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Abstract: Atmospheric drag stands out as the predominant non-gravitational force acting on satellites
in Low Earth Orbit (LEO), with altitudes below 2000 km. This drag exhibits a strong dependence
on the thermospheric mass density (TMD), a parameter of vital significance in the realms of orbit
determination, prediction, collision avoidance, and re-entry forecasting. A multitude of empirical
TMD models have been developed, incorporating contemporary data sources, including TMD
measurements obtained through onboard accelerometers on LEO satellites. This paper delves into
three different TMD modelling techniques, specifically, Fourier series, spherical harmonics, and
artificial neural networks (ANNs), during periods of geomagnetic quiescence. The TMD data
utilised for modelling and evaluation are derived from three distinct LEO satellites: GOCE (at
an altitude of approximately 250 km), CHAMP (around 400 km), and GRACE (around 500 km),
spanning the years 2002 to 2013. The consistent utilisation of these TMD data sets allows for a clear
performance assessment of the different modelling approaches. Subsequent research will shift its
focus to TMD modelling during geomagnetic disturbances, while the present work can serve as a
foundation for disentangling TMD variations stemming from geomagnetic activity. Furthermore,
this study undertakes precise TMD modelling during geomagnetic quiescence using data obtained
from the GRACE (at an altitude of approximately 500 km), CHAMP (around 400 km), and GOCE
(roughly 250 km) satellites, covering the period from 2002 to 2013. It employs three distinct methods,
namely Fourier analysis, spherical harmonics (SH) analysis, and the artificial neural network (ANN)
technique, which are subsequently compared to identify the most suitable methodology for TMD
modelling. Additionally, various combinations of time and coordinate representations are scrutinised
within the context of TMD modelling. Our results show that the precision of low-order Fourier-based
models can be enhanced by up to 10 % through the utilisation of geocentric solar magnetic coordinates.
Both the Fourier- and SH-based models exhibit limitations in approximating the vertical gradient of
TMD. Conversely, the ANN-based model possesses the capacity to capture vertical TMD variability
without manifesting sensitivity to variations in time and coordinate inputs.

Keywords: thermospheric mass density; artificial neural network; spherical harmonics analysis;
Fourier analysis

1. Introduction

Low Earth Orbit (LEO) is an important altitude region for Earth observation, collision
avoidance, and re-entry prediction. However, the increasing number of space objects
has posed a tremendous challenge to collision avoidance and re-entry prediction in the
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LEO environment, especially below the altitude of 600 km. The aerodynamics force is the
largest non-gravitational force experienced by LEO spacecraft [1]. Meanwhile, this force is
one of the largest error sources for precise orbit determination and orbit prediction, partly
due to the temporal and spatial variability of thermospheric mass density (TMD) driven
by various factors, including solar, magnetic, and lower atmospheric forcing [2]. It is also
called the atmospheric drag since it dominantly acts in the opposite direction of the object’s
relative motion with respect to the atmosphere.

The upper thermosphere in the region of 200–600 km is a complicated non-linear
system coupled with the ionosphere, troposphere, and magnetosphere. The thermospheric
models can be generally categorised into physical models and empirical models. The phys-
ical models solve the fluid equation by numerically discretising over the region of in-
terest, e.g., the Thermosphere Ionosphere Electrodynamics General Circulation Model
(TIE-GCM) [3,4]. The past two decades have witnessed a resurgence of many new em-
pirical TMD models, e.g., DTM-2013 [5] and JB2008 [6]. These empirical models capture
the statistically average dynamics of the thermosphere in a parameterised formulation.
Extensive reviews of physical and empirical models can be found in Qian and Solomon [7],
Emmert [8], and He et al. [9].

The empirical models have been developed using the accelerometer-derived TMD
from the Earth observation satellites in LEO [10–12], such as the GRACE (Gravity Recovery
and Climate Experiment), CHAMP (Challenging Minisatellite Payload), and GOCE (Grav-
ity field and steady-state Ocean Circulation Explorer) satellites. For instance, Liu et al. [13]
applied a linear TMD profile in their model for the altitude range of 350–420 km. This linear
assumption cannot be satisfied across the whole thermosphere. Assuming a non-linear
TMD profile, an updated version incorporating the solar wind merging electric field was de-
veloped by Xiong et al. [14]. Meanwhile, many advanced techniques have been attempted
in TMD modelling, such as Fourier analysis [13], spherical harmonics (SH) analysis [15],
principal component analysis [16], and artificial neural network (ANN) analysis [17,18].

Although many thermospheric models have been developed, further effort is still
needed for the following reasons: (1) It is difficult to consistently evaluate the performance
of empirical TMD models because of the hidden biases in empirical models [19], as well
as the discrepancies in the reference TMD data sets used to construct the models [9].
Usually, the reference TMD data sets used for modelling are different from those used in
the model evaluations. For instance, the high-latitude atmospheric neutral density model
developed by Yamazaki et al. [15] using GRACE and CHAMP TMD data sets [11] may
not be reliably compared with the JB2008 model, which was developed from a different
reference TMD data set provided by Bowman et al. [6]. (2) Due to the previous issue, few
studies have been performed to determine the pros and cons of the methodologies used in
TMD modelling. (3) No one has investigated the impact of different time and coordinate
representations on TMD modelling. Many solar and magnetic coordinates have been
proposed to better interpret the measurements of magnetometers and to investigate the
thermosphere–ionosphere system [20]. The variability of TMD shows a strong dependence
on solar and magnetic activity.

