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Abstract: The Dongting Lake basin, located in the middle Yangtze River region, has long been
under the threat of climate change. However, there has been a lack of comprehensive analysis and
research on the long-term trends and interactions among hydrometeorological factors within the
region. To address this gap, this study collected data from 31 meteorological stations in the region
and employed statistical analysis methods, including the non-parametric Mann–Kendall test, Sen’s
slope test, and cross-wavelet analysis. The results revealed significant increases in temperatures,
especially in the spring season, while summer, winter, and annual rainfall also exhibited a significant
increase. However, spring and autumn rainfall showed a non-significant decrease, and there was a
clear decreasing trend in annual streamflow. Interestingly, evaporation demonstrated a significant
increasing trend. The annual average temperature and annual runoff exhibited approximately
negative correlations in the 6–10-year resonance period and positive correlations in the 4–6-year
resonance period. There are significant positive resonance periods in the relationship between annual
precipitation and annual runoff within the range of 0–12 years, indicating that precipitation has a
substantial impact and serves as the primary source of runoff. Furthermore, there was a transition
between “abundance” and “dry” periods in the annual runoff around 4 a, occurring before and after
1973 and 2005. The change points in annual precipitation and runoff were identified as 1993 and 1983.

Keywords: spatiotemporal trend; hydroclimatic variables; the Dongting Lake basin

1. Introduction

If global warming reaches 1.5 ◦C in the near future, it will further exacerbate the risks
associated with climate disasters, posing multiple challenges to ecosystems and human
well-being [1]. As global warming intensifies, the changes in regional temperature, rainfall,
and evaporation become more pronounced [2]. By examining the hidden patterns within
time series data of hydrometeorological variables such as temperature, rainfall, stream-
flow, and evaporation, we can gain insights into the overall changes and development
trends over time [3]. This exploration is crucial for conducting scientifically informed
hydrometeorological forecasting and effective water resource management. Moreover,
the analysis of change points and trends in hydrometeorological variables has garnered
increasing attention from scholars [4,5]. Human-induced climate change has had profound
and wide-ranging impacts, leading to more frequent and intense extreme events that exceed
the bounds of natural variability. These changes have caused significant losses and adverse
effects on both ecosystems and human societies [6].

Changes in rainfall patterns, characterized by more intense but less frequent events,
can contribute to increased drought severity within seasons, alter evapotranspiration rates,
and generate changes in runoff [7]. The fact that rainfall occurrences resonate well with
temperature changes in most areas of this region has led to an intensified hydrological
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cycle [8]. Therefore, it is essential to analyze the long-term trends of hydrometeorological
variables and interactions among hydrometeorological factors. Such analyses enhance
confidence in predicting future climate changes and have significant implications for water
resource management [9]. Various methods are available for detecting trends in hydrom-
eteorological variables. The non-parametric Mann–Kendall (MK) test is widely used to
identify temporal trends in hydroclimatic time series [10–12]. To address serial autocor-
relation issues in hydrometeorological data, Hamed and Rao [13] proposed an improved
Modified MK test, which has been applied in numerous studies [14–17]. The Sen’s slope
(SS) test is another commonly used method for the trend analysis of hydrometeorological
variables [18–20]. Change point analysis aims to identify significant breakpoints in time
series, and the non-parametric Pettitt test has been widely utilized in the literature [21–23].
The Cross-Wavelet Transform is a novel multiscale analysis technique developed based on
traditional wavelet analysis [24–26]. It not only efficiently analyzes the degree of correlation
between two time series but also reflects their phase structure and fine features in both the
time and frequency domains.

Dongting Lake, the second largest freshwater lake in China, is situated in the middle
of the Yangtze River basin. The Dongting Lake basin, as a region with significant climate
change within the Yangtze River basin, is also one of the most severely affected areas
by flooding disasters [27]. The dynamic mechanisms linking climate warming and the
exacerbation of floods, especially under the ongoing trend of rising temperatures, have
become an urgent scientific issue that needs to be addressed. However, there are a limited
number of studies on the trend analysis of various hydrometeorological parameters in the
Dongting Lake basin.

Wang Guojie et al. [27] used the non-parametric Mann–Kendall (MK) test to analyze
temperature, rainfall, and evapotranspiration trends in the Dongting Lake basin from 1960
to 2003. They found a significant warming trend in spring, autumn, and winter. They also
noted increased annual rainfall and decreasing evapotranspiration. Xu Weihong et al. [28]
employed the MK test and co-kriging interpolation to study rainfall variations from 1960
to 2011. They identified a decrease in annual rainfall, with changes in seasonal patterns. Li
Jinggang [29] analyzed temperature changes in spring, autumn, and winter using meteo-
rological statistics and GIS interpolation. The study showed significant warming in these
seasons, particularly in spring. Zhang Meng et al. [30] examined surface evapotranspiration
from 2000 to 2014 using MOD16 data. They discovered spatial variations and an overall
decrease in average evapotranspiration.

These studies primarily focused on individual climatic factors, with some lacking
periodic analysis. At the same time, the analysis of trends, abrupt changes, and periodicity
in hydro-meteorological factors serves as a foundational step in constructing drought pre-
diction models [31] and hydroclimate models [32]. The goal of this study is to investigate
the spatiotemporal trends and abrupt changes in maximum, minimum, and mean tempera-
tures, rainfall, evapotranspiration, and their potential relationships in the Dongting Lake
basin, utilizing hydro-meteorological data spanning from 1960 to 2019.

