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Abstract: Spring phenology is often considered the start of season (SOS) for vegetation, which
can affect ecosystem photosynthesis, respiration, and evapotranspiration. However, the long-run
variation of SOS remains unclear at the regional scale. In this research, the long-term variation of SOS
in northern China was explored by using the updated normalized difference vegetation index and
monthly climatic data during 1982–2014. Furthermore, the relative importance of climatic factors on
SOS was analyzed through partial correlation and multivariate regression methods. The main results
were as follows: (1) average SOS largely ranged between day 120 and 165 of the year and varied widely
for different vegetation types; (2) SOS during 1982–2014 showed an advancing trend, but it appeared
to be reversed after 1998; (3) preseason minimum temperature was a dominant factor controlling SOS
in most pixels in northern China, followed by maximum temperature (Tmx). However, impacts of
radiation and precipitation on the trend of SOS primarily depended on vegetation types; (4) impacts
of climatic factors on SOS declined in the period after 1998, especially for Tmx. These findings provide
important support for modeling vegetation phenology and growth in northern China.

Keywords: spring phenology; climatic factors; trend analysis; relative importance; northern china

1. Introduction

Vegetation, as an important component of terrestrial ecosystems, has a critical impact
on terrestrial carbon balance and ecosystem productivity [1,2]. Moreover, it regulates
the regional climate through biophysical and biogeochemical feedback [3]. Vegetation
phenology is an indicator that reflects the timing of periodic biologic events or processes,
which is very sensitive to regional climatic change [4,5]. For example, spring phenol-
ogy is often considered the start of season (SOS) for vegetation, which can affect many
ecosystem processes, such as photosynthesis, respiration, and evapotranspiration [6,7].
Therefore, a changing SOS provides an independent perspective on the understanding of
how ecosystems respond to climatic change, which has become a widespread concern.

With the development of remote sensing technology, it is no longer difficult to obtain
high-resolution and long-term satellite data [8–10]. In previous studies, more researchers
have used green vegetation indices, such as the normalized difference vegetation index
(NDVI), to monitor SOS at the regional scale, since regional SOS variation cannot be
analyzed by using ground observation data [11–13]. NDVI-based studies found that SOS
showed an advancing trend in different regions of the Northern Hemisphere [14–16].
Moreover, there was more heterogeneity in the advancing trend of SOS at the regional
scale [17,18]. Recent studies indicated that SOS did not always show an advancing trend.
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For example, it showed a slight delay in the China–North Korea–Russia cross-border
region from 1982 to 2015 [19]. Yu et al. [20] detected a rapidly delaying trend of SOS
for steppes and meadows in the Tibetan Plateau after the mid-1990s. Furthermore, the
advancing trend of SOS also appeared to be reversed during the recent decade in Xinjiang,
northwestern China [21]. These previous works highlighted the complexity of SOS trends
in the middle latitudes of the Northern Hemisphere, suggesting that the long-run variation
of SOS remained unclear at the regional scale.

Generally, climatic factors such as temperature, precipitation (Pre), and radiation (Rad)
have an important impact on SOS [22,23]. Although some existing studies found that the
advance of SOS was induced by climatic warming, the impact of temperature on SOS was
more complex than expected [24,25]. For instance, winter and spring warming caused the
delay of SOS in the Qinghai–Tibet Plateau despite continuous warming [20]. In addition to
the timing of warming, the effects of maximum temperature (Tmx) and minimum tempera-
ture (Tmn) on SOS were also more complex [26,27]. Piao et al. [28] argued that SOS was
mainly triggered by Tmx in the Northern Hemisphere. In contrast, some researchers found
that SOS was more responsive to Tmn in the Tibetan Plateau and temperate grasslands
of China [29,30]. A recent study even highlighted the asymmetric effect of Tmx and Tmn
on SOS [31]. It has been also reported that Pre can influence SOS in addition to tempera-
ture [32]. In arid and semi-arid regions, SOS was more sensitive to interannual changes
in Pre [33]. Despite growing concern about the response of SOS to climatic factors, little
progress has been made to evaluate the contribution of climatic factors.