TMD modelling during geomagnetic quiet times is fundamental to TMD prediction.
On the one hand, the geomagnetic quiet and weakly disturbed periods covers most of
historical time. On the other hand, it is the first step in separating the TMD response to
severe space events by removing TMD variations under quiet time. Therefore, the main
objective of this study is to develop and comprehensively evaluate empirical TMD models
based on Fourier, SH, and ANN analysis. This preliminary study only focuses on TMD
modelling during geomagnetic quiet and weakly disturbed time. The structure of the paper
is organised as follows. The TMD data sets and preprocessing procedures are first outlined
in Section 2. The modelling methodology is documented in Section 3. The analysis and
discussion of the results are presented in Section 4, followed by the conclusions and future
work in Section 5.
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2. TMD Data Sets

The data sets used in the present study covered an altitude of 200–550 km. The accelerometer-
derived TMD from the GRACE (2002–2010), CHAMP (2002–2010), and GOCE (2009–2013)
satellites were used to develop empirical TMD models in this study. Managed by the
German GeoForschungsZentrum (GFZ) Potsdam, the CHAMP satellite was operated at
the altitude of ∼450 km. The primary aim of the CHAMP satellite was to investigate the
Earth’s gravity and geomagnetic field recovery. As a joint mission between the National
Aeronautics and Space Administration (NASA) and the German Aerospace Center (DLR),
the GRACE twin-satellite mission was launched into a near-polar and circular orbit with a
nominal altitude of 500 km and separation of 220 km. GOCE was launched by the European
Space Agency (ESA) into a very low sun-synchronous orbit at ∼280 km. The TMD data
sets derived from the CHAMP and GRACE satellites have been made freely available by
Mehta et al. [12]. Note that the TMD data of Mehta et al. [12] were re-scaled from those of
Sutton [10] using a different gas–surface interaction model. The reader is directed to these
references for more details regarding the computation and data processing methods used.

These TMD data sets were first calibrated to account for the hidden biases of 10–20%,
as documented by Mehta et al. [12] and He et al. [9]. To determine the most proper indices
for further modelling, the space weather indices used in the modelling were also analysed
based on their Pearson correlation coefficients with the TMD.

2.1. Data Reprocessing

The discrepancies between different TMD data sets derived from multiple satellites
have been noted in many previous studies, e.g., [15,21]. These discrepancies originate from
the different handling of neutral wind and the use of different physical drag coefficient
models. An inter-calibration procedure of TMD data sets was performed by comparing with
the NRLMSISE-00 model to minimise the discrepancies of TMD data sets from different
satellites. The NRLMSISE-00 model was used in the calibration due to its capability in
physically capturing the annual and semiannual oscillations compared to the post hoc TMD
modulation used in other empirical models [22], e.g., JB2008. Consequently, the ACC-TMD
ρ(h) at the altitude of h was scaled by

ρ̃(h) =
〈

ρm(h)
ρ(h)

〉
· ρ(h), (1)

where ρm is the TMD output from NRLMSISE-00; ρm/ρ is the model-to-observation TMD ra-
tio; and ⟨·⟩ denotes the average operator over the years of 2002–2013.

Note that the calibration procedure undertaken here is different from the vertical
TMD normalisation in previous studies, e.g., [15,23,24]. Moreover, this procedure may not
change the final results since the TMD data during space weather events were identified
and removed, as shown in the next section. Also, TMD data were flagged as outliers if
the TMD ratio was beyond the range of 3·IQR [9]. As a result, up to 0.2% of the TMD
data sets during high solar activity were excluded. The exclusion rate was closer to zero
during other times for all satellites. Only TMD data sets that passed this quality control are
used hereafter.

The yearly TMD ratios in 2002–2013 for the four satellites are statistically illustrated
in Figure 1. Consistent with the results given by He et al. [9], the yearly mean TMD ratios
marked by green crosses show a solar-dependent trend, which most likely resulted from
the estimation of the drag coefficient. The annual mean values of the TMD ratios for these
four satellites (green plus markers) show a strong dependence on the solar activity from
2002 to 2010. The STDs of the TMD ratios in Figure 1b,d were less affected by the solar
conditions, which suggests that the STD may be a more appropriate metric of precision in
the TMD comparisons.
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Figure 1. Model-to-observation ratio of TMD during geomagnetic quiet and weakly disturbed time
from 2002 to 2013. The reference model used here was NRLMSISE-00. See Section 2.1 for more details
on the data selection. The GOCE TMD data were provided by Doornbos [1], and the other data were
provided by Mehta et al. [12]. The legend is shared among all the panels.

2.2. Response of TMD to Space Weather Indices

Many different space weather indices have been proposed and used in thermosphere
modelling. This study evaluated the correlation between TMD and ∼40 space weather
indices. These indices include: (a) hourly solar wind parameters (e.g., inter-planetary
magnetic field, solar wind velocity, and solar wind pressure); (b) 3h geomagnetic indices
(e.g., Kp, ap, Dst, and am); and (c) daily solar indices (e.g., solar flux at the wavelengths
of 30, 15, 10.7, 8, and 3.2 cm) [9].

The six solar indices with the highest Pearson correlation coefficient are illustrated in
Figure 2. The time lag is the length of days before or after the current epoch of TMD data.
The TMD data sets from GRACE-A/B, CHAMP, and GOCE were daily averaged and
normalised to the altitude of 400 km using NRLMSISE-00. The analysis presented here
may not be affected by such TMD normalisation during the geomagnetic quiet and weakly
disturbed time. Note that all other TMD data sets were scaled to that of GRACE-A in
order to remove the hidden discrepancies, as discussed in He et al. [9]. Figure 2 shows
that P10.7 = (F10.7 + F̄10.7)/2 has the best correlation with daily mean TMD.
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Figure 2. Pearson correlation coefficients between accelerometer-derived TMD and solar indices of
(a) daily average and (b) last 81–day average during quiet and weakly disturbed time. Solar indices
considered include the sunspot number, F10.7, Lyman–α, Mg II, M10.7, and P10.7. Scaled TMD data
sets from GRACE-A/B, CHAMP, and GOCE were daily averaged and normalised to the altitude
of 400 km using NRLMSISE-00. The curve of Mg II is completely overlapped by that of M10.7 due to
their linearity. The legend is shared between the top and bottom panels.

