids with 0.25° × 0.25° spatial resolution and 6 h 
temporal resolution at 00, 06, 12 and 18 UTC per day. In this paper, the 6 h forecasts at 00 
and 12 UTC (i.e., updated at 18 and 06 UTC) from DOY 273 to 282 in 2021 were used 
(https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs, accessed on 11 October 2021). The 
GFS-derived products including temperature, specific humidity and geopotential height 

Figure 1. Tomographic region (square with red outline) and geographical distribution of GNSS,
meteorological and radiosonde stations. The yellow triangles denote the GNSS stations without me-
teorological sensors; the purple triangles denote the GNSS stations with meteorological observations;
the red star denotes the radiosonde station.

GFS provides 384 h forecast grids with 0.25◦ × 0.25◦ spatial resolution and 6 h temporal
resolution at 00, 06, 12 and 18 UTC per day. In this paper, the 6 h forecasts at 00 and
12 UTC (i.e., updated at 18 and 06 UTC) from DOY 273 to 282 in 2021 were used (https:
//nomads.ncep.noaa.gov/pub/data/nccf/com/gfs, accessed on 11 October 2021). The
GFS-derived products including temperature, specific humidity and geopotential height
on various pressure levels were used in the newly constructed tomographic system after
the vertical and horizontal interpolations to the tomographic voxels.

To validate tomographic profiles, radiosonde observations from the only radiosonde
station in the Hong Kong region (HKM00045004, as shown in Figure 1), which can be
downloaded from the Integrated Global Radiosonde Archive (IGRA, https://www1.ncdc.

https://www.geodetic.gov.hk/sc/satref/rawstream.htm
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noaa.gov/pub/data/igra, accessed on 11 October 2021), over the whole period studied
were taken as the reference. The sounding balloons are launched only twice per day at 00
and 12 UTC. The WVD was calculated with the WV pressure and temperature observations
at different pressure levels from the radiosonde station, which were used as the reference
for the performance assessment of the tomographic results. For the further assessment of
the tomographic model developed on rainy and non-rainy phases, the hourly precipitation
records at King’s Park station in the time period from DOY 274 to 283 were used as
the reference.

3. Methodology
3.1. Determination of Slant Water Vapor

Prior to the determination of slant water vapor (SWV), the zenith tropospheric delay
(ZTD) needs to be obtained first. In this study, the ZTDs during the 10-day period studied
were estimated from GNSS observations using the RTKLIB V2.4.3 with the precise point
positioning (PPP) approach, as suggested by the previous study [66]. Apart from the ZTDs,
the horizontal tropospheric gradients were also obtained from the data-processing software.
More details regarding the data-processing strategy for the GNSS-derived ZTDs can be
found in Table 1.

Table 1. Strategy for data processing using the PPP approach.

Item Strategy

Frequency Dual frequency
Elevation cutoff angle 7◦

Satellite Ephemeris, Clock and Earth
Rotation Parameters SSR + BRDC

Ionosphere Ionosphere-free linear combination with
dual frequency

Troposphere Estimate ZTD and horizontal gradient parameters
Mapping function NMF

ZTD temporal resolution 1 s
Temporal resolution of gradient parameters 1 s

The ZTD is divided into the zenith wet delay (ZWD) and zenith hydrostatic delay
(ZHD), the ZWD can be obtained by subtracting the ZHD from ZTD. Generally, the ZHD
can be determined using the Saastamoinen model, which is a function of the surface
pressure over the GNSS station [67]. It is noted that four of the GNSS stations were not
equipped with meteorological sensors. Thus, these stations lack meteorological data. In
this case, the inverse distance weighting (IDW) interpolation method was used to calculate
the temperature and pressure values for the stations using observations from other close
stations [17]. To test the rationality of using this method, the accuracy of the obtained
results was assessed during the same period, and results showed that the RMSEs of the
temperature and pressure were 0.595 ◦C and 2.655 hPa, respectively. Hence, the IDW
method was used in the following experiments to obtain interpolated meteorological
values for those GNSS stations that are not equipped with meteorological sensors. Then,
the SWD can be obtained by:

SWD = m fw(ele) · ZWD + m fg(ele) · (GN · cos(azi) + GE · sin(azi)) + R (1)

where m fw and m fg are the wet mapping function and gradient model, respectively, both
of which can be obtained from the Global Mapping Function (GMF) [68]; ele and azi are
the elevation and azimuth angle of the satellite, respectively; GN and GE are the horizontal
gradients in the North–South and East–West directions, respectively; R is the residual
component. Then, the SWD is converted to SWV using the following formula:

SWV = Π · SWD (2)

https://www1.ncdc.noaa.gov/pub/data/igra
https://www1.ncdc.noaa.gov/pub/data/igra
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where Π is the conversion factor, which can be obtained using the following weighted
mean temperature (denoted by Tm) and physical constants:

Π =
106

ρ · Rv ·
(
k3/Tm + k′2

) (3)

where ρ is the density of liquid water; Rv is the specific gas constants for WV; k3 and k′2 are
two physical constants and their values were suggested by the authors of [69].

