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Abstract: Understanding and projecting drought, especially in the face of climate change, is crucial for
assessing its impending risks. However, the causes of drought are multifaceted. As the environmental
research paradigm pivots towards machine learning (ML) for predictions, our investigation contrasted
multiple ML techniques to simulate the Standardized Precipitation Evapotranspiration Index (SPEI)
from 2009 to 2022, utilizing various potential evapotranspiration (PET) methods. Our primary
focus was Australia, the world’s driest inhabited continent. Given the challenges with ML model
interpretation, SHAP (SHapley Additive exPlanations) values were employed to decipher SPEI
variations and to gauge the relative importance of precipitation (Prec) and PET in six key Australian
cities. Our findings revealed that while different PET methods resulted in distinct mean values, their
trends remained consistent. Post the Millennium Drought, Australia experienced several drought
events. SPEI discrepancies based on PET methods were minimal in humid regions like Brisbane and
Darwin. However, for arid cities, the Priestley-Taylor equation-driven SPEI differed notably from
other methods. Ridge regression was the most adept at mirroring SPEI changes among the assessed
ML models. Furthermore, the SHAP explainer discerned that PET-related climate variables had a
greater impact on SPEI in drier cities, whereas in humid cities, Prec was more influential. Notably,
the research emphasised CO;'s role in influencing drought dynamics in humid cities. These insights
are invaluable for enhancing drought mitigation strategies and refining predictive models. Such
revelations are crucial for stakeholders aiming to improve drought prediction and management,
especially in drought-prone regions like Australia.
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1. Introduction

Drought is a multi-faceted environmental challenge that has captivated the atten-
tion of hydrologists, environmental scientists, and policymakers worldwide in recent
years. Among its various forms—including meteorological, hydrological, agricultural, and
socioeconomic—the meteorological drought, marked by decreased rainfall, has emerged as
a prominent concern [1,2]. All forms of drought are interrelated, leading to consequences
ranging from agriculture to socio-economic issues [3]. These include water shortages,
reduced crop outputs, ecosystem disruptions, and broader socioeconomic impacts [3,4].

Various drought indices have been promulgated to monitor and assess drought con-
ditions [5,6]. The standardized precipitation index (SPI), introduced by McKee [7], is the
universal meteorological drought index put forward by the World Meteorological Organi-
zation (WMO) due to its consistent representation of dry/wet states, ease of calculation
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and versatility across various timescales. Although the SPI has been shown to help de-
tect different drought types that affect other systems and regions [8,9], it fails to detect
drought conditions determined not by a lack of precipitation but by a higher-than-normal
atmospheric evaporative demand, especially for studies of extreme heat waves and climate
change related to global warming [10,11]. The Standard Precipitation Evapotranspiration
Index (SPEI) stood out due to the consideration of water supply (precipitation, Prec) and
water demand (potential evapotranspiration, PET) [12,13]. Li [14] compared the SPI and
SPEI in China and found that the SPEI revealed an overall increase in drought severity, area,
and frequency from 1998 to 2015. By contrast, SPI does not show this phenomenon since
Prec does not exhibit a significant change overall. Nguvava [15] found that SPEI projected
more intense and frequent droughts over East Africa, which is more robust than the SPL
Given PET increases in a warming climate, SPEI may be more suitable for monitoring
droughts under climate change.

Machine learning (ML) methods have been increasingly employed for forecasting
various environmental and climatic indices [2,16,17]. ML is progressively reshaping the
forecasting landscape within drought research, demonstrating efficacy in predicting SPEI
values [18,19]. However, ML is classified as a “black box” model, which is difficult to
interpret. Hence, most studies have primarily used ML models for SPEI modelling and pre-
diction while rarely addressing the mechanisms behind drought occurrence. The emerging
SHapley Additive exPlanations (SHAP) method, proposed by Lundberg and Lee [20], is a
unified framework used to understand the output of a model and the contribution of each
feature to that output in ML, and to interpret the predictions of ML, which has been used
in many fields [21,22]. SHAP is based on cooperative game theory, specifically the concept
of Shapley values. It is a powerful tool for interpretability, allowing users to grasp not
only the overall importance of features but also their individual impact on each prediction.
This enhancement in understanding aids in demystifying and fostering trust in complex
machine learning models. Therefore, SHAP could be helpful in explaining the reason for
the change in SPEL