The Kp index from the NASA (National Aeronautics and Space Administration)
OMNI2 (Operating Missions as Nodes on the Internet) data set also shows the highest
correlation among geomagnetic indices (Figure 3). The Pearson correlation coefficients for
geomagnetic indices are much lower than those of the solar indices for two main reasons.
First, geomagnetic activity has a short-term (e.g., hourly) influence on TMD and hence
does not correlate well with solar flux activity in the long term. The other reason is the
fact that the TMD modelling in this study was performed during geomagnetic quiet and
weakly disturbed time without geomagnetic storms and solar flares. The geomagnetic quiet
time is hereafter identified by Dst ≥ −50 nT and ap ≤ 32 nT (corresponding to Kp < 4+),
with an X-ray flux no larger than 1.0 × 10−5 W m−2 (corresponding to X-class and M-class
solar flares).

There is difficulty in accurately predicting the aerodynamic force results from the
unpredictability and irregularity of thermospheric mass density (TMD), which is excited
by many factors, e.g., the upward-propagating solar tides and solar radiation absorp-
tion [25]. These responses can be observed in many variables, such as neutral temperature,
atmospheric composition, and the strength of the solar and magnetic field.

Current atmospheric models cannot represent the TMD distribution and variability
as accurately as required, even though TMD models have adopted one single index or a
combination of different indices to represent the effect of solar and geomagnetic activities.
At the moment, the accuracy of the empirical models is restricted to around 15–30% of
the absolute density value [1,26], and the RMS error can reach up to 100% [27] during
extreme space weather conditions, e.g., geomagnetic storms and solar flares. Improving
the knowledge of TMD not only helps in understanding thermospheric dynamics, but also
benefits the OD and OP required in re-entry prediction and space situational awareness.
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Figure 3. Pearson correlation coefficients between accelerometer–derived TMD and geomagnetic and
solar wind indices of (a) daily average and (b) last 81–day average during quiet and weakly disturbed
time. Considered geomagnetic indices include Kp; ap; Km; am; aa; Dst; PC; IMF (inter–planetary
magnetic field) components; and solar wind plasma parameters (flow pressure, temperature, speed,
and proton density). Note that the Kp index was provided by NASA OMNI2. The legend is shared
between the top and bottom panels.

3. Modelling Methods

This study developed three different empirical TMD models. Only the P10.7 and Kp
indices were used from the correlations discussed in Section 2.2. Furthermore, the evalua-
tion of these new empirical models was based on the natural logarithm of TMD, which is
more appropriate in the representation of TMD [15]. Note that the model coefficients are
represented by ai for clarity, but their values are different in each model. An equivalent
error weight was assumed for the TMD data sets of the four satellites.

In addition to the commonly used geographic coordinates (geodetic latitude and
longitude), solar and magnetic coordinates were also used in this study, such as the centred
dipole (CD), eccentric dipole (ED), geocentric solar magnetic (GSM), solar magnetic (SM),
quasi-dipole (QD), and modified apex (MA) coordinates, to determine the optimal time and
coordinate representations in TMD modelling. These are termed as ‘general’ latitudes and
longitudes hereafter. Likewise, the hour of day (HOD) measured by universal time (UT),
local time (LT), local solar time (LST), or magnetic local time (MLT) was investigated in
this study. We refer the readers to Laundal and Richmond [28] and He [29] for the detailed
definitions of these time and coordinate representations.

3.1. Fourier Analysis

As the TMD derived from the four satellites covering the altitudes of 200–550 km was
used in this study, a Fourier-based model ρ(P10.7, Kp, φ, λ, h, DOY, HOD) was developed
to consider different reference heights:

ln ρ(h0) = ln ρ0 + f1(P10.7) + f2(Kp) + f3(φ) + f4(λ) + f5(HOD) + f6(DOY), (2)
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where φ and λ are the geographic/solar/geomagnetic latitude and longitude, respectively
(see [28]), which are termed as ‘general’ latitudes and longitudes hereafter. HOD is the
hour of the day, and DOY is the day of the year, which can be measured by universal time
(UT), local time (LT), local solar time (LST), or magnetic local time (MLT), as elaborated in
Laundal and Richmond [28]. For instance, the φ, λ, and HOD used by Xiong et al. [14] were
the geographic coordinates and MLT, respectively. h is the altitude, and ρ0 is the TMD at the
reference altitude of h0. The terms fi (i = 1 − 7) in the form of trigonometric functions (see
Appendix B) represent the vertical, solar activity, geomagnetic, latitudinal, longitudinal,
intra-diurnal, and intra-annual variations in TMD, respectively. h0 is the reference heights
of 250, 300, 400, 500, and 550 km. The log-TMD at the altitude of h was linearly interpolated
from the nearest two reference heights.

This study was performed during geomagnetic quiet and weakly disturbed time,
but the Kp index was still used in the model generation to improve the representation
of the models. As clarified by Yamazaki et al. [15], ap = 0 (Kp = 0 in this study) was
applied in the model evaluation, representing the geomagnetic quiet time. Due to the
potential rank deficiency in the design matrix B and the large size of the utilised data
records (1.163 × 107), obtaining an accurate and convergent solution heavily relied on the
selection of a suitable initial value for the coefficients. Initially, the Levenberg–Marquardt
non-linear algorithm [30] was employed to calculate the initial value, expressed as follows:

a =
(

B⊤B + βIna

)−1
B⊤V , (3)

where β is a non-negative scalar factor, called the damping factor; Ina is an na × na identity
matrix; and na is the number of model coefficients. As the value of β in the aforemen-
tioned equation approaches zero, it leads the Levenberg–Marquardt estimation to converge
towards the regular least-squares solution. Conversely, a larger value of β causes it to
approximate the gradient-descent method.

3.2. Spherical Harmonics Analysis

Similar to the Horizontal Wind Model (HWM) [31,32] and other empirical models
based on SH analysis, e.g., [33], the HANDY model [15] was developed using SH expansion
and split into two parts—a geomagnetic quiet model and a disturbed model. This quiet
model was calibrated from NRLMSISE-00 only to an altitude of 400 km. The TMD model
based on SH analysis in this study is slightly different from both the NRLMSISE-00 and
HANDY models, as follows:

ln ρ =
n1

∑
i=1

a0(i) hi + G
(

P10.7, P̄10.7, Kp, φ, λ, DOY, UT, HOD
)
, (4)

where UT is UTC hours, and a0 is the constant coefficients of the altitude-dependent
variation. The function of G(P10.7, P̄10.7, Kp, φ, λ, DOY, UT, HOD) is given in Appendix B.