2. Materials and Methods
2.1. Study Area

The Dongting Lake basin (24◦35′–30◦27′ N, 107◦13′–114◦18′ E) is the largest lake
watershed in China, covering a total area of 26.3 × 104 km2, accounting for 14.6% of
the Yangtze River basin. The basin consists of sub-basins including the Dongting Lake
area, Xiang River, Zi River, Yuan River, and Li River. It spans parts of Guizhou, Guangxi,
Chongqing, Hubei, Jiangxi, and Guangdong provinces, as well as the entire province of
Hunan. Hunan province alone covers 21.18 × 104 km2, which accounts for 80.61% of the
Dongting Lake basin area (Figure 1). The Dongting Lake basin has a complex and diverse
topographic variety, with its eastern, western, and southern sides surrounded by mountains,
whose elevations range from 19 to 2558 m. The Dongting Lake basin experiences a typical
continental subtropical monsoon climate, hot and rainy summers, and dry and cool winters.
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The climate exhibits significant interannual variations, with annual average temperatures
ranging from 15 ◦C to 18 ◦C. Annual rainfall shows a substantial variation and uneven
distribution, ranging from 1148 mm to 1837 mm [33]. In China, where the average annual
precipitation is 630 mm, the Dongting Lake basin is considered to be an area with abundant
rainfall. Figure 1 illustrates the study area, reservoirs, and selected meteorological stations
utilized in this research.
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2.2. Data Source and Processing

The data for maximum, average, and minimum temperatures, rainfall, and evapo-
ration utilized in this study were obtained from the China Meteorological Science Data
Sharing Service Network (http://data.cma.cn (accessed on 1 February 2021)). Quality
control procedures were applied to all station data, including a manual review process in
which station data with a missing rate exceeding 20% were excluded. South Yue Station
is located at an elevation of 1268.5 m, significantly higher than the elevations of other
surrounding meteorological stations. Due to its windward-slope topography, this station
experiences orographic rainfall effects, resulting in an annual precipitation of 2051.3 mm,
which significantly deviates from the annual precipitation observed at neighboring me-
teorological stations. As a result, data from this station were not included in the rainfall
analysis. Additionally, the quality control process addressed the identification and han-
dling of possible outliers. The streamflow data used in this study were acquired from
the Chenglingji hydrological station, which serves as the outlet control station for the
Dongting Lake basin. The hydrometeorological data cover the period from January 1960
to December 2019. The reservoir data were obtained from the study conducted by Song
et al. [34] (https://essd.copernicus.org/articles/14/4017/2022/ (accessed on 1 February
2021)). Considering the climatic characteristics of the Dongting Lake basin, this study
defined four seasons: spring (March to May, SP), summer (June to September, SU), autumn
(October to November, AU), and winter (December of the current year to February of the
following year, WI).

http://data.cma.cn
https://essd.copernicus.org/articles/14/4017/2022/
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2.3. Methods
2.3.1. Non-Parametric Mann–Kendall (MK) Test

We used the non-parametric time series trend test proposed by Mann–Kendall [35,36]
to detect potential trends in the century-long precipitation series. The MK trend test requires
the assumption of a null hypothesis (assuming that the sequence has no significant trend)
and an alternative hypothesis (assuming that the sequence has a significant upward or
downward trend). The statistical test statistic s and its variance var(s) in the MK trend test
are calculated using the following formulas:

S =
n=1

∑
i=1

n

∑
t=i+1

G(ϕ) (1)

G(ϕ) = sgn(xt − xi) =


1 (xt − xi) > 0
0 (xt − xi) = 0
−1 (xt − xi) < 0

(2)

var(s) =
[n(n− 1)(2n + 5)−

m
∑

i=1
ri(ri − 1)(2ri + 5)]

18
(3)

In the equation, x represents the time series variable; n is the number of variables in
the sequence; sgn(xt − xi) is the sign function; m represents the number of repeated data
groups in the sequence; and ri represents the number of repeated data in the i-th group.

To perform a significance test, the statistic is standardized. The formula for the statistic
Z is as follows:

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0
(4)

At a given significance level, α = 0.05; if |Z| > Z1−α/2, the null hypothesis is rejected.
This indicates the presence of a significant upward trend. If the test statistic S is less than the
negative of the critical value −Zα/2, the null hypothesis is rejected, indicating a significant
downward trend. Conversely, if the test statistic S falls within the range between −Zα/2
and Zα/2, the null hypothesis is accepted.

2.3.2. Modified Mann–Kendall (MMK) Test

MMK is a method proposed by Hamed and Rao (1998) to address the issue of serial
correlation in time series data. They suggested using a variance correction method to
improve trend analysis. By incorporating lagged values into the function, considering
significant lags up to the nth lag, the accuracy of trend detection is further enhanced [13].

MMK primarily focuses on modifying the variance formula in order to replace the
original variance in MK. It aims to correct the errors caused by autocorrelation between the
observed data. The modified variance formula, denoted as var(s)*, is calculated as follows:

var(s)∗ = var(s)[1 +
2

n(n− 1)(n− 2)

n−1

∑
i=1

(n− i)(n− i− 1)(n− i− 2)WS(i)] (5)

WS(i) =

n
n−1
∑

j−1
(xj − x)(xj+1 − x)

(n− i)
n
∑

j=1
(xj − x)2

(6)

In the equation, n represents the number of observed values, and Ws(i) represents the
autocorrelation function of the observed sequence.
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In this study, a significance level of α = 0.05 is chosen, which means that Z1−α/2 = 1.96,
and when |Z| > 1.96, the sequence exhibits a significant upward or downward trend.
Conversely, there is no significant trend [13].

2.3.3. Non-Parametric Pettitt Test

Pettitt [37] proposed a non-parametric approach to identify change points in a time
series. It is a rank-based, distribution-free test which detects a significant change in the
mean of a time series. Similar to the MK method, a rank sequence is constructed following
Equation (1). However, there are three different definitions for mi, depending on the
three cases:

mi =


+1 xi > xj

0 xi = xj

−1 xi < xj

j = 1, 2, . . . , i (7)

In the given context, the rank sequence dk represents the cumulative count of instances
where the value at time i is greater or less than the value at time j. The Pettitt method directly
utilizes the rank sequence to detect change points. If the time t0 satisfies the condition

kt0 = Max|dk| k = 2, 3, 4, . . . , n (8)

then the mutation point is at point t0.

P = 2 exp

(
−6K2

t0

n3 + n2

)
(9)

When P ≤ 0.5, then the detected mutation point is considered statistically significant.
In addition, sequential versions of the MK test statistic [38,39] have been used to validate
the change points obtained using the Pettitt test.

2.3.4. Sen’s Slope (SS) Test

Sen’s slope estimator is a non-parametric method proposed and developed by Sen [40]
in 1968 for estimating the trend slope of N pairs of data out of n samples.