Australia, the world’s driest inhabited continent [23], faces unique vulnerability to
drought [24,25], especially under climate change [26]. Recent droughts in Australia have
had severe impacts [27]. The Australian “Black Summer” bushfires of 2019/2020 are a stark
example of the devastating effects of prolonged drought conditions. These bushfires, which
burned approximately 18 million hectares, represent the worst fire season in the recorded
history of southeast Australia [28-30]. The ecological consequences of Australia’s recent
bushfires have been profound, especially since they followed extensive and broad-scale
drought and landscape drying [27]. Additionally, eastern Australia has been experiencing
severe drought in the lead-up to and during the current fire season. In particular, much
of northeastern New South Wales (NSW) has had the lowest rainfall on record and above-
average temperatures over the six months to 30 November 2019 [31]. Therefore, accurate
forecasting and mitigating drought are critical in Australia’s ecological degradation and
risk management.

Despite the extensive usage of SPEI, a consensus has not yet been reached regarding
which equation should be used to estimate PET [32]. Numerous studies have compared the
effects of different PET models on SPEI in both arid and humid regions, and they analysed
the differences in SPEI for future and historical data [32]. These studies employed models
such as Penman [33], Abtew [34], Hargreaves [35], Jensen and Haise [36], FAO56 Penman—
Monteith [37], Thornthwaite [38], and Priestley and Taylor [39]. However, few studies use
the PET model to consider the CO; effect developed by Yang [40]. Elevated CO; levels
can result in decreased stomatal conductance, which in turn reduces evapotranspiration in
regions that are not water limited.

Recent research has utilised ML techniques to simulate SPI [41] and SPEI [42] based
on the SPI/SPEI from the preceding month. However, they rely on the prior month’s
SPI/SPEL In this study, meteorological variables during the previous 12 months were input
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in ML methods to predict the following month’s SPEI. This approach facilitates a deeper
understanding of how microclimatic factors influence meteorological drought.

We used the six capitals in Australia as a case study. This research aims to (1) compare
different PET methods for calculating SPEL (2) evaluate different ML methods for simulat-
ing SPEI using meteorological variables; (3) explain the reason for SPEI changing, which
is caused by Prec or meteorological variables related to PET in primary cities in Australia.
By bridging modern ML strategies with SHAP, this research offers valuable hydrological
insights that enhance our understanding of water systems.

2. Data and Methods
2.1. Study Area

Australia is a continent marked by its susceptibility to extreme climatic events like
drought and flooding [23]. Australia’s unique geographical and climatic characteristics
make it a focal point for studying drought, with profound implications for its ecosystems,
agriculture, and urban centres [24,25]. The significance of drought in Australia is under-
scored by its enduring struggle with the consequences of climate change, a factor that
intensifies the region’s susceptibility to drought [26]. This study focuses on six major cities
in Australia: Adelaide, Brisbane, Darwin, Melbourne, Perth, and Sydney. Figure 1 illus-
trates the locations of the selected meteorological stations in each major city, along with the
mean annual rainfall and temperature data. It also delineates the climate zones where these
stations are situated, showcasing the diversity of climate conditions under investigation.
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Figure 1. Map showing the six stations used in this study.
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Adelaide, situated on the southern coast, experiences a Mediterranean climate charac-
terised by its mild, wet winters and hot, dry summers [43]. Further north on the eastern
coast is Brisbane, which lies in Queensland with a subtropical climate resulting in warm,
humid conditions. Darwin, at the top end of Australia, serves as the capital of the Northern
Territory. With its tropical savanna climate, it is marked by a pronounced wet season
followed by a dry season. To the southeast, Melbourne has a temperate oceanic climate,
which leads to variable weather patterns, with rainfall moderately distributed throughout
the year [44]. On the opposite coast, Perth lies bordered by the Indian Ocean. Its semi-arid
conditions manifest in hot, dry summers and mild, wet winters. Lastly, on the southeastern
coast, Sydney enjoys a subtropical climate characterised by warm summers, mild winters,
and consistent rainfall [45]. These cities represent diverse regions across the continent and
compress a range of climate conditions, which can offer a lens to examine the impacts and
challenges of drought [46].

2.2. Flowchart

Figure 2 shows the flowchart of SPEI simulation and SHAP. Details can be found in
the text from Sections 2.3-2.7.