An altitude-dependent version of the SH-based model was proposed in this study
as follows:

ln ρ(h0) = ln ρ0 + G
(

P10.7, P̄10.7, Kp, φ, λ, DOY, UT, HOD
)
, (5)

where h0 is the reference heights of 250, 300, 400, 500, and 550 km. The log-TMD at the
altitude of h was linearly interpolated from the two nearest reference heights. The function
of G based on spherical harmonics can be found in Appendix B, and the model coefficients
were estimated using the Levenberg–Marquardt algorithm, which was also used in the
development of NRLMSISE-00 [34]. The same algorithm was used to consistently estimate
the unknown parameters in all models.

The SH-based models in this study were derived from NRLMSISE-00, although some
differences exist. Firstly, the SH analysis was directly applied to the number density of
each atmospheric composition in NRLMSISE-00. Secondly, NRLMSISE-00 was based on
a theoretical profile of atmospheric temperature, which was not taken into account in
this study.
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3.3. Artificial Neural Networks

The ANN technique has been widely applied to deal with classification, regression,
and pattern recognition tasks in Earth science, such as by Chen et al. [35]. A classic ANN
consists of three components: an input layer, hidden layers, and an output layer. An ANN
model with a large number of hidden layers (depth) may have a better fitting performance
and is also known as a deep neural network. This study aimed to compare the classic ANN
techniques with the other fitting methods mentioned above; state-of-the-art deep learning
models such as the residual network [36] were not considered.

In this study, the training, testing, and validation processes of the deep learning model
were crucial for achieving accurate and reliable predictions. The Levenberg–Marquardt
algorithm was employed to iteratively estimate the coefficients of the ANN models [37].
The TMD data sets were randomly partitioned into three segments: training (70%), valida-
tion (15%), and test (15%) in order to prevent over-training (over-fitting) and under-training
(under-fitting). Over-training occurs when the ANN model becomes excessively specialised
to the training data and loses its ability to generalise to unseen data. On the other hand,
under-training happens when the ANN model fails to capture the underlying relationships
due to insufficient network capacity [17]. During the training process, ANN models are
fine-tuned using the training data set, which comprises pairs of input vectors and corre-
sponding output vectors. This allows the model to learn the patterns and relationships in
the data. Meanwhile, a validation data set is used to optimise the hyper-parameters of the
deep learning model. Techniques such as early stopping, based on the performance on the
validation data set, can be employed to prevent over-fitting and enhance generalisation.
The test data set, which is separate from the training and validation sets, is used to eval-
uate the final performance of the trained deep learning model. By assessing the model’s
accuracy and predictive capability on unseen data, it provides an unbiased assessment of
the model’s performance in real-world scenarios. The proper partitioning of the data into
training, validation, and test sets, along with the effective use of regularisation techniques,
ensures that the deep learning model achieves reliable and robust predictions. The ANN
algorithm was implemented in the built-in MATLAB Deep Learning Toolbox using the
default threshold and settings.

In the present research, a single-hidden-layer model, ANN-1, with different numbers
of neurons ranging from 5 to 100 was first built and examined in order to find the optimal
structure of the ANN, as listed in Table 1. Moreover, the harmonics of latitude and
longitude with different orders, as used in the Fourier-based model, were also assessed in
the modelling of the ANN-2 model. For the purpose of simplifying the ANN structure, a
deep ANN model with the classic three hidden layers was adopted and labelled as ANN-3.
The Pearson correlation coefficient and principal component analysis were used in the
preprocessing of the ANN models to examine the statistical inter-dependence of the inputs
listed in Table 1.

Due to the considerable computational burden of ANN modelling, only the combina-
tions of GEO-LST, GSM-LT, and QD-LST were examined. This selection was determined by
considering the statistical results of the two previous types of models. Only P10.7 and Kp
were used as the space weather indices in these three ANN-based models. Again, Kp = 0
was evaluated in the model comparison, representing the quiet geomagnetic condition.

The inputs of the ANN-based TMD model for storm time developed by Chen et al. [18]
include the altitude h for the vertical variation of TMD, geographic latitude φ and longi-
tude λ for the spatial variations, cos φ for the latitudinal symmetry in the global distribution
of TMD, cos

( 2π
24 HOD

)
for the diurnal TMD variation, and cos

[ 2π
365 (DOY − 81)

]
for the sea-

sonal TMD variation. However, discontinuity in the longitudinal TMD distribution can be
found around the longitudes of ±180◦ due to the range of longitudes adopted in this study
(−180◦ ≤ λ ≤ +180◦) and the periodic nature of longitude. A feasible solution is extending
the longitude range to, e.g., [−240◦,+240◦], but this cannot perfectly solve the discontinuity
problem. Therefore, sine and cosine functions of general latitudes and longitudes were
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input into the ANN-based models. Table 1 gives the detailed inputs, outputs, and structural
of the three ANN-based models investigated in this study.

Table 1. Details of the Fourier-, SH-, and ANN-based models. ANN-1 and ANN-2 are single-hidden-
layer ANN models, and ANN-3 has three hidden layers. The number of neurons in the hidden
layer(s) is given in the fifth column.