Northern China covers an area of approximately 5,400,000 km2, accounting for 56.25%
of China’s land area, and is located in middle latitudes of the Northern Hemisphere. In
the context of global climate change, a rapid warming of 0.57 ◦C per decade and uneven
precipitation patterns were found in this region, affecting vegetation growth [34]. There
are complex and diverse vegetation types in northern China, including forests, grasslands,
meadows, shrubs, and others. These characteristics make northern China an ideal region
for analyzing SOS variation. Although some studies have reported an overall trend of
SOS in northern China, the turning point of long-term SOS variation (>30 years) is still not
clear [35,36]. In addition, the relationship between SOS and climatic factors (Tmn, Tmx,
Pre, and Rad) is complex, with a lack of evaluation and comparison [37,38]. Therefore, the
updated NDVI3g data of the Global Inventory Monitoring and Modeling Studies (GIMMS)
and monthly climatic data from 1982 to 2014 were used to explore: (1) the long-term
variation of SOS in northern China; and (2) the relative importance of climatic factors,
including Tmn, Tmx, Pre, and Rad, affecting SOS variation at the regional scale. The
result may provide important evidence for understanding the relationship between climate
change and vegetation growth.

2. Materials and Methods
2.1. Study Region

Northern China ranges from 73◦33′ E to 135◦05′ E in longitude and from 34◦34′ N to
53◦33′ N in latitude, including Northeast China, North China, and Northwest China, with
nine provinces, two municipalities, and two autonomous regions (Figure 1a). It covers four
climatic zones, including cold temperate, middle temperate, warm temperate, and plateau
temperate zones. The digital elevation model of northern China ranges from−159 to 7639 m.
Annual average temperature increases from−2.5 ◦C in the north (Heilongjiang) to 15.7 ◦C in
the south (Shaanxi), while annual Pre decreases from 861.5 mm/year in the south (Shaanxi)
to 54.8 mm/year in the west (Xinjiang). Most of this region is characterized by a cold, dry
winter and a warm, moist summer, with an annual sunshine duration of approximately
1700–3200 h. Due to the heterogeneous geographical and climatic conditions, a variety
of plant functional types can be found in this region (Figure 1b), including deciduous
needleleaf forest (DNF), deciduous broadleaf forest (DBF), bush, meadow (MEA), plain
grassland (PG), slope grassland (SG), alpine and sub-alpine meadow (AM), etc.
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Figure 1. (a) Geographical location and provincial division of the study area and (b) vegetation type
distribution. DNF: deciduous needleleaf forest, DBF: deciduous broadleaf forest, MEA: meadow, PG:
plain grassland, SG: slope grassland, AM: alpine and sub-alpine meadow. Northwest China includes
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. North China includes Beijing, Tianjin, Hebei, Shanxi,
and Inner Mongolia. Northeast China includes Liaoning, Jilin, and Heilongjiang.

2.2. Data

Due to the limitation of ground-based phenological observations, NDVI was widely
used in vegetation phenology monitoring over the past few decades [39,40]. In this study,
the semi-monthly GIMMS NDVI3g dataset was used to detect SOS from 1982 to 2014, with
a spatial resolution of 8 × 8 km2. The NDVI dataset was modified for orbital drift, solar
geometry, heavy aerosols, calibration, clouds, and other effects unrelated to vegetation
variation, and was downloaded from http://www.nesdc.org.cn/sdo/detail?id=60f63b9e7
e28174f0e7d8d46, (accessed on 2 September 2021).

Monthly climate time series datasets for Tmn, Tmx, Pre, and Rad ranged from 1981
to 2014. They were provided by the National Climate Center of China and obtained from
312 national meteorological observing stations. After collecting these datasets, the Kriging
method was used to produce the monthly raster images of climate datasets with a spatial
resolution of 8 × 8 km2.

A digitized 1:4,000,000 vegetation cluster map was released by the Chinese Academy
of Sciences. There were seven main plant functional types in northern China. However,
the cultivation area was excluded due to the severe effect of anthropogenic activities
on phenology.