SPEl simulation
(. Input )

( Tmax )
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Figure 2. Flowchart of Standardized Precipitation Evapotranspiration Index (SPEI) simulation and

the SHapley Additive exPlanations (SHAP) methodology. The inputs are maximum and minimum
air temperatures (Tmax, Tmin), actual vapor pressure (ea), solar radiation (Rs), 2 m wind speed (u2),
and precipitation (Prec). SPEI is calculated using four models: FAO56 Penman—Monteith Reference
Crop Model (ETO), Penman Open-Water Model (Epa), Priestley-Taylor Evaporation (Epo), and the
FAO56-CO2 Model (ETO2). SHAP method was used for determining the importance of variables in
wet and dry cities.

2.3. Data

The primary datasets utilised in this research were collected from the Bureau of Mete-
orology (http://www.bom.gov.au/; accessed on 20 December 2023), including maximum
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and minimum air temperatures (Tmax, Tmin), the maximum and minimum relative hu-
midity (RHmax, RHmin), precipitation (Prec), solar radiation (Rs), and wind speed at the
height of 10 m (ujp). Actual vapor pressure (ea) was derived from RHmax and RHmin. All
variables were averaged to a monthly scale. Monthly Atmospheric CO, Concentration was
sourced from the records maintained at the Mauna Loa Observatory, Global Monitoring
Laboratory (GML) (https://gml.noaa.gov/ccgg/trends/; accessed on 20 December 2023).

2.4. PET Calculation

Potential evapotranspiration (PET) is a critical parameter to assess in drought research,
indicating the potential water loss from the soil surface due to evaporation and plant
transpiration [47]. In this study, various methods are employed to calculate PET (Table 1).

Table 1. Inputs for Potential Evapotranspiration (PET) Model.

PET Method Abbr Input Reference
Penman Open-Water .
Model Epa Tmax, Tmin, ea, Rs, up (Penman, 1948) [33]
Priestley—Taylor . .
Evaporation Epo Tmax, Tmin, ea, Rs (Priestley & Taylor, 1972) [39]
FAO56
Penman—Monteith ETO Tmax, Tmin, ea, Rs, up (R. Allen et al., 1998) [37]
Reference Crop Model
FAO56-CO, Model ETO2 Tmax, Tmin, ea, Rs, uy, CO, (Yang et al., 2019) [40]

The Penman Open-Water Model (E;;), introduced by Penman [33], is a simplified
adaptation of the Penman—Monteith model. This model estimates evaporation for open-
water surfaces, denoted as E,; (mm d~1), under the assumption of surface resistance
(rs)=0.

C,D
AR, + =L
- (1)

p+y(1+2)
where A is the slope of the saturation vapour pressure curve at the air temperature
(kPa °C~1); v is the psychrometric constant (kPa °C1y; p is the air density (kg m3);
Cp is the specific heat of the air (J kg’1 K—1); D is the water vapour deficit (kPa); R, is the
net radiation (mm d 1) calculated from Allen [37]; albedo was set as default value 0.23.

The aerodynamic conductance, 7, (m s~ 1), in this model is determined using the Rome
wind function [48] as:

a =

1 _ 2.6(1+0.54uz)patm 2
ra 0.6220 % 3600 x 24

Here, patm represents the air pressure (kPa); u; is the wind speed at 2 m (m s !)
derived from u1g using the relation: uy = ujg (2/ 10)1/7 [49].

Priestley-Taylor Evaporation (Ep,), developed by Priestley and Taylor [39], is a method
which offers an empirical approach to ascertain PET. Its magnitude is mainly impacted
by the net radiation with sufficient water supply because the atmospheric conditions are
adapted to saturated surfaces. The formula is as follows:

AR,

A+ ®)

Epo=ua

where Ry, is the net radiation (mm d~!); « is the Priestley-Taylor coefficient, it is often
taken as 1.26 for water surfaces but may vary depending on the surface and conditions

being evaluated.
The FAO56 Penman-Monteith Reference Crop Model (ETO): This model is a standard-
ised version of the Penman-Monteith model. It is designed for an idealised reference crop
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surface with specific parameters, such as r5 = 70 s m™!, a vegetation height of 0.12 m, and a
surface albedo of 0.23 [37]. Rn is net radiation at the crop surface in the unit of MJ m—2d-1.
The model calculates ETO (mm d™!) using the following equation:

_ 0.408AR;; + v ragrz 2D

ETO=—4 + (1 +0.34u) @)

The FAO56-CO; Model (ETO2): Proposed by [40], this modification incorporates
the influence of changing atmospheric CO, concentrations on the FAO-56 reference crop
formula. The unique term ((2.4 x 10~4([CO,] — 300)) captures the effect of varying CO,
levels on 4.

