
Citation: Zhou, H.; Dai, Z.; Wu, C.;

Ma, X.; Zhu, L.; Wu, P. Comparison of

Different Impact Factors and Spatial

Scales in PM2.5 Variation. Atmosphere

2024, 15, 307. https://doi.org/

10.3390/atmos15030307

Academic Editor: Antonio Donateo

Received: 15 January 2024

Revised: 24 February 2024

Accepted: 25 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Comparison of Different Impact Factors and Spatial Scales in
PM2.5 Variation
Hongyun Zhou 1,2, Zhaoxin Dai 1,2,*, Chuangqi Wu 3, Xin Ma 3, Lining Zhu 2 and Pengda Wu 2

1 International Research Center of Big Data for Sustainable Development Goals, No. 9 Zhengzhuang South
Road Chaoyang District, Beijing 100094, China; zhymew2022@163.com

2 Institute of Geographic Information System and Cartography, Chinese Academy of Surveying and Mapping,
No. 28 Lianhuachi West Road Haidian District, Beijing 100036, China; wupd@casm.ac.cn (P.W.)

3 Xi’an Institute of Prospecting and Mapping, Xi’an 710048, China; wuchuangq@sina.com (C.W.)
* Correspondence: daizx@lreis.ac.cn; Tel.: +86-010-63880546

Abstract: PM2.5 particles with an aerodynamic diameter of less than 2.5 µm are receiving increasing
attention in China. Understanding how complex factors affect PM2.5 particles is crucial for the
prevention of air pollution. This study investigated the influence of meteorological factors and land
use on the dynamics of PM2.5 concentrations in four urban agglomerations of China at different
scales from 2010 to 2020, using the Durbin spatial domain model (SDM) at five different grid scales.
The results showed that the average annual PM2.5 concentration in four core urban agglomerations
in China generally had a downward trend, and the meteorological factors and land use types were
closely related to the PM2.5 concentration. The impact of temperature on PM2.5 changed significantly
with an increase in grid scale, while other factors did not lead to obvious changes. The direct and
spillover effects of different factors on PM2.5 in inland and coastal urban agglomerations were not
entirely consistent. The influence of wind speed on coastal urban clusters (the Pearl River urban
agglomeration (PRD) and Yangtze River urban agglomeration (YRD)) was not significant among the
meteorological factors, but it had a significant impact on inland urban clusters (the Beijing–Tianjin–
Hebei urban agglomeration (BTH) and Chengdu–Chongqing urban agglomeration (CC)). The direct
effect of land use type factors showed an obvious U-shaped change with an increase in the research
scale in the YRD, and the direct effect of land use type factors was almost twice as large as the
spillover effect. Among land use type factors, human factors (impermeable surfaces) were found to
have a greater impact in inland urban agglomerations, while natural factors (forests) had a greater
impact in coastal urban agglomerations. Therefore, targeted policies to alleviate PM2.5 should be
formulated in inland and coastal urban agglomerations, combined with local climate measures such
as artificial precipitation, and urban land planning should be carried out under the consideration of
known impacts.

Keywords: PM2.5 concentration; urban agglomerations; spatial dependence; direct and spillover
effect; SDM

1. Introduction

Fine particulate matter (PM2.5) particles have become the primary pollutants in the air
in most cities in China, and the PM2.5 concentration is an important index reflecting the
degree of air pollution. The deterioration of air quality poses a serious threat to human
health [1]. Between 2002 and 2017, the number of PM2.5-related deaths in China increased
by 390,000 (23%) [2]. It is necessary to review the long-term evolution of air pollution in
China and the impact of different factors on the annual average PM2.5 concentration.

Research on PM2.5 has increased in recent years. In terms of influencing factors,
several studies have shown that natural factors [3,4] and socio-economic [5,6] factors
have an impact on the PM2.5 concentration. Among the natural factors, air temperature,
precipitation, and wind speed all impact the concentration of PM2.5 [7]. Urbanization is a
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notable cause of the increase in the PM2.5 concentration among the social and economic
factors, and industrial emissions [8], traffic pollution, and population growth due to
urbanization are among the most important influencing indicators of the increasing PM2.5
concentration. Land use type factors also affect the value and distribution of the PM2.5
concentration. The spatial and temporal distribution of PM2.5 in the central urban area is
closely related to the neighborhood land use structure, and 60.4% of the risk inherent to
PM2.5 can be explained by this factor [9]. A study of the impact of land use distribution on
the four seasons’ PM2.5 concentration distribution found that the dominant factor affecting
PM2.5 in spring and summer is grassland, and that in autumn and winter is forests [10].
One article reported that the proportions of forest, garden, and industrial land had more
significant impacts on PM2.5 than other land use types [11].

Multiple regression methods have been studied for factors related to PM2.5 in various
studies. Ordinary linear regression (OLS) was used to determine the linear relationship
between influencing factors and PM2.5. Due to the fact that simple OLS cannot accurately
explore the relationship between various factors and PM2.5, scholars have started to use
methods such as logistic regression [12] and multiple linear regression [13,14]. With the
deepening of research, it has been found that the spatial distribution of various factors
can also affect the concentration of PM2.5, so Geographically Weighted Regression (GWR)
has been introduced. Among the numerous influencing factors, people have gradually
realized that the impact of land use factors on PM2.5 cannot be underestimated. Therefore,
the land use regression model [15] has been introduced for research. PM2.5 has the property
of easy diffusion in space, but previous simple regression methods could not simulate this
characteristic well. Therefore, scholars have introduced spatial econometric methods [16]
in further studies. But now, spatial econometric methods mainly focus on studying the
impact of economic factors on PM2.5 [17].

However, recent studies have had some shortcomings. (1) Regarding the influence
of various factors on PM2.5, different analytical cells may lead to significantly different
results. However, the current research did not focus on the gradient effects that influencing
factors may have on PM2.5 at different scales. (2) In order to solve the problem of traditional
models being unable to capture the spatial autocorrelation of PM2.5 [18], some studies have
attempted to introduce spatial lag models [19] or spatial error models [20]. However, both of
these models mainly focus on spatial static panel data, failing to capture the autocorrelation
of dynamic panel data (such as various factors across different years). (3) The impact of
different influencing factors on PM2.5 varies in different regions, and differences between
north and south, as well as differences between land and sea, were not compared in
previous studies.

This study explored the spatial distribution of PM2.5 in the four major urban ag-
glomerations in China from 2010 to 2020. The SDM was used to quantify the impact of
meteorological and land use factors on each urban agglomeration at different grid scales.
At the research scale of cities or counties, PM2.5 concentration can generate significant dif-
ferences between urban boundaries. Using grids can effectively blur the specific boundaries
of towns and reduce differences between boundary lines. Due to the uniform variation
in the research scale, it can effectively reflect the gradient effect of various influencing
factors. The distribution patterns and potential influencing factors of PM2.5 were inves-
tigated, providing suggestions for alleviating PM2.5 pollution in urban agglomerations.
The distribution patterns and potential influencing factors of PM2.5 were investigated,
providing suggestions for alleviating PM2.5 pollution in urban agglomerations. The three
meteorological factors included in the research were annual precipitation, annual average
temperature, and annual average wind speed. The four land use type factors included
cropland, forests, water bodies, and impermeable surfaces. A hierarchy grid, with cell sizes
ranging from 6 km to 18 km, was used to integrate the data. The four core regions included
the Chengdu–Chongqing urban agglomeration (an emerging urban agglomeration), the
Beijing–Tianjin–Hebei urban agglomeration, the Pearl River Delta urban agglomeration,
and the Yangtze River Delta urban agglomeration.
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2. Study Area and Data Source
2.1. The Four Core Urban Agglomerations in China

With the rapid economic development of China, the construction of many regions be-
gan to focus on the formation of urban agglomerations and megalopolises. The operational
development between urban agglomerations will gradually replace the development of
single cities. To date, a consensus on how to define an urban agglomeration has not been
reached, although scholars agree that an urban agglomeration comprises multiple cities
that are highly integrated. There is a clear difference between urban agglomerations and
town agglomerations. Specifically, the cluster structure of an urban agglomeration requires
a hierarchical structure with large, medium, and small-sized cities and towns, whereas
a town agglomeration is essentially a cluster of small towns that does not necessarily
have any meaningful hierarchical structure [21]. At present, China has formed four major
urban agglomerations, namely the Beijing–Tianjin–Hebei urban agglomeration (BTH), the
Pearl River Delta urban agglomeration (PRD), the Yangtze River Delta urban agglomera-
tion (YRD), and the Chengdu–Chongqing urban agglomeration (CC). The geographical
locations of the four core urban agglomerations are shown in Figure 1.