2.3. Methods
2.3.1. Retrieving SOS from Satellite Data

The threshold method was widely used to extract SOS because of its stability and
robustness [41]. After smoothing the mutational noise of the original NDVI time series
with a Savitzky–Golay filter, the dynamic threshold method was used to extract the specific
day of year (DOY) for the SOS in this study [42]. The following formula determined the
NDVI ratio for each pixel:

NDVIratio = (NDVI − NDVImin)/(NDVImax − NDVImin) (1)

where NDVI is a daily NDVI value in one year; NDVImax and NDVImin are the maximum
and minimum NDVI values, respectively.

Previous studies defined a value of 0.2 as a widely accepted threshold [43,44]. There-
fore, SOS was extracted on the first day when the NDVIratio increased to 0.2 in northern
China. The TIMESAT software (https://web.nateko.lu.se/timesat/timesat.asp?cat=4, (ac-
cessed on 12 September 2021)) was extracted SOS for each pixel.

http://www.nesdc.org.cn/sdo/detail?id=60f63b9e7e28174f0e7d8d46
http://www.nesdc.org.cn/sdo/detail?id=60f63b9e7e28174f0e7d8d46
https://web.nateko.lu.se/timesat/timesat.asp?cat=4
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2.3.2. Identifying the Trends of SOS

In this study, long-term trends of SOS were estimated by a linear least-squares regres-
sion analysis for each pixel. The calculation formula was as follows:

TrendSOS =
n×∑n

i=1 i× SOSi −∑n
i=1 i×∑n

i=1 SOSi

n×∑n
i i2 − (∑n

i i)2 (2)

where TrendSOS is a SOS trend, n is the year, and SOSi is the SOS of the i th year. A positive
TrendSOS represents a delay of SOS, while a negative TrendSOS represents an advance of SOS.
The significance level was set at p < 0.05.

Furthermore, turning points of annual SOS series were identified based on the ‘Seg-
mented’ R software package. After completing the sensitivity examination of different
initial values, this package could give the best linear fitting result.

2.3.3. Quantifying the Impact of Climatic Factors on SOS

Climatic factors have cumulative effects on SOS. Yuan et al. [45] suggested that partial
correlation analysis was used to select a preseason length for different climatic factors.
For instance, partial correlation coefficients between Tmn and SOS were calculated from
0 to 7 months before SOS for each pixel by controlling the corresponding Tmx, Pre, and
Rad. Preseason length of Tmn was defined as the month with the highest absolute partial
correlation coefficient for each pixel. Similar steps were used to determine the preseason
length of Tmx, Pre, and Rad at the pixel scale.

To understand the impact of climatic factors on SOS, a multivariate regression analysis
was performed on the relationship between SOS and preseason climatic factors. This
method detected the independent effect of each climatic factor on SOS while eliminating
effects of other factors. The formula was calculated as follows:

SOS = α × Tmn + β × Tmx + γ × Pre + δ × Rad + θ (3)

where SOS is the annual SOS series; α, β, γ, and δ are regression coefficients of four climatic
factors on SOS, respectively; θ is the intercept of this formula.

Moreover, Equation (3) was also used to calculate the standard regression coefficient
of climatic factors. The dominant climatic factor affecting SOS was identified in this study
based on the highest absolute regression coefficient.

3. Results
3.1. Spatial Patterns of SOS in Northern China

The annual average SOS largely ranged from 120 to 165 DOY, with a mean of 140 DOY
in northern China from 1982 to 2014 (Figure 2a). An earlier SOS (<120 DOY) was mainly
distributed in Shaanxi and Shanxi, accounting for 7.6% of the study area. On the contrary,
pixels with a delayed SOS (>165 DOY) occupied only 4.5%, and were located in both
Qinghai and eastern parts of Inner Mongolia. There was a certain spatial heterogeneity in
the standard deviation (SD) of the SOS in northern China (Figure 2b). Although more than
63% of the pixels had an SD of SOS less than 10 days, 7.4% of the pixels had a higher SD
values (>15 days) and were located in northeastern parts of Inner Mongolia.

The annual average SOS was different for each vegetation type (Table 1). An earlier
SOS (<140 DOY) was shown in DNF, DBF, and SG, while a delayed SOS (>150 DOY)
occurred in AM. SOS had a lower SD (<9 days) in DNF and AM, but a higher SD (>11 days)
was shown in SG and PG.