0.408AR;,; + ¥ o375 42D
A+ {14+ uf0.34 + 2.4 x 10-4([CO;] — 300)]}

These approaches offer a comprehensive evaluation of PET, capturing details from
aerodynamic radiative balances to atmospheric CO, fluctuations.

ETO2 5)

2.5. SPEI Calculation

The SPEI uses the monthly difference between precipitation and PET, which is a simple
water balance methodology that is calculated at different times [12]. P-PET is modified
using a 3-parameter log-logistic distribution, subsequently transformed into standard
deviations for mean values. The SPEI aims to depict deviations in climatological drought
by considering the equilibrium between water availability and atmospheric water demand.
This study calculates SPEI at 12 months to analyse and monitor long-term drought events.
A drought event is identified when the SPEI value is negative [50].

2.6. Machine Learning Methods

In environmental science, a selection of ML algorithms has surged, primarily due to
their adeptness at discerning and forecasting complex patterns in voluminous datasets. We
applied several ML models using the PyCaret package [51] in Python 3.8 to predict SPEL
The first method is the ridge regression. It is a linear regression technique used in ML and
statistics and is an extension of ordinary least squares (OLS) regression. Ridge regression
is used to mitigate the problem of multicollinearity and overfitting in linear regression
models. Next, support vector machine regression (SVM) was employed, a progression of
support vector machines designed for regression tasks. Using the core principles intrinsic to
the SVM classification approach, it aims to discern a line or, in multidimensional scenarios,
a hyperplane that optimally segregates the data. The random forest (RF) approach was
also harnessed, typifying an ensemble learning methodology. Here, a ‘forest’ comprising
numerous decision trees is assembled, and the final prediction is derived by selecting the
mode of the individual trees” outputs.

Furthermore, the K-Nearest Neighbors (KNN) approach, a non-parametric technique,
was employed for both regression and classification tasks. It derives its input from the k
closest training exemplars in the feature space. Our study also included Extreme Gradient
Boosting (XGB), renowned for its proficient implementation of gradient boosting designed
to maximise speed and model efficiency. In addition, Multi-layer Perceptron (MLP) is a
type of artificial neural network (ANN) used in ML and deep learning. It is a feedforward
neural network that consists of multiple layers of interconnected nodes or neurons. MLPs
are known for their ability to model complex relationships and solve various problems.
Lastly, decision tree (DT) is a non-linear and non-parametric algorithm that makes decisions
based on a tree-like graph structure. Each internal node of the tree represents a decision
or a test on a feature, each branch represents the outcome of the test, and each leaf node
represents a class label or a regression value.

The dataset was split into training and testing sets. In total, 70% of the data will
be used for training, and the remaining 70% will be used for testing. A ten-time-fold
cross-validation approach was used to assess model stability using a training dataset. The
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advantage of this cross-validation approach is that it provides a more reliable estimate of
model performance and reduces the impact of randomness in the performance evaluation.
Each data point is used for both validation and training, and the model is validated multiple
times on different subsets of data, helping to gain a more thorough understanding of its
performance. We employed three key metrics to assess our model’s performance: Mean
Absolute Error (MAE), Root Mean Square Error (RMSE/RMSD), and the Coefficient of
Determination (R?).

2.7. Machine Learning Exploratory Analysis

SHAP is a renowned Python library designed to elucidate the outputs of ML mod-
els [20]. It offers a consolidated framework for assessing feature importance in prediction-
making, thereby enhancing the interpretability and trustworthiness of model determina-
tions. This study evaluated multiple ML models for their efficacy in simulating the SPEI
over 12 months. These models utilised inputs of climatic variables (Tmax, Tmin, Prec, ea,
Rs, up) and CO; during the previous 12-month period. After model evaluation, the optimal
model for each site was identified. Subsequently, we integrated the chosen models with the
SHAP library to comprehensively explain the ML model outputs.

3. Results and Discussion
3.1. SPEI Change Based on Different PET Methods

Figure 3 illustrates the variation in PET and precipitation across each site using dif-
ferent PET methods, highlighting that while the precise PET values varied depending on
the method utilised, a consistent trend was observed across these methodologies. Notably,
among the PET models, Epa consistently recorded higher values across all regions than
other models because it assumes water is continually available, and rs = 0. On the other
hand, the value of Epo was lower than the other models in dry areas (except notably in Dar-
win and Brisbane) because Epo ignores horizontal heat advection, which is of importance
in dry regions. Despite the variations in absolute values, all models exhibited analogous
trends. This unity in trend patterns suggests that although there might be discrepancies
in PET calculations across different methods, the overarching climatic patterns remain
predominantly consistent.