Atmosphere 2024, 15, x FOR PEER REVIEW 3 of 21 
 

 

from 6 km to 18 km, was used to integrate the data. The four core regions included the 
Chengdu–Chongqing urban agglomeration (an emerging urban agglomeration), the Bei-
jing–Tianjin–Hebei urban agglomeration, the Pearl River Delta urban agglomeration, and 
the Yangtze River Delta urban agglomeration. 

2. Study Area and Data Source 
2.1. The Four Core Urban Agglomerations in China 

With the rapid economic development of China, the construction of many regions 
began to focus on the formation of urban agglomerations and megalopolises. The opera-
tional development between urban agglomerations will gradually replace the develop-
ment of single cities. To date, a consensus on how to define an urban agglomeration has 
not been reached, although scholars agree that an urban agglomeration comprises multi-
ple cities that are highly integrated. There is a clear difference between urban agglomera-
tions and town agglomerations. Specifically, the cluster structure of an urban agglomera-
tion requires a hierarchical structure with large, medium, and small-sized cities and 
towns, whereas a town agglomeration is essentially a cluster of small towns that does not 
necessarily have any meaningful hierarchical structure [21]. At present, China has formed 
four major urban agglomerations, namely the Beijing–Tianjin–Hebei urban agglomeration 
(BTH), the Pearl River Delta urban agglomeration (PRD), the Yangtze River Delta urban 
agglomeration (YRD), and the Chengdu–Chongqing urban agglomeration (CC). The geo-
graphical locations of the four core urban agglomerations are shown in Figure 1. 

The BTH is China’s “Capital Economic Circle”. The PRD is developing together with 
the two special administrative regions of Hong Kong and Macao to build the Guangdong–
Hong Kong–Macao Greater Bay Area. The YRD is an important intersection of the “Belt 
and Road” and the Yangtze River Economic Belt, and it plays a pivotal strategic role in the 
overall situation of China’s national modernization and opening up. The CC is an im-
portant platform for the development of Western China, a strategic support for the Yang-
tze River Economic Belt, and an important demonstration area for China to promote new 
urbanization. 

 

Figure 1. Location of the four core urban agglomerations in China. (a) Beijing–Tianjin–Hebei
urban agglomeration, (b) Pearl River urban agglomeration, (c) Yangtze River urban agglomeration,
(d) Chengdu–Chongqing urban agglomeration.

The BTH is China’s “Capital Economic Circle”. The PRD is developing together with
the two special administrative regions of Hong Kong and Macao to build the Guangdong–
Hong Kong–Macao Greater Bay Area. The YRD is an important intersection of the “Belt
and Road” and the Yangtze River Economic Belt, and it plays a pivotal strategic role in
the overall situation of China’s national modernization and opening up. The CC is an
important platform for the development of Western China, a strategic support for the
Yangtze River Economic Belt, and an important demonstration area for China to promote
new urbanization.
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2.2. Data Sources and Grid Design
2.2.1. Data Sources

The annual average PM2.5 concentration grid of 0.01◦ × 0.01◦ (approximately 1 km × 1 km)
from 1998 to 2021 was obtained from the Atmospheric Composition Analysis Organization
(ACAG) (https://sites.wustl.edu/acag/datasets/surface-pm2-5/, accessed on 24 February
2024), which integrates data from remote sensing monitoring and site measurements. The
annual precipitation data, the annual average temperature data, and the annual average
wind speed data were derived from the National Earth System Science Data Center (http:
//www.geodata.cn/https://sites.wustl.edu/acag/datasets/surface-pm2-5/, accessed on
24 February 2024), which provided the annual precipitation data (2001–2020), the monthly
average temperature data from 1901 to 2021, and the monthly average wind speed data
(2001–2020) for China with a resolution of 1 km. The spatial resolution of the original data
was 0.1◦, and the precipitation unit, temperature unit, and wind speed unit were 0.1 mm,
0.1 ◦C, and m/s, respectively.

The land use data were derived from the national land cover dataset of Wuhan
University, which has a spatial resolution of 30 m.

When processing PM2.5 and meteorological data, regional statistical tools in ArcGIS
can be used. The principle is to assign the pixel values of the pixels covered by a grid to
the grid by summing them. Due to the time resolution of temperature and wind speed
data being one month, we calculated the annual mean of the two types of data as the
corresponding statistical data. The area indicator tool in ArcGIS was used to calculate the
area of different land type attributes in each grid, and the statistical data were linked to the
corresponding grid.

2.2.2. Grid Design

Compared with coarser atmospheric particles, PM2.5 has a smaller particle size, mean-
ing they can stay in the atmosphere for a long time and can be transported to distant
locations. Currently, research on PM2.5 is mostly based on cities and towns. Therefore,
in order to better understand the relationship between different factors and the annual
average PM2.5 concentration in urban agglomerations, more scale information was needed.
The division of grids at different scales can affect the results, so it was also necessary to
conduct multiscale research. Because some researchers have applied a multiscale polygon
grid-based analysis to the study of the urban heat island effect in the Beijing–Tianjin–Hebei
region, these grid partitioning methods could be used for reference [18]. We set up a
gradient of different sizes of grid for subsequent comparative analysis, taking 6, 9, 12, 15,
and 18 km as the analysis scales. All of the grid sizes were designed to be an integer multi-
ple of the pixel size of the thematic data (1 km for the PM2.5 concentration, temperature,
precipitation, and wind speed, and 30 m for land cover). This ensured that the data values
of each pixel in the thematic data could be effectively linked to the grid. Figure 2 shows the
annual precipitation in 2020 under different grid scales.

When conducting spatial regression analysis at different levels using panel data, all
meteorological indicators were averaged within corresponding grid boundaries from 2010
to 2020. We used the regional statistical method to calculate the mean meteorological
data for each grid. For the temperature and wind speed data, we calculated the annual
average data through the monthly average data to ensure that the time scale of all data was
the same.