3.2. Trends of SOS in Northern China

The annual average SOS significantly advanced with a speed of −0.11 days/year in
northern China from 1982 to 2014 (Figure 3a). However, it showed a delaying trend from
1998 to 2014. As shown in Figure 3b, the SOS trend ranged from −1.89 to 2.15 days/year at
the pixel scale. Nearly 68.90% of the pixels exhibited an advancing trend, of which 41.8%
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were significant (p < 0.05). These regions were mainly distributed in Shaanxi, Shanxi, and
northeastern parts of Inner Mongolia. From 1982 to 1998, advancing SOS trends accounted
for approximately 81.82% of the pixels (Figure 3c). However, the proportion of pixels
with an advancing trend decreased to 45.69% from 1998 to 2014 (Figure 3d). At the same
time, differences in SOS trends between the two sub-periods were calculated for each pixel
(Figure 3e). The result showed a larger positive difference in the SOS trend (>1.0 days/year)
located in Jilin and eastern parts of Heilongjiang, accounting for 22.63% of the pixels. On
the contrary, pixels with the larger negative difference in the SOS trend (<−1.0 days/year)
were distributed in eastern parts of Inner Mongolia, accounting for 5.69% of the pixels.
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Table 1. The mean value and standard deviation of SOS at the vegetation-type scale.

Types 1 SOS Mean (DOY) SD (Days)

DNF 134.28 ± 5.68 7.30 ± 2.06
DBF 129.95 ± 10.74 9.31 ± 3.05
Bush 142.13 ± 17.49 10.13 ± 3.05
AM 153.27 ± 12.87 8.25 ± 1.91
SG 125.56 ± 15.20 11.67 ± 4.53
PG 143.17 ± 15.60 11.40 ± 4.01

MEA 146.77 ± 10.73 10.03 ± 3.61
1 DNF: deciduous needleleaf forest, DBF: deciduous broadleaf forest, MEA: meadow, PG: plain grassland, SG:
slope grassland, AM: alpine and sub-alpine meadow.

As shown in Table 2, almost all vegetation types showed an advancing trend from
1982 to 2014, except for MEA. Among them, DNF, bush, and SG significantly advanced
at the speeds of −0.20 days/year, −0.16 days/year, and −0.30 days/year, respectively.
Similar to 1982–2014, all vegetation types showed an advancing trend during 1982–1998.
However, SOS trends of DBF, AM, and MEA shifted from advancing to delaying after 1998.

Table 2. Trends of SOS during 1982–2014, 1982–1998, and 1998–2014 at the vegetation-type scale.

Types 1982–2014 1982–1998 1998–2014

DNF −0.20 * −0.65 * 0.01
DBF −0.15 −0.46 * 0.23
Bush −0.16 * −0.38 * −0.05
AM −0.11 −0.52 * 0.21
SG −0.30 * −0.47 * −0.18
PG −0.12 −0.23 −1.00

MEA 0.01 −0.24 0.04
* represents significant at p < 0.05.



Atmosphere 2023, 14, 117 6 of 14Atmosphere 2023, 14, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Changes of SOS in northern China (a) and SOS trends for (b) 1982–2014, (c) 1982–1998, (d) 
1998–2014, and (e) the difference between two sub-periods. The top insets show the proportions of 
different numerical grades. The top-left insets show the spatial patterns of significance at p < 0.05, 
where blue (red) represents advancing (delaying) SOS. 

As shown in Table 2, almost all vegetation types showed an advancing trend from 
1982 to 2014, except for MEA. Among them, DNF, bush, and SG significantly advanced at 
the speeds of −0.20 days/year, −0.16 days/year, and −0.30 days/year, respectively. Similar 
to 1982–2014, all vegetation types showed an advancing trend during 1982–1998. How-
ever, SOS trends of DBF, AM, and MEA shifted from advancing to delaying after 1998. 

Table 2. Trends of SOS during 1982–2014, 1982–1998, and 1998–2014 at the vegetation-type scale. 