Model Inputs No. Inputs No. Coefficients No. Neurons

Fourier P10.7, Kp, h, φ, λ, HOD, DOY 7 170

SH-1 P10.7, Kp, h, φ, λ, HOD, DOY 7 102

SH-2 P10.7, Kp, h, φ, λ, HOD, DOY 7 300

ANN-1

P10.7, Kp, h,
sin 2φ, cos 2φ, sin λ, cos λ,

sin
(

2π
24 HOD

)
, cos

(
2π
24 HOD

)
,

sin
(

2π
365 DOY

)
, cos

(
2π
365 DOY

) 11

66 5
131 10
261 20
651 50
1301 100

ANN-2

P10.7, Kp, h,
sin 2mφ, cos 2mφ (m = 1 − 6),
sin nλ, cos nλ (n = 1 − 4),
sin

(
2πk
24 HOD

)
, cos

(
2πk
24 HOD

)
(k = 1 − 3),

sin
(

2πd
365 DOY

)
, cos

(
2πd
365 DOY

)
(d = 1 − 2)

33

176 5
351 10
701 20
1751 50
3501 100

ANN-3

P10.7, Kp, h,
sin 2φ, cos 2φ, sin λ, cos λ,

sin
(

2π
24 HOD

)
, cos

(
2π
24 HOD

)
,

sin
(

2π
365 DOY

)
, cos

(
2π
365 DOY

) 11

291 10-10-5
506 15-15-5
591 15-15-10
881 20-20-10
991 20-20-15

4. Results and Discussion

In this study, the model performances discussed previously were evaluated using
three metrics. First, the a posteriori STD of unit weight (σ̂0) was considered, which can be
calculated from

σ̂0 =

√
V⊤V

n − na
. (6)

where V is the observed-minus-predicted log TMD residuals, n is the number of observa-
tions, and na is the number of model coefficients.

TMD models with different orders have different numbers of model coefficients.
Generally, the models with more coefficients are expected to have better performance;
hence, it is not wise to evaluate models with different coefficients just by the traditional
metrics such as the mean, STD, and root-mean-square (RMS) error. The σ̂0 used in this study
approaches the RMS as n ≫ na and includes both systematic biases and random errors.
From the equation of σ̂0, the model degrees of freedom (the number of model coefficients
n − a) were considered.

The other two selected metrics used in the model evaluation include the mean TMD
ratio, represented as

r̄ =
〈

ρ

ρ̃

〉
, (7)

and the Pearson correlation coefficient, represented as

R =
σ2

ρ,ρ̃

σρ · σρ̃
, (8)
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where ρ and ρ̃ are the prediction and observation of TMD, respectively. The mean TMD
ratio is a classic model bias metric.

4.1. Fourier-Based Model

The Fourier model was designed to better capture the vertical variability of TMD
by applying altitude-dependent modelling at 250, 300, 400, 500, and 550 km. The fitting
results σ̂0 for selected coordinate–time frames are presented in Table 2. As the magnetic
coordinate frame (QD, MA, etc.) showed almost the same performance, only the result
of QD is presented in this table. The GSM-LT coordinate combination provided the best
fitting result with time frames of LT or LST. A 10 % improvement in σ̂0 in comparison with
other combinations of time and coordinate frames can be observed.

Table 2. The a posteriori STD of unit weight (σ̂0 of the Fourier model for the four satellites in the
unit of ln(kg m−3). The model was built at five reference heights of 250, 300, 400, 500, and 550 km.
For simplicity, only the results of five coordinate and time frames are presented.

Coordinate–Time GRACE-A GRACE-B CHAMP GOCE Overall

GEO-LST 0.3338 0.3712 0.2890 0.1354 0.3099
GEO-MLT 0.3410 0.3765 0.2842 0.1465 0.3133
GSM-LT 0.3030 0.3390 0.2353 0.1140 0.2742

GSM-LST 0.3011 0.3353 0.2260 0.1193 0.2704
QD-LST 0.3331 0.3705 0.2891 0.1363 0.3095

Figure 4 presents a scatter plot between the Fourier model predictions and the TMD ob-
servations for the GRACE, CHAMP, and GOCE satellites. The lines in red depict the linear
regression result. The figure illustrates a consistent slope of regression lines for the four
satellites compared to an altitude-dependent trend observed from the Fourier model based
on a linear or quadratic polynomial of altitude (not shown here). This result may indicate
that the vertical gradient of TMD across more than one scale height range (>100 km) cannot
be well approximated by the polynomials.

Figure 4. Comparisons of the Fourier (GSM-LT) model between the observed and predicted TMD in
the unit of ln(kg m−3) for (a) GRACE-A, (b) GRACE-B, (c) CHAMP, and (d) GOCE. The red lines
depict the linear regression result. The colour bar shows the year of the TMD data.

The usage of the GSM coordinates significantly changed the longitudinal and HOD vari-
ations because the x-axis in the GSM coordinate system points to the Sun. The global maxi-
mum of the TMD will therefore appear around 0◦ of the GSM longitude, indicating that



Atmosphere 2024, 15, 72 11 of 20

the GSM longitude is correlated with HOD (e.g., LT used here). Hence, the selection of the
orders was considered reasonable for the Fourier-1 model. Lower orders (1, 1, 1, 4, 6, 2, 2)
were considered in the Fourier model to avoid multiplying the number of model coefficients
and over-fitting the results.

4.2. SH-Based Models

The two schemes of the SH-based model are summarised in Table 1. The input UT
used in Equations (4) and (5) was implemented by different time systems, such as LT
and LST. The fitting results of the SH model for all satellites are given in Tables 3 and 4.
The GSM coordinates showed the best fitting result again, and QD and MA had almost
the same performance. In comparison with the improvement of nearly 10% for Fourier-1
(39 coefficients) when using the GSM coordinates, the SH-1 model (102 coefficients) showed
a statistical improvement of only 1%. This implies that the consideration of GSM in
TMD modelling becomes less important if a sufficiently complex model (based on the
number of model coefficients) is used.

Table 3. The a posteriori STD of unit weight (σ̂0, unit: ln(kg m−3)) of the SH-1 model. Values in
bold show the best fitting result. MLT for GEO, GSM, SM, and DIP frames was derived from the
QD longitude.

Coordinates
Time

LT LST MLT

GEO 0.3147 0.3146 0.3173
GSM 0.3102 0.3103 0.3110
SM 0.3185 0.3184 0.3173
DIP 0.3242 0.3241 0.3274
CD 0.3162 0.3162 0.3162
ED 0.3169 0.3168 0.3165
QD 0.3174 0.3173 0.3165
MA 0.3174 0.3173 0.3165

Table 4. The a posteriori STD of unit weight (σ̂0, unit: ln(kg m−3)) of the SH-2 model. The model
was built at five reference heights of 200, 300, and 500 km.