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
http://www.geodata.cn/https://sites.wustl.edu/acag/datasets/surface-pm2-5/
http://www.geodata.cn/https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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3. Methodology
3.1. Spatiotemporal Pattern Analysis

Before conducting spatial econometric analysis to explore the impact of various factors
on PM2.5, it was necessary to verify whether the spatial distribution of PM2.5 conformed
to spatial autocorrelation. Only when it was determined that the spatial distribution of
PM2.5 had spatial autocorrelation characteristics could spatial measurements be carried
out. Spatial statistical analysis is based on spatial connections, and it is divided into global
autocorrelation and local autocorrelation. The estimation of global spatial autocorrelation
describes the spatial features of geographical phenomena or attributes from an overall
region, while local autocorrelation describes the spatial features of geographical phenomena
or attributes from partial regions. In this paper, we chose Global Moran’s I to verify the
spatial autocorrelation in PM2.5. The calculation formula is:

I =
n∑i ∑j Wij(xi − x)

(
xj − x

)
∑i ∑j Wij∑i(xi − x)2 =

∑i ∑j Wij(xi − x)
(
xj − x

)
S2

(
∑i ∑j Wij

) (i, j = 1, 2, . . . , n) (1)
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where I is the value of Global Moran’s I; S2 = 1
n ∑i(xi − x)2; x = 1

n ∑i xi; Wij is the element
in the spatial weight matrix that represents the impact between region i and region j; xi and
xj are the values of the PM2.5 concentration in regions i and j; xi is the mean value of the
PM2.5 concentration; and n is the number of samples. In this study, the Queen adjacency
matrix W was used as the spatial weight matrix.

W =


W11 W12 . . . W1n
W21 W22 . . . W2n

...
...

. . .
...

Wn1 Wn2 . . . Wnn

 (2)

Wij =

{
1, grid i is adjacent to grid j

0, grid i is not adjacent to grid j
(3)

The range of Moran’s index lies between +1 and −1. When I is equal to +1, it suggests
that the pattern observed is clustered spatially. On the other hand, when I is equal to −1, it
suggests scattering or dispersion. An I value close or equal to zero points to the absence of
autocorrelation.

3.2. Spatial Regression Model

Spatial regression analysis usually utilizes the linear regression model. Because PM2.5
is likely to diffuse across regions, the OLS (Ordinary Least Square Model) estimations
of the non-spatial panel model may be biased and inconsistent [22]. Thus, considering
the evidence for spatial effects, the SDM (spatial Durbin model) was introduced in this
research. Considering both endogenous spatial dependence in the dependent variable
(Y) and exogenous spatial dependence in the explanatory variables (X), the SDM was
written as:

Y = λWY + β1X1 + β2WX1 + β3X2 + β4WX2 + . . . + β13X7 + β14X7

+ε, ε ∼ N
(
0, σ2 In

) (4)

where Y is a vector of the average annual PM2.5 concentration; X is a matrix of the influ-
encing factors of selection; W is the spatial weight matrix; WY is a vector of the spatial
lag-dependent variable that denotes the endogenous interaction effects among Y; and WX
is a vector of a spatial lag-independent variable that denotes the exogenous interaction
effects among X. The coefficients βi (i = 1, 2, . . ., 14) are the regression parameters, and λ is
an additional parameter representing the spatial regression coefficient of WY. The term ε is
a normally distributed disturbance term with a diagonal covariance matrix.

To determine the suitability of the SDM, several tests, such as the Hausman test,
Lagrange multiplier test, robustness Lagrange multiplier test, likelihood ratio test, and
Wald test, can be used. Firstly, the Hausman test was used on the constructed panel data,
and it was found that the statistical values of both the spatially and temporally fixed models
were significant at a 1% confidence level, indicating that the model had a fixed cross-section
and a fixed time effect. Secondly, the necessity of extending the OLS model to spatial
regression models was investigated using the Lagrangian multiplier (LM) test and the
robust Lagrangian multiplier (RLM) test of SLM or SEM. There were two situations in
the LM test in this article, and the following adjustments were made for the two different
test results: (1) The test values of SLM-LM, SEM-LM, SEM-RLM, and SLM-RLM were all
significant at a 1% confidence level, indicating that adding spatial dependencies in the
spatial regression was necessary. Therefore, the SDM was used for regression. (2) In the
LM test, there were test values that were not significant at a 1% confidence level, so we
introduced spatial dependence items in spatial regression and used the spatial Durbin
model (SDM) for regression. After regression, we performed the LR and WALD tests on
SEM and SLM, and the results showed that the SDM cannot degenerate into SEM or SLM.
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This article adopted a more robust SDM with nested spatiotemporal bidirectional fixed
effects for the analysis.

The spatial weight matrix used in the regression process was the same as the matrix
used in the spatial spatiotemporal pattern analysis, which was an inverse distance matrix.
Data for a time interval of 11 years were used to form panel data for regression. Spatial
regression analysis was conducted using Elhorst’s Spatial Regression MATLAB 2022a
toolbox [23]. In order to propose appropriate and feasible policy recommendations based
on the fitting results, a normalization process was not applied in this study. Here, direct
effects refer to the study of the impact of factors in the local grid on the PM2.5 concentration,
while spillover effects refer to the impact of all factors in the surrounding grid on the PM2.5
concentration. Both direct and indirect effects can be calculated by the SDM. The total
impact effect of the region was the sum of its direct effects and the indirect effects of the
surrounding area.

Based on natural environmental changes and human activity, we classified the factors
that affected the PM2.5 concentration. In terms of natural environmental changes, precipita-
tion (mm), temperature (◦C), wind speed (m/s), forest (km2), and water area (km2) were
selected as the independent variables. Cropland (km2) and impermeable surfaces (km2)
were chosen as further independent variables. The PM2.5 concentration was selected as the
dependent variable. The independent variables were defined as follows:

PRE: annual precipitation;
TMP: annual average temperature;
WND: annual average wind speed;
CPL: the land use of cropland;
FOREST: the land use of forests;
WATER: the land use of water;
IPS: the land use of impermeable surfaces.

4. Results and Analyses
4.1. Spatiotemporal Patterns of the PM2.5 Concentration

The spatial patterns of the PM2.5 concentration in the four core urban agglomerations
in China from 2010 to 2020 are shown in Figure 3. The annual average PM2.5 concentration
in the BTH showed a trend of increasing first and then decreasing. The concentration
in the southern region was significantly higher than that in the northern region. The
areas with high concentrations were concentrated in the plains of the south. The annual
average PM2.5 concentration in the PRD appeared to have a declining trend and was
relatively consistent in the whole region. The concentration in the Chengdu–Chongqing
urban agglomeration showed a gradual decreasing trend from the center of the urban
agglomeration outward, and the concentration in the western region was higher than that
in the eastern region. The areas with high PM2.5 concentrations were mainly distributed in
the southern region of Sichuan, with Chongqing and Chengdu as the line of demarcation.
In general, the concentration in the BTH was significantly higher than that of the other
three urban clusters, with the PRD having the lowest concentration.

This paper used MATLAB tools to construct a spatial weight matrix and calculated
Moran’s I based on the above Formula (1). Table 1 shows the value of Moran’s I in the
four core urban agglomerations in 2020. According to the value of Moran’s I, the spatial
distribution of PM2.5 showed a significant spatial autocorrelation effect in the four major
urban agglomerations, and all were positive.
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Table 1. The value of Moran’s I in the four core urban agglomerations in China in 2020.

Grid BTH PRD YRD CC

6 km 0.992 *** 0.944 *** 0.976 *** 0.970 ***
9 km 0.986 *** 0.897 *** 0.958 *** 0.957 ***

12 km 0.980 *** 0.858 *** 0.940 *** 0.943 ***
15 km 0.972 *** 0.791 *** 0.917 *** 0.926 ***
18 km 0.966 *** 0.719 *** 0.904 *** 0.903 ***

Notes: *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively.

4.2. Spatial Econometric Testing of the Influencing Factors of PM2.5
4.2.1. Regression Model Identification

Considering the spatial autocorrelation of the PM2.5 concentration described in
Section 4.1, a spatial regression model was used to further explore the impact of dif-
ferent factors on the PM2.5 concentration in different regions at different scales. Table 2
shows the results of each test.

Table 2. Necessary tests for the experiments.