Types 1982–2014 1982–1998 1998–2014 
DNF −0.20 * −0.65 * 0.01 
DBF −0.15 −0.46 * 0.23 
Bush −0.16 * −0.38 * −0.05 
AM −0.11 −0.52 * 0.21 
SG −0.30 * −0.47 * −0.18 
PG −0.12 −0.23 −1.00 

MEA 0.01 −0.24 0.04 
* represents significant at p < 0.05. 

Figure 3. Changes of SOS in northern China (a) and SOS trends for (b) 1982–2014, (c) 1982–1998,
(d) 1998–2014, and (e) the difference between two sub-periods. The top insets show the proportions
of different numerical grades. The top-left insets show the spatial patterns of significance at p < 0.05,
where blue (red) represents advancing (delaying) SOS.

3.3. Sensitivity of SOS to Climatic Factors

The preseason length of each climatic factor generally ranged between 0 and 3 months
(Figure 4). The sensitivity of SOS to each preseason climatic factor showed a distinct
heterogeneity (Figure 5).

From 1982 to 2014, the negative sensitivity of preseason Tmn was dominant in 67.33%
of the pixels, of which 21.19% showed significantly negative sensitivities, mainly distributed
in southern parts of Northwest China, northeastern Inner Mongolia, northern Heilongjiang,
southern Northeast China, and northern Xinjiang (Figure 5a). Similar to Tmn, the average
sensitivity of SOS to Tmx throughout the region was −1.45 days/◦C, and 57.24% of the
pixels showed a negative sensitivity (Figure 5b), which were mostly located in northeastern
Inner Mongolia, northern Heilongjiang, and parts of Xinjiang. These results suggested
that an increase in the preseason temperature (including Tmn and Tmx) was conducive
to an advanced SOS in most parts of northern China. Additionally, SOS was also found
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to be negatively sensitive to Pre and Rad in 66.48% and 56.49% of all pixels, respectively
(Figure 5c,d). The negative sensitivities of Pre were mainly concentrated in the Beijing–
Tianjin–Hebei region, north-central Inner Mongolia, and southern Northeast China. In
comparison, negative sensitivities of Rad were located in southern parts of Northwest
China, northeastern Inner Mongolia, and parts of Beijing–Tianjin–Hebei and Xinjiang.
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Figure 6 shows the sensitivity of SOS to various climatic factors for different vegetation
types. The sensitivity of Tmn to all vegetation types was negative (Figure 6a). Tmn had the
greatest impact on SG, followed by DBF. Similarly, Tmx also showed a negative sensitivity
to all vegetation types (Figure 6b), which had the greatest effect on DNF and PG. Moreover,
the significant negative sensitivity of Pre and Rad was mainly detected for most vegetation
types, except for DNF (Figure 6c,d).
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The sensitivity of SOS to each climatic factor was also characterized within the two sub-
periods (Figure S1). The negative sensitivity of Tmn rose from 63.43% during 1982–1998
to 66.40% during 1998–2014. Similarly, areas with negative sensitivity of Pre and Rad
were expanded by 4.67% and 2.88%, respectively. However, the percentage of pixels
with a negative sensitivity of Tmx declined from 65.79% to 51.35%, which was mainly
concentrated in northeastern Inner Mongolia and northern Heilongjiang. As seen in
Figure S2, the percentage of negative sensitivity for Tmn, Pre, and Rad showed a slight rise
in most vegetation types, which was similar to the results at the pixel scale. As for Tmx, the
percentage of negative sensitivity decreased for almost all vegetation types, except for bush
(Figure S2).

3.4. Identification of the Key Climatic Factor Driving SOS in Northern China

The most important factor affecting SOS was further investigated based on the largest
standardized regression coefficient and significance level. As shown in Figure 7, the most
important factors affecting SOS exhibited high spatial heterogeneity. Of the four climatic
factors, Tmn was the most important factor at 20.37% of all pixels, followed by Tmx (16.12%)
and Rad (13.60%). Although Tmn was considered the key factor in most parts of northern
China, SOS was mainly influenced by Tmx in northern parts of northern China, including
Xinjiang, northern Heilongjiang, and northeastern Inner Mongolia. In contrast, the spatial
pattern of pixels affected by Pre and Rad was more fragmented. For example, Pre was
dominant in eastern and northern parts of Inner Mongolia, accounting for 9.58%. Although
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the spatial distribution of dominant climatic factors was complex, the negative impact on
SOS was mainly found in northern China. Table 3 shows that Tmn was dominant in SOS
variation for most vegetation types, except for DNF and PG. In comparison, Tmx showed a
dominant impact on DNF and PG.
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Table 3. The proportion of the most critical climatic factor in SOS at the vegetation-type scale.
Non-significant regions are not shown.