Coordinate–Time GRACE-A GRACE-B CHAMP GOCE Overall

GEO-LT 0.2716 0.3085 0.2261 0.1592 0.2557
GEO-LST 0.2711 0.3079 0.2248 0.1630 0.2554
GEO-MLT 0.2745 0.3114 0.2264 0.1639 0.2580
GSM-LT 0.2677 0.3032 0.2211 0.1580 0.2514

GSM-LST 0.2678 0.3033 0.2211 0.1583 0.2515
QD-LST 0.2762 0.3130 0.2287 0.1614 0.2594

Note that it is not wise to directly compare the NRLMSISE-00 with newly developed
empirical TMD models without re-estimating the model scales. In particular, the same or
calibrated reference TMD data must be simultaneously used in the model generation and
evaluation. Otherwise, the statistical result may be affected by the biases of the empirical
models. Additionally, the SH-based model generated in this study can only represent
the performance of the SH methodology rather than that of NRLMSISE-00 itself. This is
because many features of NRLMSISE-00 were not adopted in this study, e.g., the vertical
variation in TMD was based on the profile of atmospheric temperature in NRLMSISE-00.

4.3. ANN-Based Models

For the ANN-1 model with a lower number of neurons, GSM-LT still showed an
improvement of nearly 8%. However, ANN-1 models with different time and coordinate
combinations reached a similar precision as the neuron number approached 100. This result
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shows that the ANN-based model with sufficient numbers of neurons can adapt to the
different mappings associated with GEO and GSM/QD coordinates and the time transfor-
mation. In other words, an ANN model with sufficient neurons in the hidden layer may be
less sensitive to the inputs of the time and coordinates. In addition, the residuals of ANN-1
follow an approximated Gaussian distribution. An example for QD-LST is illustrated in
Figure 5, and an obvious improvement can be observed, particularly for the GOCE satellite
at the lowest altitude in the bottom panels.

GRACE-A

0

1

2

10
5

-2

0

2

GRACE-B

0

1

2

10
5

-2

0

2

CHAMP

0

1

2

10
5

-1

0

1

GOCE

-2 -1 0 1 2

0

1

2
10

5

-6 -3 0 3 6

-1

0

1

Figure 5. Distribution of residuals (left) and the quantile–quantile plot (right) for the ANN-1 model
from GRACE-A/B, CHAMP, and GOCE. The number of neurons in the single hidden layer was 100.
The TMD error is in the unit of ln(kg m−3).

Tables 5 and 6 give the fitting results of the ANN-1 and ANN-2 models, respectively,
with different inputs of time and coordinate frames. An improvement of 3–10% can be
found for ANN-2. Similar results for the three-hidden-layer ANN-3 model are presented
in Table 7. The ANN-3 model performed the best among the three types of ANN-based
model given the equivalent number of model coefficients, e.g., ANN-1(50), ANN-2(20),
and ANN-3(20-20-10)—the numbers inside the parentheses indicate the number of neurons
in the hidden layer(s). The QD latitude versus LST distribution of the three ANN-based
models is given in Figure 6. A two-cell equatorial mass density anomaly (EMA) structure,
i.e., TMD peaks at mid-latitudes and a trough near the equator, was observed by the
CHAMP mission [13].

The crests in equatorial mass density anomaly (EMA), a two-cell structure [13], were
reproduced at the QD latitude of 30◦ during solar maximum, as expected in Figure 6a,c,e.
Similarly, an equatorial maximum in TMD near midnight can be observed during solar
minimum in panels (b), (d), and (f). This indicates that the ANN-1, ANN-2, and ANN-3
models can effectively capture the EMA and MDM. However, it should be noted that the
peaks in TMD around noon during the solar minimum period (right column) display lati-
tudinally asymmetric distributions for the ANN-1 and ANN-2 models. Furthermore, there
is a noticeable difference exceeding 15% among the three models during solar minimum
in the right column of Figure 6. This discrepancy can be attributed to the limited learning
capacity of the shallow neural networks employed by the ANN-1 and ANN-2 models.
Therefore, only the ANN-3 model was considered in the following evaluation due to its
better performance, robustness, and stability in the process of training.
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Table 5. The a posteriori STD of unit weight (σ̂0, unit: ln(kg m−3)); mean TMD ratio (ρ̄); and Pearson
correlation coefficient (R) of ANN-1 model.

Coordinate–Time Neurons in Hidden Layer σ̂0 r̄ R

GEO-LST

5 0.2718 1.0392 0.9881
10 0.2419 1.0307 0.9882
20 0.2255 1.0267 0.9927
50 0.2085 1.0226 0.9948

100 0.2019 1.0211 0.9954

GSM-LT

5 0.2501 1.0332 0.9922
10 0.2442 1.0315 0.9878
20 0.2234 1.0283 0.9943
50 0.2117 1.0233 0.9949

100 0.2053 1.0218 0.9952

QD-LST

5 0.2656 1.0374 0.9882
10 0.2393 1.0302 0.9902
20 0.2252 1.0264 0.9936
50 0.2111 1.0256 0.9946

100 0.2028 1.0226 0.9952

Figure 6. The QD latitude versus LST distribution of TMD predicted by ANN-based model at
400 km around March equinox during solar maximum (left column, P10.7 = 180) and solar minimum
(right column, P10.7 = 80). The panels (a,b) were predicted by ANN-1(50); (c,d) by ANN-2(20); and
(e,f) by ANN-3(20-20-10). The digits in the parenthesis represent the number of neurons in the hidden
layer(s). The colour bars indicate the TMD in the unit of 10−11 kg m−3.
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Table 6. The a posteriori STD of unit weight (σ̂0, unit: ln(kg m−3)); mean TMD ratio (ρ̄); and Pearson
correlation coefficient (R) of ANN-2 model.