Name Tests
Grid

6 km 9 km 12 km 15 km 18 km

BHT

SLM-LM 13,696.97 *** 4398.65 *** 1921.41 *** 930.39 *** 568.19 ***
SLM-RLM 37.16 ** 17.04 *** 10.43 *** 5.77 ** 3.94 **
SEM-LM 167,629.41 *** 69,599.45 *** 36,460.26 *** 22,019.29 *** 14,062.00 ***

SEM-RLM 153,969.60 *** 65,217.84 *** 34,549.28 *** 21,094.67 *** 13,497.75 ***

PRD

SLM-LM 397.82 *** 66.95 *** 7.89 ** 23.10 *** 2.91 **
SLM-RLM 0.38 0.05 0.02 0.24 0.05
SEM-LM 32,409.20 *** 12,464.77 *** 5544.46 *** 2913.49 *** 1462.80 ***

SEM-RLM 32,011.76 *** 12,397.86 *** 5536.59 *** 2890.63 *** 1461.93 ***
SLM-LR 9045.75 *** 5829.31 *** 3076.38 *** 1884.30 *** 1073.15 ***

SLM-WALD 13,374.82 *** 8000.14 *** 4701.32 *** 2365.86 *** 1553.49 ***
SEM-LR 23,330.29 *** 11,935.92 *** 5968.71 *** 3304.76 *** 1864.52 ***

SEM-WALD 1520.89 *** 561.71 *** 270.97 *** 153.28 *** 121.49 ***
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Table 2. Cont.

Name Tests
Grid

6 km 9 km 12 km 15 km 18 km

YRD

SLM-LM 753.00 *** 222.23 *** 58.66 *** 36.85 *** 8.53 ***
SLM-RLM 0.12 0.03 0.01 0.02 0.01
SEM-LM 90,850.35 *** 56,947.38 *** 28,886.59 *** 15,586.31 *** 9970.70 ***

SEM-RLM 90,097.48 *** 56,725.17 *** 28,827.95 *** 15,549.49 *** 9962.17 ***
SLM-LR 6952.62 *** 3624.49 *** 1397.80 *** 334.66 *** 556.32 ***

SLM-WALD 11,522.59 *** 5336.92 *** 3265.22 *** 1098.44 *** 1212.28 ***
SEM-LR 35,987.88 *** 15,160.72 *** 8066.07 *** 3919.46 *** 3087.32 ***

SEM-WALD 1150.83 *** 460.00 *** 325.07 *** 426.96 *** 157.50 ***

CC

SLM-LM 66,599.01 *** 14,155.22 *** 3195.68 *** 1401.74 *** 377.44 ***
SLM-RLM 43.62 ** 16.37 *** 5.99 ** 4.25 *** 1.57
SEM-LM 195,228.22 *** 81,183.65 *** 42,028.11 *** 25,138.77 *** 16,026.24 ***

SEM-RLM 128,672.84 *** 67,044.80 *** 38,838.42 *** 23,741.27 *** 15,650.37 ***
SLM-LR - - - - 519.88 ***

SLM-WALD - - - - 898.87 ***
SEM-LR - - - - 2417.39 ***

SLM-WALD - - - - 114.48 ***
Notes: (1) *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively; (2) spatial lag model (SLM),
spatial error model (SEM), spatial Durbin model (SDM), Lagrangian multiplier (LM), robust Lagrangian multiplier
(RLM), likelihood ratio (LR), Wald test (WALD).

4.2.2. Regression Results

The results indicated that precipitation, temperature, cropland, and impermeable
surfaces have a stable and significant negative impact on the PM2.5 concentration in the
BTH. In the PRD, precipitation has a stable and significant negative impact. In the YRD,
precipitation and temperature have a stable and significant negative impact. In the CC,
precipitation, temperature, cropland, forests, water bodies, and impermeable surfaces have
a significant negative impact, while wind speed has a positive impact.

The data in Table 3 showed that the estimates of W*(PM2.5) were significant at the
99th percentile confidence interval in the SDM models, indicating that for BTH, the PM2.5
concentrations of the grid within the agglomeration increased by more than 0.16 µg/m3 for
every 1 µg/m3 increase in the average PM2.5 of neighboring grids. Similarly, in the PRD,
YRD, and CC, the value was estimated to be 0.10 µg/m3, 0.13 µg/m3, and 0.15 µg/m3,
respectively. Considering that the influencing mechanisms of different indicators were
complex and varied at different temporal scales (e.g., day, month, and year) and spatial
scales (e.g., grid, city, region, and country), not every indicator passed the significance test
in the models.

Table 3. Spatial regression estimation of the PM2.5 concentration in the four urban agglomerations at
different scales from 2010 to 2020.

Name Variables
Grid

6 km 9 km 12 km 15 km 18 km

BHT

PRE −0.031 *** −0.029 *** −0.033 *** −0.036 *** −0.031 ***
TMP −5.646 *** −6.758 *** −7.404 *** −9.902 *** −8.951 ***
WND −0.188 *** 0.031 0.272 −0.541 * 0.513
CPL −0.031 *** −0.024 *** −0.022 *** −0.016 ** −0.016 **

FOREST −0.046 *** −0.017 −0.000 −0.007 0.028 ***
WATER 0.012 −0.014 −0.063 *** −0.038 ** −0.128 ***

IPS −0.115 *** −0.088 *** −0.096 *** −0.068 *** −0.060 ***
W*PRE 0.005 *** 0.005 *** 0.006 *** 0.006 *** 0.005 ***
W*TMP 0.964 *** 1.153 *** 1.250 *** 1.663 *** 1.532 ***
W*WND −0.003 −0.074 ** −0.149 *** −0.036 −0.199 *
W*CPL 0.012 *** 0.009 *** 0.008 *** 0.009 *** 0.009 ***

W*FPREST 0.021 *** 0.013 *** 0.009 *** 0.010 *** 0.001
W*WATER −0.009 ** −0.012 *** −0.006 0.001 *** 0.007

W*IPS 0.026 *** 0.017 *** 0.017 *** 0.011 *** 0.012 ***
W*(PM2.5) 0.165 *** 0.164 *** 0.163 *** 0.161 *** 0.163 ***

R2 0.9993 0.9990 0.9987 0.9981 0.9802
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Table 3. Cont.

Name Variables
Grid

6 km 9 km 12 km 15 km 18 km

PRD

PRE 0.000 ** 0.001 *** 0.001 ** 0.001 0.000
TMP −5.806 *** −7.342 *** −8.288 *** −8.153 *** −9.171 ***
WND 0.021 −0.017 −0.104 −0.398 * 0.325
CPL 0.010 −0.225 * 0.071 0.059 −0.022

FOREST 0.073 −0.162 0.109 0.091 −0.012
WATER 0.091 −0.137 0.138 0.099 0.001

IPS −0.079 −0.264 ** 0.074 0.042 −0.034
W*PRE −0.000 −0.000 *** −0.000 *** −0.000 ** −0.000 **
W*TMP 1.514 *** 1.710 *** 1.829 *** 1.710 *** 1.863 ***
W*WND −0.039 * −0.043 0.003 0.106 0.087
W*CPL 0.004 0.054 0.079 * 0.011 0.122 *

W*FPREST −0.013 0.038 0.067 −0.002 0.117 *
W*WATER 0.010 0.049 0.076 * 0.014 0.132 **

W*IPS 0.001 0.055 0.074 * 0.015 0.123 *
W*(PM2.5) 0.138 *** 0.139 *** 0.140 *** 0.135 *** 0.130 ***

R2 0.9966 0.9964 0.9961 0.9955 0.9946

YRD

PRE −0.006 *** −0.006 *** −0.005 *** −0.005 *** −0.005 ***
TMP −5.873 *** −6.610 *** −7.059 *** −1.576 *** −6.422 ***
WND 0.146 ** −0.165 * −0.160 −0.363 −0.014
CPL 0.281 −0.010 −0.217 0.187 0.216