To calculate Tm, in this study, the linear model developed by Chen [70] was used (see
the formula below), which is more appropriate than the empirical model developed by
Bevis et al. [69] in the Hong Kong region [22,23].

Tm = 106.7 + 0.065(Ts + 273.15) (4)

where Ts is the surface temperature of the station.

3.2. Construction of a Tomographic Model

Although the number of observations is much larger than the parameters to be es-
timated in a tomographic model, the ill-posed problem still exists in the observation
equations. To solve this problem, in this study, two schemes were adopted in the construc-
tion of a tomographic model: the first one applied background fields to the tomographic
model; the other one used physical constraints in addition to the observation equations in
conventional methods. To further improve the performance of the constructed model, the
two schemes were also expanded into two cases: with and without the usage of surface
meteorological data. As a result, four schemes were adopted for the construction of the
tomographic models, as shown in Table 2.

Table 2. Four schemes adopted for the construction of the tomographic models.

Scheme Method

1 GNSS (GPS)-SWD + Physical constraints
2 GNSS (GPS)-SWD + Physical constraints + meteorological data
3 GNSS(GPS)-SWD + GFS Background
4 GNSS (GPS)-SWD + GFS Background + meteorological data

The SWV obtained in Section 3.1 can be expressed as the sum of the WVD (see the
following formula) along the signal path, which is denoted by SWVp:

SWVp = ∑
i,j,k

xi,j,k · distp
i,j,k (5)

where i, j and k are the indices of the voxel in the latitudinal, longitudinal and vertical
directions, respectively; distp

i,j,k and xi,j,k are the crossing distance of the signal p and the
WVD, respectively, in the voxel (i, j, k). Then, the observation Equation is:

An×m · xm×1 = SWVn×1 (6)

where An×m is the coefficient matrix formed by the distp
i,j,k; n and m are the numbers of the

SWVs and voxels in the tomographic area, respectively; xm×1 is the WVD of each voxel.
It is widely accepted that, in the construction of tomographic models, physical con-

straints are required to solve the aforementioned ill-posed problem. In this study, physical
constraints—including horizontal and vertical constraints—were adopted. For the horizon-
tal constraint, the WVDs in a certain layer are assumed to be continuous and the WVD in
the j-th voxel is a weighted average of its neighbors [28]:

0 = w1x1 + . . . + wj−1xj−1 − xj + wj+1xj+1 . . . wsxs (7)
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where s is the number of voxels in the layer; w is the weighted horizontal coefficient and
is determined based on the Gaussian weighting function [71]. The horizontal constraint
function can be expressed as:

Hm×m · xm×1 = 0m×1 (8)

where Hm×m is the coefficient matrix of the horizontal constraint; m and xm×1 are the same
as those described in Equation (6).

For the vertical constraint, generally, WV is assumed to decrease exponentially in
accordance with its vertical distribution [72]. Hence, the WVDs of tomographic voxels in
adjacent vertical layers are also assumed to follow this variation trend

xk/xk−1 = e(hk−1−hk)/H (9)

where the xk and xk−1 are the WVD of the adjacent voxels in the k-th and k− 1-th layer,
respectively; hk and hk−1 are the height of the k-th and k− 1-th layer, respectively; H is the
scale height of the atmospheric water vapor. The following formula presents the function
of the vertical constraint:

V(m−s)×m · xm×1 = 0(m−s)×1 (10)

where V(m−s)×m is the coefficient matrix of the vertical constraint.
The observation equations (Equation (6)) and the two constraint functions

(Equations (8) and (9)) together form the tomographic model of Scheme 1 (See Table 2). The
WVDs at the bottom layer in the area of interest are estimated using the constraint of the
surface meteorological values:

Ms×m · xm×1 = wvdS
s×1 (11)

where Ms×m is the coefficient matrix. wvdS
s×1 is the WVDs of s voxels at the bottom layer

and can be computed using:
wvdS

s×1 = e/(Rw · T) (12)

where T represents the temperature (in kelvins), and e is the WV pressure:

e = rh · 6.112 · exp(17.62 · T/(243.12 + T)) (13)

where rh represents the relative humidity.
The model constructed from Scheme 2 is to add Equation (11) to that of Scheme 1:

An×m
Hm×m

V(m−s)×m
Ms×m

 · xm×1 =


SWVn×1

0m×1
0(m−s)×1
wvdS

s×1

 (14)

As mentioned above, the latitude, longitude, temperature, relative humidity and
geopotential height at all pressure levels were obtained from GFS data. The temperature,
specific humidity and pressure values at the midpoints of each voxel were interpolated us-
ing data at the nearest eight surrounding grid points of the GFS model in the horizontal and
vertical domains. The WVDs of the background field were computed using Equation (12)
and the WV pressure was calculated using

e = q · P/(0.622+0.378 · q) (15)

where q and P represent the specific humidity and pressure, respectively.
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Scheme 3 is to apply the initial values of the WVDs in each voxel, which are computed
using products from the GFS. Additionally, the tomographic model constructed from
Scheme 4 is to add Equation (11) to that of Scheme 3:(

An×m
Ms×m

)
· xm×1 =

(
SWVn×1
wvdS

s×1

)
(16)

Compared to Scheme 1 and Scheme 2, the main difference between Scheme 3 and
Scheme 4 is the use of the WVDs calculated from GFS as the a priori values for the
tomographic model.

3.3. Algebraic Reconstruction Technique

In this study, the algebraic reconstruction technique (ART) method was selected to
solve the above tomographic model. To avoid the ill-posed problem in the inversion of a
large sparse matrix, the simultaneous iterative reconstruction technique (SIRT) was used in
the ART method. The SIRT method (see the formula below) can simultaneously calculate
the biases of all reconstructed and observed SWVs and correct the WVDs in line with the
crossing distances.

xk+1
j = xk

j + λ∑m
i=1

ai,j

∑n
j=1 a2

i,j

(
SWVi −

n

∑
j=1

ai,jxk
j

)
(17)

where xk
j represents the WVD in the j-th voxel during the k-th iteration step; ai,j is the

crossing distance of signal i in the j-th voxel; λ is the relaxation parameter, which affects
the extent of correction and regulates the convergence in each iteration step. The relaxation
parameter is determined by the spectral radius of the iteration matrix A in Equation (6) [73].
The normalized cumulative periodogram (NCP) rule was selected as the stopping condition
in each iteration, according to [74]. The principle underlying the NCP rule is to terminate
the iteration when the residuals resemble white noise. The residual is the difference value
of the SWV observation and reconstructed SWV:

rk = SWV − A · xk (18)

where rk is the vector of the residuals from all SWVs during the k-th iteration. The rest of
the notations in Equation (14) are the same as those in Equation (6).

4. Experiments and Results
4.1. Model Configuration

Based on the distribution of the GNSS stations in the Hong Kong region, the area of
interest for the construction of the tomographic models for this study was determined as
follows. The latitudes were from 22.20◦ N to 22.50◦ N with a 0.06◦ resolution (about 7 km)
and the longitudes were from 113.87◦ E to 114.35◦ E with a 0.08◦ resolution (about 9 km).
The height of the top layer of the tomography was 10,656 m and the vertical resolution
varied from 400 m at the bottom layer to 1298 m at the top layer, which yielded 420 voxels
for the tomographic models. In addition, the model’s update cycle was determined as
30 min.

4.2. Assessment of Results

Radiosonde data, which are from sounding balloons only launched at 00 and 12 UTC
per day, were used as the reference for the validation of the tomographic models. Due to
the limited number of the reference data over the 10-day period studied, only 20 sets of
tomographic results could be assessed. The RMSEs resulting from each of the four schemes
(as shown in Table 2) for each layer, i.e., the standard pressure levels determined by the
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World Meteorology Organization [75] and the whole profile, i.e., from the surface to the
designated top boundary of the model, were calculated using the following formula:

RMSE =

√√√√ 1
n

n

∑
i=1

(
xi − x0

i
)2

(19)

where xi and xi
0 represent the WVD values resulting from the constructed tomographic

model and the reference values obtained from the radiosonde profile at the i-th level,
respectively; n is the number of all vertical levels.