Coordinate–Time Neurons in Hidden Layers σ̂0 r̄ R

GEO-LST

5 0.2426 1.0309 0.9918
10 0.2202 1.0251 0.9931
20 0.2117 1.0229 0.9948
50 0.2027 1.0213 0.9952
100 0.1920 1.0199 0.9955

GSM-LT

5 0.2391 1.0302 0.9906
10 0.2216 1.0259 0.9931
20 0.2125 1.0234 0.9946
50 0.2013 1.0208 0.9951
100 0.1904 1.0189 0.9950

QD-LST

5 0.2447 1.0316 0.9911
10 0.2392 1.0307 0.9898
20 0.2143 1.0241 0.9948
50 0.2006 1.0207 0.9951
100 0.1959 1.0199 0.9950

Table 7. The a posteriori STD of unit weight (σ̂0, unit: ln(kg m−3)); mean TMD ratio (ρ̄); and Pearson
correlation coefficient (R) of ANN-3 model.

Coordinate–Time Neurons in Hidden Layers σ̂0 r̄ R

GEO-LST

10-10-5 0.2159 1.0242 0.9949
15-15-5 0.2077 1.0224 0.9951

15-15-10 0.2047 1.0218 0.9953
20-20-10 0.2032 1.0217 0.9956
20-20-15 0.2032 1.0208 0.9954

GEO-MLT

10-10-5 0.2216 1.0255 0.9950
15-15-5 0.2114 1.0238 0.9953

15-15-10 0.2106 1.0230 0.9953
20-20-10 0.2049 1.0239 0.9955
20-20-15 0.2032 1.0212 0.9957

GSM-LST

10-10-5 0.2199 1.0253 0.9942
15-15-5 0.2100 1.0229 0.9952

15-15-10 0.2087 1.0227 0.9951
20-20-10 0.2038 1.0216 0.9953
20-20-15 0.2032 1.0202 0.9954

QD-LST

10-10-5 0.2166 1.0235 0.9943
15-15-5 0.2084 1.0221 0.9951

15-15-10 0.2076 1.0240 0.9952
20-20-10 0.2041 1.0221 0.9954
20-20-15 0.2032 1.0219 0.9953

Figure 7 shows comparisons of the Fourier-3 (GSM-LT), SH-1 (QD-LST), and ANN-3
(QD-LST) models with the reference TMD data sets over 2002–2013. The ANN-based model
had the highest precision and lowest bias among the three example empirical models.
Since dominant variations in TMD are attributed to solar activity [15,38], the performance
of the models showed a strong dependency on the solar activity. In this research, the σ̂0
for all models was larger during low solar activity (around 2007) than during high solar
activity. The spikes in σ̂0 at the beginning of 2002 and 2012 were caused by the data gap
during these years. Interestingly, the ANN-based model did not appear to be affected by
this and still showed good consistency.
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Figure 7. Comparisons of (a) the a posteriori STD σ̂0 and (b) TMD ratio r̄ among the Fourier-4
(GSM-LT, in yellow); SH-1 (QD-LST, in purple); and ANN-3 (QD-LST, in blue) models. Reference
TMD was inferred from GRACE-A/B, CHAMP, and GOCE. The shaded area in the bottom panel
indicates the one-STD range. The legend is shared between the two panels.

5. Conclusions

This study delved into the modelling of thermospheric mass density (TMD) during
geomagnetic quiet and weakly disturbed time, employing accelerometer-derived TMD
observations from four Low Earth Orbit (LEO) satellites: GRACE (∼500 km), CHAMP
(∼400 km), and GOCE (∼250 km), spanning the years 2002 to 2013. Various temporal and
coordinate representations were scrutinised within the context of empirical TMD models.
Furthermore, we explored three modelling methods, namely Fourier analysis, spherical
harmonics (SH) analysis, and ANN techniques, to assess their suitability for global TMD
modelling. A comprehensive evaluation and validation of these models was conducted
to ascertain the optimal method for TMD modelling. The result showed the superiority
of the Geocentric Solar Magnetic (GSM) coordinate system in the empirical TMD models.
Both Fourier- and SH-based models exhibited limitations in approximating the vertical
gradient of TMD. In contrast, the ANN-based model demonstrated a capacity to capture
vertical TMD variability without exhibiting sensitivity to the input parameters of time
and coordinates.

A significant challenge in TMD modelling lies in accurately approximating the vertical
TMD gradient. Two potential solutions emerge: altitude-dependent modelling, which
entails constructing multiple models at distinct reference heights, and ANN modelling. The
results of this research indicate that the ANN-based models outperformed the Fourier- and
SH-based models on three fronts: (1) the ANN-based models adeptly captured vertical TMD
variability without necessitating explicit altitude dependency; (2) a sufficiently complex
ANN structure, marked by an adequate number of hidden layers and neurons, proved
insensitive to variations in time and coordinate frames; (3) the ANN-based models attained
higher accuracy when compared to the other two model types.

Furthermore, given that TMD measurements from LEO satellites are obtainable solely
along their trajectories, certain spatial features of TMD, such as equatorial mass anomalies
(EMAs), are challenging to capture using satellite drag-derived TMD exclusively. In future
research, the pursuit of improved metrics may be necessary to address the limitations
of existing TMD modelling techniques, particularly when dealing with LEO-satellite-
derived measurements.
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Appendix A. The Terms f in the Fourier Model

The terms fi (i = 1, . . . , 7) in Equation (2) representing the vertical, solar activity,
geomagnetic, latitudinal, longitudinal, intra-diurnal, and intra-annual variations in TMD
are given by

f1(P10.7) = 1 +
n2

∑
i=1

a2(i) Pi
10.7, (A1)

f2(Kp) = 1 +
n3

∑
i=1

a3(i)Ki
p, (A2)

f3(φ) = 1 +
n4

∑
i=1

(a4(i) sin 2iφ + a5(i) cos 2iφ), (A3)

f4(λ) = 1 +
n5

∑
i=1

(a6(i) sin iλ + a7(i) cos iλ), (A4)

f5(HOD) = 1 +
n6

∑
i=1

[
a8(i) sin

(
2πi
24

HOD
)
+ a9(i) cos

(
2πi
24

HOD
)]

, (A5)

f6(DOY) = 1 +
n7

∑
i=1

[
a10(i) sin

(
2πi
365

DOY
)
+ a11(i) cos

(
2πi
365

DOY
)]

, (A6)

where P10.7 and Kp are the solar and geomagnetic indices; φ and λ are the geographic, solar,
or geomagnetic latitudes and longitudes [9], respectively, which are termed as ‘general’
latitudes and longitudes hereafter; h is the altitude; and ρ0 is the TMD at the reference
altitude of h0. HOD is the hour of the day, and DOY is the day of the year, which can be

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/goce
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/goce
http://tinyurl.com/densitysets
https://omniweb.gsfc.nasa.gov/ow_min.html
http://isgi.unistra.fr
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measured by UT, LT, LST, or MLT. The φ, λ, and HOD used by Xiong et al. [14] were the
geographic coordinates and MLT, respectively.