Qi =
xj − xk

j− k
(i = 1, 2, . . . , N) (10)

In the equation, xj and xk represent the time series values of the jth and kth samples,

respectively (j > k). If there is only one observation in each time period, then N = n(n−1)
2 ,

where n is the number of time periods. However, if there are multiple observations within
one or more time periods, then N < n(n−1)

2 .
Arranging the N Qi values in ascending order, the median of Sen’s slope estimates

can be calculated as follows:

Qmed =

{
Q[(N + 1)/2]

Q[N/2]+Q[(N+1)/2]
2

N is odd
N is even

(11)

The sign of Qmed reflects the direction of the data trend, while the magnitude of Q
reflects the magnitude of the trend.

2.3.5. Wavelet Analysis

Air temperature, precipitation, and discharge time-series are rarely stationary and they
consist of a broad set of transient patterns varying within the temporal record. The wavelet
transform allows the transient patterns recorded in such non-stationary time-series to be
localized in both time and periodicity. It thus provides a complete time-scale representation
of localized and transient phenomena occurring at different time-scales [41]. In this research,
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we make use of the Morlet wavelet, which was successfully used in the past to analyze
precipitation, temperature, and discharge time-series [42–44].

(1) The Continuous Wavelet Transform (CWT)

The CWT [45] is based on the concept of wavelets, which are localized oscillatory
functions that are well-suited for capturing localized features in a signal. The transform
involves convolving the signal with a family of scaled and translated wavelet functions,
known as the analyzing wavelet. These wavelet functions are generated by dilating and
translating a mother wavelet function.

Mathematically, the Continuous Wavelet Transform of a signal x(t) with respect to a
wavelet function ψ(a, b) is given by the following integral:

CWT(a, b) =
1√
a

∫
x(t)∗ψ∗(t− b)dt (12)

where * denotes the complex conjugate, a represents the scale parameter that controls
the dilation of the wavelet function, b represents the translation parameter that shifts
the wavelet function along the time axis, and ψ∗(t− b) is the complex conjugate of the
wavelet function.

The resulting CWT coefficients represent the strength and phase information of the
signal at different scales and positions in time. By varying the scale and position parame-
ters, the CWT provides a time–frequency representation of the signal, revealing how the
frequency content of the signal evolves over time.

(2) The Cross-Wavelet Transform (XWT)

XWT [24] combines the concepts of wavelet transform and cross-spectral analysis,
allowing for the exploration of the correlation between two time series in both the time and
frequency domains. Assuming that WX

n (s) and WY
n (s) represent the Continuous-Wavelet

Transform (CWT) of two time series X = {x1 , x1, · · ·, xn} and Y = {y1 , y1, · · ·, yn}, the
Cross-Wavelet Transform between them is given by WXY

n (s) = WX
n (s)WY∗

n (s). WY∗
n (s)

represents the complex conjugate of WY
n (s), and “s” represents the time lag (also known

as the time shift). The cross-wavelet power spectrum can be defined as
∣∣WXY

n (s)
∣∣, the

following field containing time–frequency–amplitude information, and a higher value
indicates a higher level of correlation between the two time-series. For two stationary
random processes, the normalized form of the XWT can be written as the wavelet cross-
correlation coefficient:

r(X, Y) =

n
∑

i=1
(WX

i (s)−WX
i (s))(WY

i (s)−WY
i (s))√

n
∑

i=1
(WX

i (s)−WX
i (s))

2
√

n
∑

i=1
(WY

i (s)−WY
i (s))

2
(13)

Another quantity used to reflect the degree of coherence between two wavelet trans-
forms in the time–frequency domain is the Wavelet Coherence (WTC). In this study, the Mor-
let wavelet is chosen as the wavelet basis function to reflect the time–frequency structural
characteristics of the correlation oscillations between the two time-series after undergoing
wavelet transformation in both the time and frequency domains.

2.3.6. Method of Spatial Interpolation

Spatial interpolation was employed to estimate values at unsampled locations based on
the observed data points. Kriging, a geostatistical interpolation technique, which estimates
values in unknown regions by considering both the distance and degree of variation
between known data points [46]. Kriging considers not only the spatial autocorrelation but
also the variance between data points, providing more accurate predictions.

The Kriging process involves creating a mathematical model that characterizes the
spatial correlation structure of the variable under consideration. In our study, Kriging
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was applied to generate spatial fields for the variables of interest, including temperature,
rainfall, and evapotranspiration.

This interpolation method is advantageous as it considers both the spatial trends and the
uncertainty associated with the predictions, offering a robust spatial estimation technique.

3. Results and Analysis
3.1. Temperature

Figure 2 illustrates the spatial variation in annual temperature parameters, including
daily maximum (Tmax), average (Tmean), and minimum (Tmin) temperatures, across the
Dongting Lake basin from 1960 to 2019. The data reveal notable distinctions in temperature
distributions within the basin. Tmax displays a clear gradient pattern, with the highest
values recorded at the Daoxian meteorological station in Hunan and the lowest at the
Sansui meteorological station in the mountainous area of Guizhou. As we move from the
peripheral hills towards the interior plains, Tmax gradually increases, while it decreases
with increasing latitude. Tmin exhibits a similar trend to Tmax, reflecting lower tempera-
tures in the eastern, western, and northern regions, while the southern region experiences
the highest Tmin values, consistent with Tmean. In terms of Tmean, higher temperatures
are observed in the southern region with lower latitudes and the central–northern plains.
These temperature patterns gradually decrease from the southeast to the northwest, with
the southern region having temperatures around 17–18 ◦C and the northwestern areas in
Xiangxi recording temperatures below 16.5 ◦C.

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 26 
 

 

1

2 2

1 1

( ( ) ( ))( ( ) ( ))
r( , )

( ( ) ( )) ( ( ) ( ))

n
X X Y Y
i i i i

i
n n

X X Y Y
i i i i

i i

W s W s W s W s
X Y

W s W s W s W s

=

= =

− −
=

− −



 

 
(3)

Another quantity used to reflect the degree of coherence between two wavelet trans-
forms in the time–frequency domain is the Wavelet Coherence (WTC). In this study, the 
Morlet wavelet is chosen as the wavelet basis function to reflect the time–frequency struc-
tural characteristics of the correlation oscillations between the two time-series after un-
dergoing wavelet transformation in both the time and frequency domains. 