FOREST 0.303 0.002 −0.211 0.217 0.234
WATER 0.337 0.063 −0.162 0.157 0.221

IPS 0.282 −0.020 −0.231 0.147 0.188
W*PRE 0.001 *** 0.001 *** 0.001 *** 0.001 *** 0.001 ***
W*TMP 1.200 *** 1.317 *** 1.468 ** 0.879 *** 1.395 ***
W*WND −0.033 ** 0.054 * 0.118 *** 0.282 *** 0.331 ***
W*CPL 0.182 ** 0.219 *** 0.299 *** 0.151 * 0.153 **

W*FPREST 0.195 *** 0.230 *** 0.308 *** 0.154 * 0.159 **
W*WATER 0.172 ** 0.202 ** 0.283 *** 0.151 * 0.148 *

W*IPS 0.179 ** 0.217 *** 0.296 *** 0.155 ** 0.152 *
W*(PM2.5) 0.152 *** 0.149 *** 0.147 *** 0.139 *** 0.134 ***

R2 0.9963 0.9950 0.9941 0.9916 0.9904

CC

PRE −0.018 *** −0.019 *** −0.020 *** −0.017 *** −0.014 ***
TMP −0.665 *** −1.909 *** −3.191 *** −4.369 *** −6.133 ***
WND 0.735 *** 0.523 *** 0.377 *** 0.388 * 0.446 *
CPL −0.234 *** −0.264 *** −0.184 *** −0.181 *** −0.267 ***

FOREST −0.229 *** −0.263 *** −0.182 *** −0.176 *** −0.265 ***
WATER −0.209 *** −0.295 *** −0.169 ** −0.207 *** −0.324 ***

IPS −0.217 *** −0.266 *** −0.202 *** −0.210 *** −0.297 ***
W*PRE 0.003 *** 0.003 *** 0.003 *** 0.003 *** 0.002 ***
W*TMP 0.132 *** 0.337 *** 0.547 *** 0.729 *** 1.011 ***
W*WND −0.227 *** −0.216 *** −0.273 *** −0.322 *** −0.342 ***
W*CPL 0.061 *** 0.064 *** 0.037 *** 0.047 *** 0.057 ***

W*FPREST 0.062 *** 0.065 *** 0.038 *** 0.048 *** 0.058 ***
W*WATER 0.115 *** 0.101 *** 0.083 *** 0.091 *** 0.085 ***

W*IPS 0.038 *** 0.053 *** 0.032 *** 0.045 *** 0.057 ***
W*(PM2.5) 0.159 *** 0.159 *** 0.157 *** 0.155 *** 0.157 ***

R2 0.9978 0.9973 0.9962 0.9947 0.9951

Notes: (1) *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively; (2) variable names are
explained in Section 3.2; (3) W*PRE was the spatial lagged terms of the PRE. The same convention was used for
all other variables.

In order to better study the marginal effects of various indicators selected in this article
on the PM2.5 concentration, the spatial effects were separated, and the spatial interaction
effects were tested with consideration of two aspects: direct effects and spillover effects.
Table 4 presents the direct and spillover effects of various influencing factors on the BTH,
Table 5 the PRD, Table 6 the YRD, and Table 7 the CC.
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Table 4. Direct effects, spillover effects, and total effects of different factors on PM2.5 in the Beijing–
Tianjin–Hebei urban agglomeration (BTH).

Grid Impact
Variable

PRE TMP WND CPL FOREST WATER IPS

6 km
(N = 6340)

Direct −0.030 *** −5.392 *** −0.440 *** 0.017 0.052 *** −0.040 −0.063 ***
Spillover −0.000 *** −0.214 *** 0.207 *** −0.040 *** −0.083 *** 0.043 ** −0.044 ***

Total −0.030 *** −5.606 *** −0.232 *** −0.023 ** −0.031 ** 0.003 −0.107 ***

9 km
(N = 2485)

Direct −0.028 *** −6.470 *** −0.404 ** −0.010 0.051 *** −0.102 *** −0.071 ***
Spillover −0.000 * −0.235 *** 0.349 *** −0.027 *** −0.055 *** 0.072 *** −0.014

Total −0.029 *** −6.705 *** −0.054 −0.017 ** −0.004 −0.030 * −0.084 ***

12 km
(N = 1354)

Direct −0.033 *** −7.185 *** −0.237 0.001 0.042 *** −0.143 *** −0.091 ***
Spillover −0.001 *** −0.162 *** 0.386 *** −0.017 *** −0.032 *** 0.061 *** −0.004

Total −0.033 *** −7.347 *** 0.148 −0.016 ** 0.011 −0.083 *** −0.095 ***

15 km
(N = 849)

Direct −0.035 *** −9.583 *** −1.082 *** 0.010 0.032 *** −0.060 * −0.067 ***
Spillover −0.001 *** −0.228 * 0.383 * −0.019 *** −0.028 *** 0.016 −0.001

Total −0.035 *** −9.810 *** −0.698 ** −0.009 0.004 −0.044 ** −0.067 ***

18 km
(N = 565)

Direct −0.030 *** −8.584 *** −0.065 0.014 * 0.055 *** −0.197 *** −0.048 ***
Spillover −0.001 ** −0.280 *** 0.439 *** −0.023 *** −0.021 *** 0.052 ** −0.009

Total −0.031 *** −8.864 *** 0.374 *** −0.009 0.035 *** −0.144 *** −0.058 ***

Notes: *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively.

Table 5. Direct effects, spillover effects, and total effects of different factors on PM2.5 in the Pearl
River urban agglomeration (PRD).

Grid Impact
Variable

PRE TMP WND CPL FOREST WATER IPS

6 km
(N = 1210)

Direct 0.001 *** −4.508 *** −0.041 0.018 0.065 0.130 −0.098
Spillover −0.000 *** −0.468 *** −0.024 *** 0.003 0.003 −0.014 0.007

Total 0.000 *** −4.976 *** −0.017 0.015 0.068 0.116 −0.091

9 km
(N = 499)

Direct 0.001 *** −6.091 *** −0.101 −0.189 −0.139 −0.087 −0.237
Spillover 0.000 −0.447 *** 0.030 −0.015 −0.010 −0.019 −0.012

Total 0.001 *** −6.538 *** −0.071 −0.204 −0.149 −0.107 −0.249 *

12 km
(N = 251)

Direct 0.001 * −7.062 *** −0.127 0.225 0.252 0.305 * 0.220
Spillover 0.000 * −0.451 *** 0.007 −0.060 ** −0.055 * −0.064 ** −0.057 **

Total 0.001 * −7.513 *** −0.120 0.166 0.197 0.241 * 0.163

15 km
(N = 152)

Direct 0.000 −7.169 *** −0.322 0.085 0.104 0.138 0.072
Spillover 0.000 ** −0.275 *** −0.023 −0.008 −0.004 −0.012 −0.009

Total 0.000 −7.444 *** −0.346 0.077 0.100 0.126 0.063

18 km
(N = 96)

Direct −0.000 *** −8.168 *** 0.528 0.158 0.164 0.200 0.145
Spillover 0.000 ** −0.227 *** −0.046 −0.041 −0.040 −0.046 * −0.041

Total −0.000 −8.395 *** 0.482 0.117 0.124 0.155 0.104

Notes: *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively.