Appendix B. The Function G in SH-Based Model

In Equations (4) and (5), the function of G(P10.7, P̄10.7, Kp, φ, λ, DOY, UT, HOD) is
given by

G = a1 P1,0 + (a2 + a3 ∆P̄10.7) P2,0 + a4 P4,0 + a5 P6,0 (Time independent)

+ a6 cos
[

2π

365
(DOY − a7)

]
(Symmetrical annual)

+ (a8 + a9 P2,0) cos
[

4π

365
(DOY − a10)

]
(Symmetrical semiannual)

+ F1(a11 P1,0 + a12 P3,0) cos
[

2π

365
(DOY − a13)

]
(Asymmetrical annual)

+ a14 P1,0 cos
[

4π

365
(DOY − a15)

]
(Asymmetrical semiannual)

+

{
a16 P1,1 + a17 P3,1 + a18 P5,1 + a19 P2,1 cos

[
2π

365
(DOY − a13)

]}
F2 cos

(
2π

24
HOD

)
+

{
a20 P1,1 + a21 P3,1 + a22 P5,1 + a23 P2,1 cos

[
2π

365
(DOY − a13)

]}
F2 sin

(
2π

24
HOD

)
(Diurnal)

+

{
a24 P2,2 + a25 P4,2 + (a26 P3,2 + a27 P5,2) cos

[
2π

365
(DOY − a13)

]}
F2 cos

(
4π

24
HOD

)
+

{
a28 P2,2 + a29 P4,2 + (a30 P3,2 + a31 P5,2) cos

[
2π

365
(DOY − a13)

]}
F2 sin

(
4π

24
HOD

)
(Semidiurnal)

+

{
a32 P3,3 + (a33 P4,3 + a34 P6,3) cos

[
2π

365
(DOY − a13)

]}
F2 cos

(
6π

24
HOD

)
+

{
a35 P3,3 + (a36 P4,3 + a37 P6,3) cos

[
2π

365
(DOY − a13)

]}
F2 sin

(
6π

24
HOD

)
(Terdiurnal)

+

{
a38 P2,1 + a39 P4,1 + a40 P6,1 + a41 P1,1 + a42 P3,1 + a43 P5,1+

(a44 P1,1 + a45 P3,1 + a46 P5,1) cos
[

2π

365
(DOY − a13)

]}
(1 + a47 ∆ P̄10.7) cos λ

+

{
a48 P2,1 + a49 P4,1 + a50 P6,1 + a51 P1,1 + a52 P3,1 + a53 P5,1+
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(a54 P1,1 + a55 P3,1 + a56 P5,1) cos
[

2π

365
(DOY − a13)

]}
(1 + a47 ∆ P̄10.7) sin λ

(Longitude)

+ a57 ∆P10.7 + a58 ∆P10.7∆P̄10.7 + a59 ∆P2
10.7 + a60 ∆P̄10.7 + a61 ∆P̄2

10.7 (Solar activity)

+ (a62 P1,0 + a63 P3,0 + a64 P5,0)(1 + a65 ∆P̄10.7)(1 + a66 P1,0)·{
1 + a67 P1,0 cos

[
2π

365
(DOY − a13)

]}
cos

[
2π

24
(UT − a68)

]
+ (a69 P3,2 + a70 P5,2 + a71 P7,2)(1 + a72 ∆P̄10.7) cos

[
2π

24
(UT − a73) + 2λ

]
(UT)

+

{
a76 + a77 P̄2,0 + a78 P̄4,0 + (a79 P̄1,0 + a80 P̄3,0 + a81 P̄5,0) · cos

[
2π

365
(DOY − a13)

]

+ (a82 P̄1,1 + a83 P̄3,1 + a84 P̄5,1) cos
[

2π

24
(HOD − a85)

]}
∆A

(Magnetic activity)

+

{
(a86 P̄2,1 + a87 P̄4,1 + a88 P̄6,1)(1 + a89 P̄1,0) cos(λ − a90)

+ (a91 P̄1,1 + a92 P̄3,1 + a93 P̄5,1) · cos
[

2π

365
(DOY − a13)

]
cos(λ − a94)

+ (a95 P̄1,0 + a96 P̄3,0 + a97 P̄5,0) cos
[

2π

24
(UT − a98)

]}
∆A,

(UT/longitude/magnetic)

(A7)

where

∆P10.7 = P10.7 − P̄10.7,

∆P̄10.7 = P̄10.7 − 150,

F1 = 1 + a74 ∆P̄10.7 + a57 ∆P10.7 + a59 ∆P2
10.7,

F2 = 1 + a75 ∆P̄10.7 + c57 ∆P10.7 + c59 ∆P2
10.7,

∆A = (Kp − 1) + a99(Kp − 1),

(A8)

and Pm,l (φ) is the non-normalised Legendre polynomials as used in NRLMSISE-00. φ
and λ are the general latitudes and longitudes, respectively. The terms related to the
geomagnetic effect were estimated in the modelling of this study, but the developed models
were evaluated at Kp = 0 for consistency. See Yamazaki et al. [15] for more explanation.
Similar to the Fourier-based model, the model coefficients in Equation (A8) were estimated
using a separate Levenberg–Marquardt algorithm, which was also originally used in the
development of NRLMSISE-00 [34].
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