In this study, several types of tomographic results obtained from different combina-
tions of inputs including SWDs/SWVs from multi-GNSS (i.e., GPS, GLONASS, Galileo and
BDS2) or GPS-only observation, surface meteorological observations and GFS background
information were obtained and their performances were evaluated using the radiosonde
data. In addition, the accuracy of the tomographic models during rainy and non-rainy
periods was also analyzed.

4.2.1. Comparison of Model Performances Obtained Using Multi-GNSS and
GPS Observations

The first experiment mainly focused on the comparison of the performances of the
models constructed from the four schemes mentioned in Section 3 and using multi-GNSS
and GPS-only data. The differences made by the use of background and surface meteoro-
logical data were also assessed. Table 3 lists the mean of the 20 sets of RMSEs for the whole
profiles at 20 epochs during the period of DOY 274–283.

Table 3. Comparison of the mean values of 20 sets of RMSEs (g/m3) for the whole profile resulting
from multi-GNSS and GPS-only data, and four schemes over the period studied.

Scheme Multi-GNSS GPS-Only

1 1.797 1.763
2 1.633 1.617
3 0.990 0.952
4 0.981 0.950

It can be seen from Table 3 that the results obtained from GPS-only data were slightly
better than those obtained from multi-GNSS data, regardless of other information, e.g.,
surface meteorological data or background information being used. This phenomenon was
also revealed in the previous study [53], which shows that the maximal and minimal of
the RMS from multi-GNSS were both larger than that of GPS only. Compared to Scheme
1 and Scheme 2, the tomographic results from Scheme 3 and Scheme 4 show a notable
improvement in terms of the RMS, which means the inclusion of background fields in the
model has a large positive impact on the tomographic performance.

To further investigate the impact of the surface meteorological data on the tomographic
results at each height level, a comprehensive experiment was conducted, and the results
will be shown in the next section. It should be noted that, because the accuracy of the
tomographic results from GPS-only is better than multi-GNSS data, the SWDs derived from
GPS only were used in the following studies.

4.2.2. Performances of Model Resulting from Using Surface Meteorological Data

The RMSEs listed in the above section were obtained for the whole profile; thus, it
cannot reflect the tomographic accuracy at different heights. To investigate the performance
of the four schemes at different height levels, Table 4 lists the RMSE of WVD at each
standard pressure level starting from 925 hPa to 250 hPa.
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Table 4. RMSE (g/m3) of WVD recovered from each scheme at each standard pressure level.

Levels (hPa) Scheme 1 Scheme 2 Difference Scheme 3 Scheme 4 Difference

925 3.061 2.097 0.964 1.608 1.525 0.083
850 2.989 3.179 −0.191 1.920 1.945 −0.025
700 3.053 2.900 0.153 1.505 1.512 −0.007
500 1.511 1.265 0.247 1.146 1.148 −0.003
400 0.751 0.959 −0.208 0.558 0.572 −0.014
300 0.913 0.991 −0.078 0.348 0.378 −0.031
250 0.416 0.367 0.049 0.260 0.264 −0.003

As indicated in Table 4, the use of the surface meteorological data has little effect on
the accuracy of the tomographic results from Schemes 3 and 4 which use the GFS model
as prior information. The reason is likely that the background information was estimated
by the well-developed GFS meteorological parameters, hence the surface meteorological
data showed insignificant influence. However, for Schemes 1 and 2 (without the use of the
GFS model as prior information), the accuracy of WVDs at the layers greater than 500 hPa
(i.e., below about 5500 m in the study area) was significantly improved in the case that the
surface meteorological data were used, especially for the bottom layer, i.e., 925 hPa. This
improvement is probably due to the large density of the WV at the bottom layer, where
there are large variations in WVD. In general, the use of the surface meteorological data
leads to improved tomographic accuracy, to a certain extent, especially from the schemes
that use physical constraints.

Figure 2 shows the mean RMSEs and relative errors (RE) of the WVDs at different
layers of the constructed tomographic model at 00 and 12 UTC resulting from the four
schemes. The RMSE of Scheme 1 under 3 km is above 2 g/m3, while the RMSE of Scheme 2
at the bottom layer significantly decreases after the surface meteorological data are used.
The RMSE of Schemes 3 and 4 at all layers are less than 2 g/m3, which demonstrates the
superiority of the use of background information or surface meteorological data in the
tomographic process. Compared with Scheme 3, the RMSE of Scheme 4 is about 10.7%
smaller, which demonstrates the effectiveness of the inclusion of as much meteorological
data as possible. Unlike the RMSE, the RE increases with height because the WV amount
decreases rapidly with the height.
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4.2.3. Comparison of Model Performances over Rainy and Non-Rainy Periods

To investigate whether the tomographic results are affected by weather conditions,
the accuracy of tomographic results for days with and without rainfall was investigated.
Hourly precipitation data from the King’s Park station in Hong Kong were collected and
used to classify rainy and non-rainy periods. As indicated by relevant precipitation records,
Hong Kong experienced rainfall over the period 8–10 October 2021. Detailed hourly
cumulative rainfall data collected in the 3-day period are presented in Figure 3.
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Figure 3. Hourly cumulative rainfall data in the 3-day period 8–10 October 2021 from the King’s
Park station.