Moreover, there are considerable differences in annual rainfall patterns, particularly
when contrasting cities such as Darwin and Adelaide. During specific observed periods
(2009-2022), Darwin recorded an impressive annual precipitation rate, nearing 2000 mm,
while Adelaide’s precipitation is notably limited at around 400 mm. Darwin’s rainfall
figures fluctuated between 1070 mm in 2019 and a maximum of 2725 mm in 2011, averaging
1827 mm annually for the studied period. Moreover, Sydney recorded its minimum annual
rainfall of 697 mm in 2019, and it rose significantly to 2214 mm in 2022, with a 13-year
average standing at 1106 mm. Overall, the data underscore Australia’s vast disparities
in precipitation patterns, which have profound implications for the nation’s regional
hydrological and ecological dynamics.

Figure 4 displays the SPEI for 12-month periods derived from different PET models for
each location. The shaded regions between the grey vertical dots denote drought periods
at each location. The start and end of these droughts are easily identifiable. Each drought’s
duration is distinctly represented by colours corresponding to each PET model. Australia
experienced a severe long-term drought period from 1997 to 2009, known as the Millennium
Drought [52]. As shown in Figure 4, except for Darwin, all other cities have negative SPEI
values from 2009 to 2010. They recovered for a few years, and then various droughts im-
pacted Australia. In Adelaide, there was a prolonged drought from 2017 to 2019. Brisbane,
Sydney, and Melbourne also experienced the same drought period. This drought event
matches real-world observations. Eastern Australia has been experiencing severe drought,
with the historically lowest precipitation and elevated temperatures over six months in
2019 [31]. On the other hand, Darwin endured a prolonged drought from 2018 to 2020.
Perth faced several short and less severe drought periods after the Millennium Drought.
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Figure 3. Variation in PET and precipitation at each site.

In both Brisbane and Darwin, using different PET methods reveals minimal distinc-
tions in SPEL. However, a more nuanced pattern emerges when we examine Adelaide,
Melbourne, and Sydney, with distinctions in SPEIL. SPEI_Epo tends to predict a higher value
for drought conditions around 2010 but a lower value around 2018. This disparity can
be attributed to the absence of the aerodynamics term (advection) in the Epo equation,
originally formulated by Priestley and Taylor [39]. This omission significantly impacts PET
calculations in arid regions.

3.2. SPEI Simulation by ML Models

Figure 5 provides a visual comparison of various ML models based on their ability
to understand the time series changes in SPEI over 12-month intervals. The figure uses
box plots for each model to represent the distribution of metrics during ten-time-fold cross-
validation. A notable feature of these box plots is the width of the bars, which signifies
the stability of the model during cross-validation. A wider box indicates lower stability,
meaning the model’s performance varied more extensively across different validation sets.
Conversely, a narrower box denotes higher stability and consistent performance across
validation sets.
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Figure 4. SPEI_12 derived from different PET models at each site. Grey vertical dots indicate the start
and end of drought periods. The duration of each period is represented by text with the corresponding
colour for each model.

From Figure 5, the performance of the ridge regression model stands out as markedly
better, displaying both higher accuracy and greater stability than the other models. This
is evident from its narrower box width. The MLP is the second-best performance model,
followed closely by the SVM. Model training and model testing results are consistent
(Figure 6). Figure 6 presents a Taylor diagram, a graphical method used to assess the
similarity between outputs from different models in terms of their statistical moments.
These moments include the standard deviation, correlation coefficient, and RMSD. The
ridge model demonstrates the best simulation across all sites. The diminished performance
of other ML models could potentially be attributed to the limited length of the dataset used,
as these models often require larger datasets to fine-tune their parameters more effectively.
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Figure 5. Model comparison of ten-time-fold cross-validation for train data at each site. Train dataset
is 70% of the whole data.

3.3. Drivers of SPEI

Using SHAP values, we assessed the contribution of each feature to individual pre-
dictions within the best ML model (ridge). SHAP values illustrate how far each feature
shifts the model’s prediction from the average prediction. Figure 7 shows the top 20 most
important variables influencing the model for each site. For instance, in Sydne