2.3.6. Method of Spatial Interpolation 
Spatial interpolation was employed to estimate values at unsampled locations based 

on the observed data points. Kriging, a geostatistical interpolation technique, which esti-
mates values in unknown regions by considering both the distance and degree of variation 
between known data points [46]. Kriging considers not only the spatial autocorrelation 
but also the variance between data points, providing more accurate predictions. 

The Kriging process involves creating a mathematical model that characterizes the 
spatial correlation structure of the variable under consideration. In our study, Kriging was 
applied to generate spatial fields for the variables of interest, including temperature, rain-
fall, and evapotranspiration. 

This interpolation method is advantageous as it considers both the spatial trends and 
the uncertainty associated with the predictions, offering a robust spatial estimation tech-
nique. 

3. Results and Analysis 
3.1. Temperature 

Figure 2 illustrates the spatial variation in annual temperature parameters, including 
daily maximum (Tmax), average (Tmean), and minimum (Tmin) temperatures, across the 
Dongting Lake basin from 1960 to 2019. The data reveal notable distinctions in tempera-
ture distributions within the basin. Tmax displays a clear gradient pattern, with the high-
est values recorded at the Daoxian meteorological station in Hunan and the lowest at the 
Sansui meteorological station in the mountainous area of Guizhou. As we move from the 
peripheral hills towards the interior plains, Tmax gradually increases, while it decreases 
with increasing latitude. Tmin exhibits a similar trend to Tmax, reflecting lower tempera-
tures in the eastern, western, and northern regions, while the southern region experiences 
the highest Tmin values, consistent with Tmean. In terms of Tmean, higher temperatures 
are observed in the southern region with lower latitudes and the central–northern plains. 
These temperature patterns gradually decrease from the southeast to the northwest, with 
the southern region having temperatures around 17–18 °C and the northwestern areas in 
Xiangxi recording temperatures below 16.5 °C. 

 
Figure 2. The spatial distribution of annual average maximum, average, and minimum tempera-
tures in the Dongting Lake basin. 
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in the Dongting Lake basin.

The results of the non-parametric MK test (for serially independent series), the MMK
test (for serially correlated series), and the SS test (trend magnitude) applied to monthly,
annual, and seasonal time-series for various temperature datasets are presented in Figures 3–5.
Figure 3 illustrates that the Tmax time-series during spring exhibits a significant increasing
trend, indicating a warming trend in spring temperatures. Moreover, the Tmax time
series for January displayed a decreasing trend, while increasing trends were observed
for the other months. Regarding the Tmean time series, excluding the summer season,
a significant increasing trend was observed in the spring, autumn, winter, and annual
time-series. Specifically, the average temperature exhibited the most significant increase
in March, April, and October (Figure 4). However, the Tmean time series for August
displayed a decreasing trend, while the other months showed increasing trends. In Figure 5,
the Tmin time series showed a significant decreasing trend in July and August, resulting in
a negative trend for Tmin during the summer season. Overall, the Tmax monthly, annual,
and seasonal time-series indicated an increasing trend, while the Tmin monthly, annual,
and seasonal time-series displayed a decreasing trend at two grid points.
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Figures 3–5 also present the slope values indicating the magnitude of trends for the
monthly, seasonal, and annual time series of Tmax, Tmean, and Tmin at the meteorological
stations. The average Tmax, Tmean, and Tmin time series in the basin exhibited increasing
trends in both the seasonal and annual data. Among them, the spring season displayed the
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highest growth rate, with Tmax, Tmean, and Tmin increasing at rates of 0.312 ◦C, 0.252 ◦C,
and 0.27 ◦C per quarter, respectively. On the other hand, the summer season had the
lowest growth rate, with Tmax, Tmean, and Tmin increasing at rates of 0.042 ◦C, 0.06 ◦C,
and 0.138 ◦C per quarter, respectively. From the graphs, it can be observed that Tmin
showed more increasing trends compared with Tmax and Tmean, except in the spring
season. Overall, the annual time series for Tmax, Tmean, and Tmin exhibited growth
rates of 0.168 ◦C, 0.18 ◦C, and 0.222 ◦C per year, respectively. All temperature time series
demonstrated slightly higher growth rates in the spring and winter seasons, with the Tmin
time series in winter showing a more pronounced increasing trend. The values obtained
from the SS test complemented the trend characteristics observed from the MK test results
in different time series.

3.2. Rainfall

The spatial distribution of annual rainfall in the Dongting Lake Basin is depicted
in Figure 6. The central, southern, and eastern regions of the basin experience relatively
abundant rainfall, while the western regions receive less precipitation. There is a gradual
decrease in rainfall from the southeast to the northwest. Areas such as Anhua, Pingjiang,
and Zhuzhou receive higher annual rainfall, averaging over 1500 mm. The primary sources
of water for the Dongting Lake basin are the regions located at the eastern and western ends
of the Pacific Equator, the eastern Pacific Ocean, and the northern part of the Indian Ocean.
As a result of monsoonal storms predominantly impacting the southern and southeastern
parts of the catchment area, the southern region receives higher rainfall. Moreover, the hilly
terrain at the southern edge of the basin acts as a barrier, hindering the moisture-laden
winds flowing from the southeast to the north. Therefore, the annual precipitation in the
southern region of the catchment area averages over 1500 mm, while in the western region,
the annual precipitation is at its lowest, below 1200 mm.
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The study first conducted tests to examine the existence of sequential correlation
among various rainfall time series from 30 meteorological stations within the basin and
the average basin rainfall values. Subsequently, non-parametric MK tests (for serially
independent series), MMK tests (for serially correlated series), and SS tests (for trend
magnitude) were applied to the monthly, annual, and seasonal time-series of various
temperature datasets based on the test results, as shown in Figure 7. The results indicate
that significant sequential correlation is only present in the annual time series at the
Yuanling weather station, while monthly, seasonal, and annual time-series at all other
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weather stations do not exhibit significant sequential correlation. The trend analysis reveals
that in April, 12 out of the 30 meteorological stations display a significant decreasing trend
in their time series (Figure 7d). Additionally, in October, four meteorological stations show
a pronounced decreasing trend in rainfall time series (Figure 7j). On the other hand, the
time series for January, March, June, and July display sporadic increasing trends at scattered
grid points, with significant summer trends observed in the central region and significant
winter trends in the northeastern region at a 5% level of significance.