To investigate the performance of the refined tomographic method, i.e., Scheme 4,
under different weather conditions, the RMSE during rainy and non-rainy days was
compared. As mentioned above, during the whole 10-day period studied, rainfall events
occurred during the 3 days of 8–10 October, while the other 7-day time-period was regarded
as a non-rainy phase. Figure 4 depicts the RMSEs of the tomographic profiles at each day
over the whole period studied, and Table 5 lists the mean RMSEs in the rainy and non-rainy
periods, respectively.
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Table 5. RMSEs (g/m3) of Scheme 4 during rainy and non-rainy periods.

Periods Rainy Non-Rainy

RMSE 0.817 1.007

It can be seen from Table 5 that the accuracy of the tomographic results from Scheme
4 during rainy days is better than that during the non-rainy days. Figure 5 depicts the
WVD and their RMSEs obtained from our refined tomographic model during the rainy
and non-rainy days, respectively. It is notable that the WVD shows a smooth decreasing
trend from a high layer to a low layer during both phases. At each layer, the WVD during
the rainy phase is higher than that during the non-rainy phase. In addition, the RMSEs at
different layers show large fluctuations, the value during the non-rainy phase is higher
than that during the rainy phase at most of the layers, and the maximum RMSE is found at
the layer of 1040 m.
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Figure 6 shows the variation of WVD and RE with height at four epochs during the
above two phases. Compared to the rainy days, the REs of the tomographic results show
large fluctuations at different height levels during the non-rainy days. This is mainly due to
the fact that the WVD has a more complicated vertical structure during the non-rainy days
than the rainy days. This also demonstrates that the vertical distribution of water vapor
has an obvious influence on the accuracy of the tomographic technique. This phenomenon
has also been proven in the previous study [76]. According to [76], large RMSEs of the
tomographic model are found below 4 km and sharp growth in the RE values is also
demonstrated in the height range. However, the accuracy of the refined tomographic
model, i.e., Scheme 4, presents little fluctuations at all height levels, as shown in Figure 2.
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5. Conclusions

GNSS tomography is a prospective method for the reconstruction of 4D water vapor
at high spatiotemporal resolutions, but the use of GNSS-only data is often insufficient for
the observing geometry of the tomography. For this issue, we proposed using multi-source
data for a high spatiotemporal resolution of NRT tomographic modeling, and an NRT
processing system that is applicable for the use of multi-source data was selected and tested.
Ten-day data from the CORS network in Hong Kong, China, were selected as the test data
and the radiosonde data from IGRA were used as the reference for the accuracy assessment
of the tomographic model constructed.

Statistical results demonstrate that the refined model developed using multi-source
data improved the accuracy of the tomographic model compared to the traditional con-
straint model. In NRT tomography, the RMSE resulting from the use of the constraint
model was about 1.797 g/m3, which improved by 9% after surface meteorological data
were included in the tomographic system. However, the RMSE of the tomographic model
that uses GFS and surface meteorological data was insignificantly different compared to
the case using GFS only. Compared to the traditional constraint model, the RMSE resulting
from the adoption of GFS data reduced by about 46%. Moreover, statistical results during
both rainy and non-rainy periods indicated that the refined tomographic model lead to
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good accuracy in both cases, and the accuracy of the refined model during rainy periods
was better than non-rainy periods. This suggests that a tomographic model constructed
based on multi-source data can be applied to the monitoring of precipitation.

The poor observing geometry of GNSS signals is the main problem in GNSS tomog-
raphy, which can be effectively handled by the inclusion of the physical constraints or
multi-source data. In contrast with the physical constraints, the inclusion of the multi-
source data can provide accurate initial values and optimize the estimates for WVD at the
tomographic voxels; therefore, it is more suitable for the tomography, especially for the
real-time and near real-time applications. The future work aims at the investigation of the
influence of the meteorological forecasts from different models on the tomography and the
performance evaluation using the data covering a longer period.
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