Types Tmn Tmx Pre Rad

DNF 12.40% 28.56% 6.62% 16.68%
DBF 27.22% 13.53% 8.43% 14.15%
Bush 21.01% 11.66% 12.26% 10.55%
AM 20.31% 14.58% 6.69% 10.79%
SG 27.43% 11.71% 6.67% 19.62%
PG 19.96% 22.46% 9.29% 10.79%

MEA 16.52% 14.26% 13.11% 13.53%

As for the two sub-periods, Tmn was the most important factor in 12.22% of all pixels
during 1982–1998, followed by Tmx, accounting for 11.43% of all pixels (Figure S3). From
1998 to 2014, however, the percentage of pixels dominated by Tmn and Tmx decreased
by 4.92% and 3.58%, respectively. Similar characteristics were also shown in different
vegetation types (Tables S1 and S2). For example, the dominant impact of Tmn declined in
most vegetation types except for DNF, and that of Tmx also decreased in most vegetation
types except for AM.

4. Discussion
4.1. Spatial and Temporal Differences of SOS in Northern China

The spatial pattern of average SOS showed significant heterogeneity in northern
China. It was found that pixels with a delayed SOS were mainly distributed in high-
altitude and arid regions. On the one hand, lower spring temperatures were found at
higher altitudes [46]. On the other hand, germination and leaf growth were usually slow
due to water limitation in arid and semi-arid regions, resulting in a delayed SOS. On the
contrary, pixels with an earlier SOS were clustered at lower latitudes, such as Shaanxi
and Shanxi, which were associated with warm-climate conditions and warm temperate
species [47].

This study found a significant advancing trend for SOS in northern China, which
was consistent with previous studies across different regions of the Northern Hemisphere.
The advancing magnitude of SOS in this region (−0.11 days/year) was less than that in
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Xinjiang, temperate China, and middle and eastern Eurasia, but it was larger than that in the
Mongolian Plateau (Table 4). The inconsistent results could be related to different regions
and calculation periods. Furthermore, it was also found that a delaying trend of SOS was
found after 1998, which may be related to the warming hiatus. The air temperature was
the major influencing factor of SOS in northern China. As for two sub-periods (1982–1998
versus 1998–2014), trends of preseason Tmn decreased from 0.09 ◦C/year to −0.04 ◦C/year,
and trends of preseason Tmx also decreased from 0.11 ◦C/year to −0.05 ◦C/year (Table S3),
suggesting that an advancing rate of SOS appeared to be reversed during the warming
hiatus period. However, delaying magnitudes of SOS were heterogeneous at a spatial scale
during this period [48]. Future research should be conducted to analyze the spatiotemporal
change of SOS during this period based on more datasets.

Table 4. Trends of SOS from the results of this study and other literature in northern China or at
similar latitudes.

Study Area Data Period Trend (Days/Year) Reference

Xinjiang, China NDVI 1982–2014 –0.19 [21]
High-latitude regions of the
Northern Hemisphere (>45◦ N) NDVI 1981–2013 –0.22 [49]

Temperate grasslands of China NDVI 1982–2015 –0.184 [43]
Mongolian Plateau NDVI 1982–2011 –0.1 [50]
Tibetan Plateau NDVI 1982–2013 0.013 [51]
China–DPRK–Russia
cross-border NDVI 1982–2015 0.1 [19]

Northern Europe NDVI 2000–2016 –0.3 [52]
Middle and eastern Eurasia NDVI 1982–2015 –0.2 [53]
Boreal Eurasia NDVI 1982–2011 –0.083 [54]
Great Basin, the US NDVI 1982–2011 –0.1 [55]
This study NDVI 1982–2014 –0.11