During spring and autumn, a majority of the meteorological stations exhibited a
decreasing trend in rainfall time series (Figure 7m,o). Specifically, the decreasing trend in
spring was observed in the central and western regions, while in autumn, it was prevalent in
all regions except for certain parts of the north. The analysis of temperature trends suggests
that the decreasing temperature trend in July and August may enhance the process of
cloud condensation in the region, leading to a significant increase in summer rainfall.
Conversely, the warming trend in spring may weaken the condensation of moisture in the
air, resulting in a decreasing trend in spring rainfall. However, it is important to note that
the performance of regional-scale rainfall is influenced by various factors at both regional
and global scales, including aerosols, greenhouse gas concentrations, land cover changes,
and ENSO (El Niño–Southern Oscillation), among others.

In general, the trend analysis of annual total rainfall in the region indicates an increas-
ing trend over time. However, there are specific seasonal variations observed. The trend
analysis results reveal a decreasing trend and drier conditions in the spring and autumn
seasons. The southern part of the basin receives the highest rainfall, with an increasing
trend in annual rainfall. On the other hand, the western part of the region exhibits rela-
tively lower rainfall and shows a further decreasing trend in annual rainfall. Figure 7 also
provides the results of the SS test, which show the trend magnitudes of monthly, annual,
and seasonal rainfall time series for the 30 grid points. From the figure, it can be observed
that the trend magnitudes of the December time series are nearly zero for all the grids
and the basin average. The analysis further indicates that the summer, winter, and annual
average rainfall in the Dongting Lake basin are increasing at rates of 31.2 mm, 4.2 mm, and
10.2 mm per quarter, respectively. On the other hand, the rainfall in spring and autumn
shows a decreasing trend of 7.8 mm and 3 mm per quarter, respectively. Overall, the results
obtained from the SS test are consistent with the findings of the MK test, providing further
support for the observed rainfall trends in the region.

In addition to analyzing the temporal trends of rainfall time series, the study also
investigated the occurrence of change points in the annual time series spanning from 1960
to 2019. Table 1 summarizes the change points in the annual rainfall series obtained through
the Pettitt test for each meteorological station. The table presents the year of the change
point, its corresponding p-value, and the change in the average annual value following
the change point. Among the 30 meteorological stations, the majority of change points
were observed around 1989 and 1993. In 1993, a change in the annual average rainfall was
observed for the entire basin based on calculations using the Thiessen polygon method
with data from the 30 meteorological stations. Figure 8 provides an illustration of the
evaluation of the annual average rainfall time series in the basin, utilizing the Pettitt test
statistic and the plot of the series values against time for the MK test statistic. While the
Pettitt test statistic reaches its maximum value in 1993, indicating a change point, the plot of
the MK test statistic displays a pattern of continuous increases and decreases. Nevertheless,
the MK-Z value continues to rise after 1993, confirming the change point identified by
the Pettitt test. Hence, it can be confidently stated that 1993 marks the change point for
annual rainfall in the Dongting Lake basin. Furthermore, with the exception of seven
meteorological stations, the annual rainfall at the remaining twenty-three stations exhibits
a positive shift. Figure 9 visualizes the changes in the annual rainfall time series before and
after the identified change point. It reveals an increase from 1376.8 mm before the change to
1437.3 mm after the change, indicating a rise of 60.5 mm since 1993. This increase accounts
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for approximately 4% of the pre-change average annual rainfall, signifying a relatively
modest change.
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Table 1. Summary of Pettitt test results for annual rainfall at meteorological stations.

Stations n p-Value Year Variation

LaiFeng 60 0.516 24 −98.3
Sangzhi 60 0.979 33 55.9
Shimen 60 0.804 52 126.8

Jianli 60 0.336 20 131.7
Nanxian 60 0.638 27 60.2
Yueyang 60 0.211 27 144.4
Baojing 60 0.734 18 −90.8
Jishou 60 0.495 52 223

Yuanling 60 0.715 50 140.3
Anhua 60 0.423 29 105.9

Yuanjiang 60 0.686 29 68.7
Xiangyin 60 0.722 29 96.3
Changsha 60 0.103 29 119.9
Pingjiang 60 0.46 43 −106.9
Tongren 60 0.842 52 133.3
Zhijiang 60 0.551 13 −116.5

Xupu 60 0.523 30 91
Xinhua 60 0.092 29 135

Shaoyang 60 0.828 28 57.5
Shuangfeng 60 0.34 27 68.2

Youxian 60 0.576 20 124.7
Zhuzhou 60 0.114 30 142.5

Kaili 60 0.794 18 −62.3
Sansui 60 0.558 23 −68

Tongdao 60 0.336 8 239.5
Yongzhou 60 0.658 52 159.1
Hengyang 60 0.774 47 −114.5
Guidong 60 0.223 33 140.3
Daoxian 60 0.466 52 319.3

Jiahe 60 0.842 33 64.5
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3.3. Runoff

During the period spanning from 1960 to 2019, the annual runoff in the Dongting
Lake basin, measured at the Chenglingji hydrological station at the basin’s outlet, exhibited
a range of variability between 1475.4 and 4007.9 × 108 m3. Based on the results of the
autocorrelation test presented in Table 2, significant serial correlations were found in the
October and autumn runoff time series. Specifically, the runoff time series for January,
February, and winter exhibit significant increasing trends at a 5% significance level, while
the other months, seasons, and the annual time-series show decreasing trends. The results
of the SS test in Table 2 indicate a significant decreasing trend in the annual runoff time
series, with a decrease rate of 11,573 m3 per year. The spring, summer, and autumn runoff
sequences also show decreasing trends at rates of 1544.7 m3, 5436.5 m3, and 7971.1 m3

per year, respectively, while the winter runoff sequence displays an increasing trend at a
rate of 1287 m3 per year. Overall, a decreasing trend is observed in most of the runoff in
the Dongting Lake basin, highlighting the need for careful planning and efficient water
resource systems in the region.