The results in Table 4 showed that the estimated direct and spillover effects of PRE
and TMP on PM2.5 emissions were highly significant at the 1% level in the BTH at full
scale, and their signs were negative, as expected. The effect of a 1 mm increase in annual
precipitation will thus lead to a more than 0.03 µg/m3 decrease in PM2.5 emissions, with
other variables held constant. Similarly, for average annual temperature, the value was
estimated to be 5.39 µg/m3. The spillover effect of precipitation was significant and the
value was 0, indicating that the impact of annual precipitation in surrounding areas on
the annual PM2.5 can be ignored. Moreover, for temperature, the adjacent area had an
average annual temperature increase of 1 ◦C, and the PM2.5 in the study area decreased
by about 0.20 µg/m3. In contrast, the direct impact of the average annual wind speed on
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PM2.5 was negative and significant. Only under a grid of 12 km was the direct effect of this
factor found not to be significant. The spillover effect was significantly positively correlated
with PM2.5, suggesting that the ambient wind speed conditions play a crucial role in the
local PM2.5. Interestingly, the direct effects of cropland were not significant under most
scales, while forests were significantly positive. The spillover effect of both factors was
significantly negative. The direct and spillover effects of water on the BTH varied between
significant and insignificant. The direct effects of impermeable surfaces were significantly
negative, while the spillover effect was not significant. This means that increasing the
impermeable areas in adjacent areas does not have a significant impact on the local PM2.5.

Table 6. Direct effects, spillover effects, and total effects of different factors on PM2.5 in the Yangtze
River urban agglomeration (YRD).

Grid Impact
Variable

PRE TMP WND CPL FOREST WATER IPS

6 km
(N = 4663)

Direct −0.006 *** −5.018 *** 0.116 * 0.896 *** 0.963 *** 0.947 *** 0.889 ***
Spillover −0.000 *** −0.488 *** 0.017 −0.359 *** −0.385 *** −0.356 *** −0.354 ***

Total −0.006 *** −5.506 *** 0.132 ** 0.537 * 0.578 ** 0.590 ** 0.535 *

9 km
(N = 1942)

Direct −0.005 *** −5.779 *** −0.090 0.541 * 0.586 * 0.598 *** 0.523 *
Spillover −0.000 *** −0.441 *** −0.039 −0.292 *** −0.309 *** −0.283 *** −0.287 ***

Total −0.005 *** −6.220 *** −0.129 0.250 0.277 0.314 0.236

12 km
(N = 1034)

Direct −0.005 *** −6.061 *** 0.060 0.406 0.435 0.441 * 0.381
Spillover −0.000 *** −0.498 *** −0.107 ** −0.309 *** −0.320 *** −0.299 *** −0.303 ***

Total −0.005 *** −6.559 *** 0.048 0.097 0.114 0.142 0.078

15 km
(N = 600)

Direct −0.004 *** −0.357 ** 0.071 0.510 * 0.553 ** 0.472 * 0.467 *
Spillover −0.000 *** −0.459 *** −0.161 *** −0.121 ** −0.126 ** −0.118 ** −0.120 **

Total −0.005 *** −0.817 *** −0.090 0.389 * 0.427 * 0.354 0.348

18 km
(N = 403)

Direct −0.005 *** −5.532 *** 0.526 0.525 ** 0.556 ** 0.522 *** 0.488 *
Spillover −0.000 *** −0.278 *** −0.169 *** −0.097 ** −0.101 ** −0.094 ** −0.094 **

Total −0.005 *** −5.810 *** 0.356 0.428 * 0.455 * 0.427 * 0.394 *

Notes: *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively.

Table 7. Direct effects, spillover effects, and total effects of different factors on PM2.5 in the Chengdu–
Chongqing urban agglomeration (CC).

Grid Impact
Variable

PRE TMP WND CPL FOREST WATER IPS

6 km
(N = 6353)

Direct −0.018 *** −0.521 *** 0.132 ** −0.104 *** −0.088 ** 0.235 *** −0.199 ***
Spillover −0.000 *** −0.112 *** 0.474 *** −0.102 *** −0.111 *** −0.349 *** −0.015

Total −0.018 *** −0.633 *** 0.606 *** −0.206 *** −0.199 *** −0.114 ** −0.214 ***

9 km
(N = 2739)

Direct −0.018 *** −1.779 *** 0.007 −0.178 *** −0.172 *** −0.085 −0.226 ***
Spillover −0.000 *** −0.089 *** 0.357 *** −0.060 *** −0.063 *** −0.144 *** −0.028 ***

Total −0.018 *** −1.868 *** 0.364 *** −0.238 *** −0.235 *** −0.229 *** −0.254 ***

12 km
(N = 1478)

Direct −0.019 *** −3.043 *** −0.318 ** −0.155 *** −0.149 *** 0.017 −0.202 ***
Spillover −0.000 *** −0.099 *** 0.448 *** −0.019 *** −0.021 *** −0.119 *** −0.001

Total −0.020 *** −3.142 *** 0.130 −0.174 *** −0.170 *** −0.102 * −0.203 ***

15 km
(N = 927)

Direct −0.017 *** −4.197 *** −0.435 * −0.120 *** −0.109 *** −0.023 −0.169 ***
Spillover −0.000 *** −0.100 ** 0.515 *** −0.038 *** −0.041 *** −0.116 *** −0.025 ***

Total −0.017 *** −4.298 *** 0.080 −0.158 *** −0.150 *** −0.139 ** −0.194 ***

18 km
(N = 623)

Direct −0.014 *** −5.985 *** −0.463 −0.217 *** −0.211 *** −0.212 *** −0.263 ***
Spillover −0.000 *** −0.101 * 0.579 *** −0.032 *** −0.035 *** −0.071 ** −0.022 ***

Total −0.014 *** −6.086 *** 0.116 −0.249 *** −0.246 *** −0.283 *** −0.286 ***

Notes: *, **, *** represent significance at the 10%, 5%, and 1% levels, respectively.
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The direct effect of precipitation was significantly positive in the PRD, but its spillover
effect was not significant and tended towards zero. This means that the influence of
precipitation in the surrounding areas on the local PM2.5 can be ignored. There was
a negative correlation between the local temperature and PM2.5, while the correlation
between the temperature in neighboring areas and local PM2.5 was not significant. The
influence of wind speed on PM2.5 in the PRD can be ignored. The direct effect of cropland
and forests on PM2.5 in the PRD was significantly negative, while the spillover effect was
not significant. The impact of water bodies and impermeable surfaces on PM2.5 in the PRD
was not significant.

The direct and spillover effects of precipitation in the YRD were significantly negative,
with small fluctuations in the direct effects and negligible spillover effects. The direct and
spillover effects of the temperature were also significantly negative. It is worth noting that
under a 15 km grid, the direct and spillover effects of temperature were similar in size. The
adjustment effect of land use factors was similar, with local factors positively correlated
with the local PM2.5, while neighboring factors negatively correlated with the local PM2.5,
and the direct effect was about twice as large as the spillover effect.

The precipitation of the CC was negatively correlated with PM2.5, and the spillover
effect can be ignored. Temperature was negatively correlated with PM2.5, and as the
research scale increased, the direct influence of temperature increased. The wind speed
spillover effect was larger, but contrary to expectations, an increase in wind speed in
adjacent areas will actually lead to an increase in local PM2.5. The direct effect and spillover
effect of the two green indicators for cropland and forest were similar and showed a
significant negative correlation with PM2.5. The magnitude of the direct effect and spillover
effect was also similar. The indirect impact of water bodies was significantly negative, and
their direct impact was not significant at some scales. Furthermore, the direct effect under
the conditions of the smallest and largest research units showed the opposite. It is worth
noting that there was a negative relationship between impermeable surfaces and PM2.5.