4.2. Response of SOS to Climatic Factors

Temperature is regarded as the major influencing factor of SOS, which has been
reported in previous studies [56,57]. Unlike previous studies, the effects of Tmx and Tmn
on SOS in northern China were further compared in this study, and the impact of Tmn
was stronger than that of Tmx [58,59]. The area dominated by Tmn was distributed in
most parts of northern China, especially in southern Northeast China and the Beijing–
Tianjin–Hebei region. The warming Tmn made it easier for vegetation to accumulate heat
requirements and to promote active growth resumption [29,31]. It could also reduce the
risk of freezing damage in spring and change the frequency and intensity of soil thawing,
thereby advancing the SOS [24]. Furthermore, Tmn was warming at a faster rate than Tmx
under the background of climate change [27].

In addition, some studies showed that Tmx was the most important factor affecting
SOS by regulating carbon-fixation and energy capture in the daytime [27,28]. However, our
study found that the effect of Tmx was weaker than that of Tmn. There are two possible
reasons for this phenomenon. First, meristem temperature instead of air temperature may
be critical for SOS. During the daytime, the meristem temperature is susceptible to other
factors, such as Rad [1,27]. Therefore, the difference between meristem temperature and
air temperature tends to be much larger during the daytime than at nighttime. In other
words, the effect of Tmx on SOS has a larger uncertainty than Tmn. Second, warming
Tmx can exacerbate the drought impact in dry regions by enhancing evaporation, thereby
weakening the advancing trend of SOS.

Pre is the most important factor affecting SOS in arid and semi-arid regions because
water availability around roots often significantly limits the growth of vegetation [41,60].
Rad is also an important climatic factor affecting SOS, and shows a complex relationship
with SOS. A higher Rad is usually accompanied by higher temperature, but more Pre may
lead to lower Rad [23,57].
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4.3. Limitations

The response of SOS to climatic factors was investigated in this study. However, it
should be noted that the results have some limitations, which are reflected in four main
aspects. First, 59.68% of all pixels were dominated by climatic factors from 1982 to 2014,
with a significant decrease from 1998 to 2014 (Figure 7 and Figure S3), indicating that
non-climatic factors in northern China could also control SOS. Rising atmospheric CO2 and
nitrogen deposition had an impact on the change of SOS in the Northern Hemisphere [45].
Therefore, research on the impact of non-climatic factors should be undertaken in the
next stage. Second, detailed climatic datasets at the site scale in northern China was
obtained, which must be resampled to match the NDVI data at the regional scale. Although
the Kriging method is a frequently used spatial interpolation method, it may introduce
uncertainty in the resampling process and influence the final results. Third, the short time
period for calculating trends is a limitation in our study because the current NDVI dataset
has not been updated to 2020. Last, we also realized that there may be uncertainty in using
statistical methods to identify key factors of SOS because it cannot be fully weighted for
the importance of different factors, especially in the case that some indicators have similar
importance. Given the above limitations, it is necessary to collect more refined spatial and
observational datasets to explore the impact of climatic and non-climatic factors on SOS in
northern China based on machine learning methods.

5. Conclusions

The average SOS largely ranged from 120 to 165 DOY in northern China, and the
delayed SOS was mainly distributed in high-altitude and arid regions. Although SOS was
dominated by an advancing trend from 1982 to 2014, such a trend shifted from advancing
to delaying after 1998. Preseason Tmn dominated the most pixels (20.37%), followed by
preseason Tmx (16.12%). However, the influence of climatic factors declined after 1998,
especially for Tmx. These results indicated that the climate–SOS relationship should be
carefully considered in current prediction models for vegetation growth.
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www.mdpi.com/article/10.3390/atmos14010117/s1, Figure S1: The spatial pattern of the sensitivity
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sensitivity of SOS to preseason (a) Tmn, (b) Tmx, (c) Pre, and (d) Rad at the vegetation-type scale
in two sub-periods; Figure S3: The spatial pattern of the most critical climatic factor in SOS in two
sub-periods; Table S1: The proportion of the most critical climatic factor in SOS at the vegetation-
type scale before 1998; Table S2: The proportion of the most critical climatic factor in SOS at the
vegetation-type scale after 1998; Table S3: Trends of climatic factors over the study period.
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