Table 2. Results of series correlation, MK, MMK, SS, and Pettitt tests at Chenglingji hydrographic
station, 1960–2019.

Time Series Correlation MK/MMK Test (Z) SS Test (β) p-Value Year Shift

Jan independent 3.31 756.8 0.003 9 +
Feb independent 2.4 596.8 0.023 9 +
Mar independent 1.89 1013.4 0.051 0 +
Apr independent −1.32 −870.1 0.382 9 -
May independent −1.82 −1711.6 0.01 8 -
Jun independent −0.47 −428.9 0.544 5 -
Jul independent −1.78 −2525.2 0.134 0 -

Aug independent −2.21 −2303.7 0.065 0 -
Sep independent −3.62 −3616.1 0.012 0 -
Oct correlation −5.59 −3279 0 0 -
Nov independent −2.61 −1378.5 0.026 4 -
Dec independent −0.39 −103.4 0.243 1 -

Spring independent −0.99 −1544.7 0.402 8 +
Summer independent −2.24 −5436.5 0.099 0 -
Autumn correlation −4.81 −7971.1 0 0 -
Winter independent 2.15 1287.3 0.013 9 -
Annual independent −2.54 −11,573.7 0.023 4 -
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Table 2 presents the results of the Pettitt test, and Figure 10 displays the test statistic
plot. The analysis reveals a significant change in annual runoff occurring in 1983, as
evidenced by the observed change point being statistically significant at the 5% level with
a p-value of 0.023, which is lower than 0.05. The results of the consecutive MK test further
support the identification of the change point established by the Pettitt test. Figure 11
illustrates the MK-Z values, illustrating the variations in annual runoff over the specified
period. It is noticeable that the annual runoff displayed an increasing trend prior to 1983,
followed by a decreasing trend until approximately 1990, with a slight increase in the
subsequent decade and a sharp decline from 2003 to 2019. Hence, it is justifiable to consider
1983 as the change point for the annual runoff at the Chenglingji hydrological station in
the Dongting Lake basin. The annual runoff time series at the basin outlet experienced
a decrease in 1983, and the average annual runoff decreased by 376.7 × 108 m3 after the
change point (Figure 11).
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3.4. Evapotranspiration

Evaporation, as a key element in the water cycle, plays a crucial role in hydrological
and meteorological processes. In the Dongting Lake basin, the results of autocorrelation
tests on monthly, seasonal, and annual time-series of evaporation from 31 meteorological
stations indicate that there is significant serial correlation in the average series for the
northern region in the months of January, February, March, April, May, and November,
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while the southern region shows a significant serial correlation only in July. Based on
the results of serial correlation, MK (or MMK) and SS tests were conducted, as shown in
Figure 12.
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in the Dongting Lake basin. The units for Sen’s slope are as follows: monthly trend (mm/month),
quarterly trend (mm/quarter), and annual trend (mm/year).

From the figure, it can be observed that there are significant increasing trends in the
ET (evapotranspiration) time-series during the spring and winter seasons. Furthermore,
a significant increasing trend in annual ET was observed at 12 meteorological stations in
the northern part of the Dongting Lake basin. As shown in Figure 12, the SS test results
indicate increasing trends in ET for the spring, autumn, winter, and annual time-series in
the basin, with growth rates of 5.11 mm, 2.22 mm, 4.66 mm per quarter, and 4.44 mm per
year, respectively. However, there is a decreasing trend in summer, with a reduction rate of
2.91 mm.
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3.5. Cross-Wavelet Analysis of Rainfall, Temperature, and Runoff

The Morlet wavelet function was employed to perform wavelet transforms on the
annual rainfall, annual average temperature, and annual runoff in the Dongting Lake basin.
The continuous wavelet spectra of these variables from 1960 to 2019 were obtained and
are visualized in Figure 13. In the figure, the red and blue colors represent the peaks and
valleys of the energy density, respectively, reflecting the local and dynamic characteristics
of the time–frequency transformation of the dominant wavelet components. The darkness
or lightness of the colors indicates the relative changes in energy density. The thick solid
black line represents the 95% confidence interval boundary, indicating that it has passed
the red noise test. The thin solid black line represents the wavelet cone of influence
boundary, which denotes the areas more affected by the edge effects of the continuous
wavelet transform data [24].
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Figure 13. Continuous wavelet analysis of rainfall (a), temperature (b), and runoff (c).

Continuous wavelet analysis was employed to investigate the periodicity of annual rainfall,
annual mean temperature, and annual runoff in the Dongting Lake basin. Figure 13a reveals
that the annual rainfall in the basin exhibits one cycle, with a period of approximately 1 year
around 2010. Figure 13b indicates that the annual mean temperature demonstrates two
cycles: a cycle of around 1–2 a from 1961 to 1970 and another cycle of approximately 3–4 a
from 1994 to 2000. Figure 13c shows that the annual runoff at the Chenglingji hydrological
station displays a single cycle, with a period of approximately 7a around 1980. It is worth
noting that the periodicity of annual rainfall and annual runoff in the Dongting Lake basin
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exhibit similarity, with the cycle of annual runoff occurring roughly 30 a earlier than that of
annual rainfall.