5. Discussion
5.1. The Relationship between Impacts and Scales

In previous studies that used counties or cities as research units, there was a clear
demarcation between data from neighboring counties or cities. The significance of the
different grid scales in this research was to reduce the deviation of data between each county
or city and to better align the research results with the actual transmission characteristics of
PM2.5. The results showed that as the research scale increased, spatial Moran’s index I of the
average annual PM2.5 and the fitting index R2 of the SDM gradually decreased. This was
similar to the finding of Wang et al., where the model fitting results had gradient effects at
different research scales, consistent with the first law of geography [18]. For the YRD, as the
research scale increased, the importance of the direct and spillover effects of land use type
factors decreased. This means that as the scale of research increases, the influence of land
use type on PM2.5 becomes correspondingly weaker. For the PRD, the direct and spillover
effects of several factors were not significant. However, at a grid scale of 6 km, the fitting
effect was better than at other scales, indicating that for the PRD, reducing the research
scale and increasing the number of samples may make the adjustment effect more obvious.

5.2. Potential Causes of the Direct and Spillover Effects
5.2.1. Precipitation

Under different humidity conditions, the influence of precipitation on the PM2.5
concentration was inconsistent. In the drier BTH, precipitation helps wash fine particulate
matter out of the air, so the direct effect of precipitation is significantly negative [24].
Research has shown that under clean conditions, different amounts of precipitation can
lead to an increase in PM2.5. Compared to other urban agglomerations, PM2.5 in the PRD
was naturally lower and the urban agglomeration structure is closer to the coast, resulting in
higher humidity. This led to a positive correlation between precipitation and PM2.5 [24,25].
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However, for the YRD, its direct effect was significantly negative due to the large sample
size and the fact that multiple cities are not located near the coast. The direct and indirect
effects were small, such that precipitation in the YRD only had a minor influence. In the CC,
the concentration is influenced by the unique terrain and climatic conditions, where the
surface wind speed is low, the proportion of calm is high, the air humidity is high, and the
diffusion of atmospheric pollutants is slow. The decrease in PM2.5 may have been related
to frequent precipitation in the subtropical monsoon climate [26].

5.2.2. Temperature

The higher the temperature, the faster the rate of diffusion of a gas, the greater the
temperature difference in the vertical direction, the stronger the upward movement, and
the easier convection occurs, accelerating the transport and dilution of particles. High
temperatures may lead to intense vertical dispersion of pollutants, leading to both direct and
indirect effects of temperature that were negative in the BTH [27]. Due to the subtropical
monsoon climate, temperature changes in the PRD were found to be much lower than in
high-latitude areas, with an average annual temperature of about 22 ◦C. The higher the
temperature, the stronger the air convection at the bottom, which promotes the upward
transport of certain substances and thus reduces particulate matter (PM2.5) [4]. Under
high temperatures and strong solar radiation, the degradation rate of PM2.5 is usually
faster in the YRD [28]. For the Chengdu–Chongqing urban agglomeration, the average
annual temperature is about 15 ◦C, and high-temperature weather favors the formation of
convective weather. This is one of the reasons for the increased diffusion of pollutants.

5.2.3. Wind Speed

As the research scale increased, the direct benefits of wind speed in the BTH were
shown to be not significant, while the spillover benefits of wind speed always showed a
strong positive correlation. The impact of increasing wind speed in different directions
on PM2.5 was also different [29]; it can be inferred that the low-wind-speed conditions
in the BTH do not support the diffusion of PM2.5 [30]. A poor correlation between the
PM2.5 concentration and wind speed was found in the PRD and YRD. In these two urban
agglomerations, the influence of wind speed on PM2.5 was more complex [31]. Conditions
in the CC are more conducive to the transmission of pollutants due to the flat terrain.
Therefore, some of the pollutants generated in the northern and central regions of China
are transported to the central region by the wind, which partly causes the increase in PM2.5
in the region [32].

5.2.4. Cropland

The BTH is located in the northern part of China and the climate is dry. Soil wind
erosion, farmland dust, and post-harvest biomass burning in fields have led to an increase
in the PM2.5 concentration due to the expansion of farmland area in the BTH [33]. As a veg-
etation type, arable land reduces sand and dust pollution through root anchoring and wind
protection, thereby reducing the PM2.5 concentration [34]. Fortunately, the total impact of
agricultural land in the BTH showed a significant negative effect. In the YRD, although
burning straw has been strictly prohibited, air pollution caused by biomass burning is still
one of the main reasons for the increase in the PM2.5 concentration [35]. However, as a type
of vegetation, cropland reduces PM2.5 concentrations through sedimentation. The CC has a
subtropical humid monsoon climate. It is warm and humid all year round, with unique
agricultural conditions and a large yield of green agricultural products [36]. Therefore, the
direct and indirect effects of cropland in the region are significantly negative.

5.2.5. Forests

For the BTH, there has been a significant positive relationship between the direct
impact of forests and PM2.5 over a long period of time. This is due to the fact that particulate
matter is more suspended at lower altitudes [37], and due to the low forest cover, the
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presence of forests does not lead to a reduction in PM2.5. On the other hand, the spillover
effect is that forests can prevent an influx of PM2.5 by reducing wind speed or changing
wind direction, resulting in the dry deposition of pollutant particles [38]. Although forests
density is low, it has some indirect effects on the local PM2.5. In the PRD, forests have
a significant negative impact on the PM2.5 concentration. The main component of fine
particulate matter is metal elements. When humidity or rainfall increases, fine particles
enter the soil through moisture deposition in forests. Under humid conditions, they
promote the absorption of metal components by the soil and thus reduce the concentration
of PM2.5. Wildlife plays an important role in influencing PM2.5 exposure in the YRD region.
Biomass burning in forests and smoke emitted by wildlife contribute to the increase in
PM2.5 caused by forests [39]. Similar to cropland, forests, as a vegetation type, reduce the
concentration of PM2.5 in the air through sedimentation and adsorption in the climate of
the CC [40].

5.2.6. Water Bodies

In the BTH, the impact of water on PM2.5 has two outcomes. On the one hand, the
evaporation of water increases the humidity in local areas, which is not conducive to the
deliquescence and diffusion of PM2.5, and this explains why the direct effect of water bodies
in the region is positive. On the other hand, water has the ability to absorb atmospheric
pollutants, leading to a negative indirect effect [10]. The YRD is located on the lower
reaches of the Yangtze River and has well-developed waterways. Low-quality fuel is one
of the sources of PM2.5 [41]. Multiple studies have also shown that PM2.5 concentrations
are higher near bodies of water than in areas without bodies of water. From a landscape
perspective, the “source” effect of bodies of water becomes apparent as the surface area
increases. Water bodies promote the hygroscopic growth of PM2.5, which leads to an
increase in PM2.5 near the water body [35]. This is one of the reasons why the direct effect
of water bodies in the CC is positive, while the spillover effect is negative.

5.2.7. Impermeable Surfaces

A more compact urban layout often reduces the urban traffic volume, improves indus-
trial efficiency, reduces pollutant emissions, and thus reduces PM2.5 [42]. The expansion
speed of BTH and CC has gradually slowed down in the past decade, with more emphasis
on adapting the urban structure. Therefore, it is reasonable that an increase in impermeable
surfaces will lead to significant negative direct and indirect impacts. The YRD has always
had a high number of areas with high population mobility. The continuous urban expansion
and the increase in road network density contribute to the increase in PM2.5 [3]. At the same
time, the increase in household pollution emissions caused by the population gathering and
mobility caused by urban expansion is also one of the reasons for the significant positive
total effect [43].