By employing cross-wavelet transform and wavelet coherence analysis on the coeffi-
cients derived from the continuous wavelet transform of rainfall, temperature, and annual
runoff in the Dongting Lake basin, the wavelet coherence spectra between these variables
were examined. The significance of the coherence spectra was evaluated using the standard
spectra, enabling the exploration of their correlation in the time–frequency domain across
various time scales [47]. The results are illustrated in Figure 14. In Figure 14, the direction of
the arrows indicates the phase relationship between rainfall and runoff, as well as tempera-
ture and runoff. Arrows pointing from left to right (→) indicate that the variables change
in the same phase and exhibit a positive correlation. Arrows pointing from right to left (←)
indicate an anti-phase relationship and a negative correlation. Arrows pointing vertically
downward (↓) and upward (↑) represent the wavelet transform of rainfall and temperature
leading and lagging runoff by a quarter of a 20-period cycle, demonstrating a nonlinear
correlation [48]. The region encompassed by the fine arcs in the figure corresponds to
significant spectral values.
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Figure 14. Cross-wavelet transform and wavelet coherence between the Dongting Lake basin annual
rainfall and annual runoff (a,c), and average temperature and annual runoff (b,d).
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Figure 14a,c displays the cross-wavelet power spectrum and wavelet coherence spec-
trum between annual precipitation in the Dongting Lake basin and annual discharge at
the Chenglingji station. From the cross-wavelet energy spectrum in Figure 14a, two sig-
nificant features are observed: 1⃝ A period of 6–8 years (1973–1986), demonstrating a
strong positive correlation with high energy concentrated mainly around the 7a cycle in the
mid-to-high-frequency range, gradually transitioning from low to high frequencies. 2⃝ Res-
onance periods of 1–2a (2008–2012), 2–4a (1968–1975), and 3–5a (1998–2002), characterized
by relatively small regions in the confidence test, indicating intermittent quasi-periodic
oscillations. The cross-wavelet coherence spectrum in Figure 14c reveals a strong positive
correlation. The regions that pass the significance test account for more than 90% of the
entire wavelet cone of influence. In the high-frequency region with a 3a cycle, a mutation
in the resonance period occurred around 1988 and the years around 2005.

The annual precipitation in the Dongting Lake basin exhibits a very strong positive
correlation with the annual discharge at the Chenglingji station. More than 90% of the entire
wavelet cone of influence passed the significance test, indicating a significant relationship
between the basin’s precipitation and discharge. This suggests that precipitation plays a
substantial role in supplying the basin’s discharge. In the high-frequency region with a
4a cycle, a resonance period mutation occurred around 1973 and the years around 2005,
signifying a transition between “abundance” and “dry” periods in the Dongting Lake basin
during that time frame.

Figure 14b,d illustrates the cross-wavelet power spectrum and wavelet coherence
spectrum between the annual average temperature in the Dongting Lake basin and the
annual discharge at the Chenglingji station. From the cross-wavelet energy spectrum in
Figure 14b, two significant features pass the 90% confidence test: 1⃝ Periods of approx-
imately 1–2a (around 1965–1969 and between 1977–1993), with phase angles showing a
nearly positive correlation. 2⃝ A period of 3–5a (1996–2001), exhibiting an approximately
positive correlation with a phase angle. The relationship experienced a phase transition
around 1990 and the years around 2005. In the earlier time domain, before 1990, there was
a negative correlation between discharge and temperature changes, while after 1990, a
positive correlation emerged. In the later time domain, the phase angles were relatively
chaotic. The cross-wavelet coherence spectrum in Figure 14d shows a negative correla-
tion within the 6–10a scale (1968–1986) and a positive correlation within the 4–6a scale
(1996–2004). The distributions of high energy and phase angle direction are very close,
indicating intermittent quasi-periodic oscillations.

The response of annual mean discharge to changes in annual mean temperature is
negatively correlated, indicating that a short-term increase in temperature leads to increased
evaporation within the basin, subsequently reducing the contribution to river discharge.
Conversely, the annual mean temperature is positively correlated with the annual mean
discharge, suggesting that warming intensifies snow and ice melt, thereby increasing the
contribution to river discharge.

4. Discussion

The objective of this study was to assess the spatial and temporal patterns, as well as
the cyclic variations, in the monthly, seasonal, and annual time series of maximum, mini-
mum, and average temperatures, rainfall, runoff, and evapotranspiration in the Dongting
Lake basin. The temperature trends observed at the watershed scale are not consistent
with the results of studies conducted by some scholars at the watershed scale. In Zhou
Hui’s study [49] on the temperature in the Dongting Lake basin from 1960 to 2013, it was
indicated that the average temperatures in spring, summer, autumn, and winter exhibited
a gradual upward trend, with the most significant temperature increase observed in win-
ter. However, this current study reveals that the highest increase in Tmean is observed
in spring, emphasizing a notable warm spring phenomenon, while the warming trend
in summer within the basin is not significant. The magnitude of temperature increase
shows inconsistency with Zhou Hui’s research but generally aligns with the findings of Li
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Jinggang et al. [29]. However, neither of these studies considered the changing trends in
Tmax and Tmin time series.

Inconsistent trends were observed in rainfall patterns across different seasons, with
a majority of meteorological stations showing a decreasing trend in spring and autumn
rainfall, while summer and winter rainfall exhibited an increasing trend. It is worth noting
that the rainfall trends in winter, spring, and autumn are synchronous with the runoff
trends, while the rainfall trends in summer are opposite to the concurrent runoff trends.
This aligns with the findings of Xu Weihong et al. [28] regarding annual rainfall in the
Dongting Lake basin from 1960 to 2011.

Given the significant influence of the Asian monsoon climate, summer rainfall con-
tributes substantially to the total annual rainfall in the Dongting Lake Basin. The increasing
trend in summer rainfall suggests an adequate amount of rainfall during the wet season.
On the other hand, the decreasing trend in spring and autumn rainfall indicates drier
conditions during the dry seasons, which can lead to a significant freshwater shortage
in the region. This highlights the importance of effective water resource management
strategies during the dry seasons. However, when examining the runoff trends, a consistent
decline was observed across all seasons. The interannual variability of annual runoff in
Dongting Lake is influenced by a combination of factors, including climate change and
human activities. Climate change can bring about alterations in hydrological conditions at
the basin outlet through changes in rainfall patterns, evaporation rates, temperature fluctu-
ations, and other related factors. Simultaneously, human activities, such as the construction
of dams, reservoir operations, landscape reconstruction, and channel excavation, also play
a role in impacting the variability in annual runoff. These complex factors interact and
contribute to the observed changes in annual runoff in the Dongting Lake basin [50].

4.1. Sen’s Slope Spatial Variability Analysis

The Sen’s slope within the watershed exhibits spatial variation, despite the relatively
small size of the watershed. This spatial variability may be influenced by a variety of
factors. A number of studies [51,52] have explored the effects of topography and elevation
differences on temperature variations within watersheds. Variances in topography and
altitude within the watershed may lead to temperature variations across different regions.
Higher-altitude areas generally tend to exhibit lower temperatures, whereas lower-altitude
regions might experience higher temperatures. The terrain of the Dongting Lake basin is
complex and diverse, surrounded by mountains in the east, west, and south, with altitudes
ranging from 19 to 2588 m; in the central part, the terrain is hilly and basin-like, with
altitudes ranging from 50 to 400 m; and in the northern part, the terrain is a plain, forming
a unique horseshoe shape, with altitudes ranging from 25 to 40 m [53].

Different land use and land cover types, such as forests, agricultural fields, urban
areas, etc., can significantly impact local temperatures [54]. For instance, urban areas often
experience the urban heat island effect, leading to higher temperatures within cities. Over
the past 60 years, land use in the Dongting Lake Basin has changed dramatically. The
presence of water bodies within the watershed (such as lakes, rivers, etc.) can also influence
temperature distribution [54]. Water bodies can absorb and release heat, creating distinct
temperature patterns around aquatic environments. Cheng Gong’s study found a negative
correlation between Hovenia dulcis and air temperature in Dongting Lake Basin [55].

Considering these factors holistically, the diverse spatial pattern of Sen’s slope within
the watershed is reasonable. Future research could delve deeper into analyzing the interac-
tions among these factors to gain a more comprehensive understanding of the mechanisms
underlying temperature variations.

4.2. Impact of Reservoir Construction

Climate change has had a notable impact on runoff patterns in the Dongting Lake
basin. While climate change has generally led to an increase in rainfall, human activities
have contributed to a decrease in runoff, resulting in an overall declining trend. Specifically,
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summer rainfall has increased, and there is a less pronounced warming trend in the region.
Evapotranspiration, which refers to the combined process of water evaporation from the
land surface and transpiration from plants, has decreased over time. This decrease in
evapotranspiration, coupled with the declining trend in runoff, may be attributed to human
activities. Human-induced changes that affect runoff can be categorized into direct impacts,
such as the construction of reservoirs, and indirect impacts, such as changes in land use and
land cover that alter the conditions for runoff generation. As of 2020, the Dongting Lake
basin is home to a considerable number of reservoirs, including 56 large-scale reservoirs
with a total capacity of 421.58 × 108 m3 and 388 medium-sized reservoirs with a total
capacity of 106.31 × 108 m3. The trends in rainfall and runoff show a distinct contrast.
Despite the positive trend in rainfall, there has been a negative trend in the runoff. The
turning point for increased annual rainfall occurred in 1993, while the turning point for
decreased runoff occurred in 1983. From 1985 to 1990, there was a significant increase in
water storage in the reservoirs within the Dongting Lake basin [56]. It is important to note
that the influence of land use and land cover changes on runoff is primarily limited to the
non-monsoon seasons, highlighting the complex interplay between climate change, human
activities, and the hydrological dynamics of the region. Further research and analysis are
necessary to better understand the specific mechanisms and interactions driving these
trends in the Dongting Lake basin, which will contribute to improved water resource
management and sustainable development in the area.

Dam construction plays a significant role in altering the runoff patterns within the
Dongting Lake basin. This human activity, which involves the construction of reservoirs,
has resulted in a decrease in runoff despite an increasing trend in rainfall. Figure 15
demonstrates a notable increase in the total water storage capacity of reservoirs within the
basin over the study period. It is worth noting that the inflection points observed in the
rainfall trend do not align with those observed in the runoff. This indicates that human
activities, such as dam construction, play a dominant role in shaping the temporal patterns
of annual runoff. However, to gain a comprehensive understanding, further research is
necessary to investigate the underlying mechanisms through which these human activities
impact lake runoff. Additionally, it is important to assess the individual contributions of
different factors to the overall changes in runoff within the basin. By conducting detailed
studies and analyses, researchers can shed more light on the specific ways in which human
activities, including dam construction, influence runoff dynamics in the Dongting Lake
basin. This knowledge will be invaluable for effective water resource management and
sustainable development in the region.
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5. Conclusions

The trend and change point analysis was carried out for thirty-one meteorological
stations and one hydrometric station in the Dongting Lake basin over different time periods.
The cross-wavelet transform was used to analyze the correlation between the measured
annual runoff at Chenglingji Hydrological Station and the two influencing factors, and to
reveal the degree of correlation and detailed characteristics at different time and frequency
scales. The main observed findings of the current work can be summarized as follows:

(1) During the study period, the minimum, maximum, and average temperatures showed
an overall increasing trend, with spring temperatures having a significant upward
trend. The annual time series for Tmax, Tmean, and Tmin exhibited growth rates of
0.168 ◦C, 0.18 ◦C, and 0.222 ◦C per year, respectively.

(2) The annual total precipitation in the Dongting Lake basin exhibits a year-by-year
increasing trend at a rate of 10.2 mm per year, while the precipitation during the
spring and autumn seasons shows a decreasing trend at rates of 7.8 mm and 3 mm per
year. The annual runoff at the basin outlet exhibits a clear decreasing trend at rate of
11,573 m3 per year. Furthermore, the long-term time series of evaporation also shows
an increasing trend at rates of 4.44 mm per year. The change points identified using
the non-parametric Pettitt test for annual rainfall and annual runoff were inconsistent,
occurring in 1993 and 1983, respectively.

(3) The annual average temperature and annual runoff in the Dongting Lake basin show
a negative correlation cycle of 6–10a. As the temperature increases, evaporation in the
basin increases, leading to a decrease in runoff. There is also a positive correlation
cycle of 4–6a, where spring warming intensifies glacier melting, resulting in increased
water supply to the rivers. The annual rainfall and annual runoff exhibit a good
positive correlation cycle of 0–12a, indicating that rainfall is a controlling factor for
runoff and is the main source of water supply in the Dongting Lake basin. In the
high-frequency region with a 3a cycle, a mutation in the resonance period occurred
around 1973 and the years around 2005.

The variation in runoff in the Dongting Lake basin is the result of the combined
effects of climate change and human activities. Quantitative investigations on the impacts
of climate change and human activities on water flow will require the integration of
hydrological models for analysis. This will be explored in future research.
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