5.3. The Impacts of Factors Vary with Scales

A significant gradient effect was found for various factors in different urban agglomer-
ations at different research scales. The impact of precipitation on PM2.5 in the PRD showed
an inverted U-shape with the change in research scale, while in other urban agglomerations,
the influence of precipitation on PM2.5 remained essentially unchanged (Figure 4a). The
PRD should consider air quality after heavy rainfall. The influence of temperature on the
BTH and CC increased, while the influence on the YRD decreased, as the research scale
increased. The change in impact on the PRD was relatively small (Figure 4b). The impact
of wind speed on inland urban agglomerations was more significant, and the influence of
wind speed gradually increased (Figure 4c). This may have been because, as the research
scale increased, the change in wind speed was more obvious, resulting in better dilution
of PM2.5. However, if inland urban agglomerations are affected by typhoons, outdoor
activities should be reduced as much as possible in the short period after the typhoon
weather ends.
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Compared with other land use type factors, the influence of water bodies on the BTH
changed relatively clearly with the increasing research scale, showing an inverted U-shape
(Figure 4f), which may have been related to the design of urban water networks. The
impact of cropland and forests on the PRD was more significant compared to other land
use type factors, but the influence of the changes was not obvious (Figure 4d,e). This means
that reclaiming more cropland and increasing forest cover may not have an optimal impact
on PM2.5. What is more important is the sensible consideration of the spatial arrangement
of different types of vegetation. In the YRD, the influence of land use type factors on PM2.5
changed gradually with the change in the research scale, and the amplitude of the change
was obvious, showing a clear U-shape. Since the direct effect of each factor was positive,
it can be roughly inferred that the effect of each influencing factor reached the minimum
in the range of about 15 km. Therefore, the planning area of approximately 15 km must
be taken into account when adjusting the city layout. As with the BTH, which is also an
inland urban agglomeration, the effects of water bodies on the CC varied more with the
scope of the research than with other factors. The design of water networks and artificial
lakes in parks in inland urban agglomerations is very important. The spillover effect of
land use factors on the BTH and CC showed a flat linear pattern with the increase in the
research scale, which means that the impact of land use factors on the BTH and CC will not
change significantly with the increase in the research scale.

The results (Section 4.2.2) indicate that the SDM model captures the nonlinear contri-
bution rates of various influencing factors to the PM2.5 concentration at different grid scales.
Understanding these impact mechanisms may be of great significance for balancing urban
planning, artificial weather assistance, and the joint prevention and control of PM2.5 among
urban agglomerations. For instance, in previous studies, there was a negative correlation
between forest coverage and PM2.5 concentration. However, this study found that the
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direct impact of forest coverage in urban agglomerations such as the BTH and the YRD
would lead to an increase in PM2.5 concentration. In other aspects, this study captured
the influence curves of the direct effects of various influencing factors (Figure 4). After
comprehensive consideration, it was found that the impact of various factors on BTH at the
18 km grid scale were generally optimal in reducing the PM2.5 concentration. The impact
on coastal urban clusters was good at a 6 km grid scale. The impact on the CC was optimal
at the grid scales of 12 km and 15 km.

5.4. Relevant Policy Recommendations and Limitations

Due to the different geographical locations and natural climate conditions of major
urban agglomerations, as well as the different development methods and directions of each
urban agglomeration, policies for collaborative control of PM2.5 should be formulated based
on the inherent conditions of different urban agglomerations. Firstly, in response to the
significant alleviation of PM2.5 caused by precipitation in the BTH, relevant departments
could consider increasing the frequency of artificial precipitation enhancement. Secondly,
carbon emissions are one of the main causes of global warming, and the significant increase
in population and the large amount of greenhouse gases generated by human activities
after the Industrial Revolution are the main causes of global warming [44]. Due to the
accumulation of PM2.5 caused by the rise in temperature, relevant departments at all levels
should diligently implement the “dual-carbon” policy. Thirdly, although the contribution
of agricultural modernization to air pollution in agricultural production is negligible com-
pared to industrial production, it is still necessary to encourage farmers to use agricultural
machinery judiciously, and to use gentle soil cultivation methods such as covering with
straw and digging less to extract less soil in suitable areas [45]. Fourthly, the ship emission
control policy should continue to be implemented [21] in the PRD and YRD, and more air
pollution-related policies should be added to the new fuel policy to reduce PM2.5 generated
by water navigation. Finally, the minimum scale in this article was equivalent to the district-
or township-level scale, and the maximum scale was equivalent to the city level or half the
actual scale. Villagers at the community level should be encouraged to actively report and
expose straw-burning behavior or polluting companies and thereby address PM2.5 issues
on a small scale. All municipal units should be encouraged to jointly develop ideas and
find ways to strengthen the management of relevant units at all levels of government and
also take effective measures on a large scale.

From a research-scale perspective, we still discovered several interesting phenomena.
As the grid scale increases, the spatial autocorrelation of PM2.5 gradually weakens and
shows a gradient decreasing trend. However, from the perspective of the total effects of
various factors, it seems that their impact on PM2.5 does not increase with the increase in
grid scale. For example, in BTH, land use factors showed the highest impact at an 18 km
grid scale, while meteorological factors showed the highest impact at a 6 km grid scale. This
means that the optimal impact scale of meteorological factors and land use factors is incon-
sistent. The SDM can be used as a prediction model as follows: consider the land use plan
and climate conditions for a given area, involving, for instance, (1) developing a reasonable
watering plan for sprinkler trucks, (2) improving the distribution of vegetable gardens in
rural homesteads, (3) the reasonable planning of urban water networks, (4) expanding
urban roads. However, after implementing the plan, it is necessary to use the SDM for
fitting predictions and continuously optimize policy guidelines to alleviate PM2.5. It should
also be clarified that the grid scale that can maximize the impact on PM2.5 mentioned in
this article may not be the optimal scale for prediction, and more detailed grid division is
needed in different regions.

This study found that precipitation and temperature have a significant impact on the
PM2.5 concentration in different urban agglomerations, but the impact of wind speed on
coastal urban agglomerations is not very significant. This may be because the impact of
wind on PM2.5 is relatively complex, and a more detailed small-scale analysis should be
carried out based on wind direction and other factors.
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6. Conclusions

This study analyzed the spatial dependence of the average annual PM2.5 in the four
core urban agglomerations in China and quantified the direct and spillover effects of various
meteorological factors and land use types in neighboring cities, which complemented the
analysis of the influence of various factors on PM2.5 under different scales. The results are
as follows.

• The average annual PM2.5 concentration in the four core urban agglomerations in
China generally showed a downward trend and was lower in the PRD than in the
other three urban agglomerations.

• The PM2.5 concentrations showed obvious spatial autocorrelation. After the LM test,
Wald test, and LR test, we found that spatial econometric models can be introduced
when studying the spatial distribution and influencing factors of PM2.5.

• Overall, in the direct effects, meteorological factors were found to have a significant
negative impact on the BTH, significantly positive effect on forests, and significantly
negative effect on water bodies and impermeable surfaces. In the PRD, the influence
of temperature was significantly negative. In the YRD, the impact of precipitation
and temperature was significantly negative, while the impact on land use factors was
significantly positive. The impact of precipitation, temperature, cropland, forests, and
impermeable surfaces in the CC was significantly negative.

• On the whole, in the BTH, the indirect effects of precipitation, temperature, cropland,
forests, and impermeable surfaces were found to be significantly negative, while
their effects on wind speed and water bodies were significantly positive. The impact
of temperature in the PRD was significantly negative. The impact of precipitation,
temperature, and land use factors in the YRD was significantly negative. In the CC, the
impact of precipitation, temperature, and land use factors was significantly negative,
while the impact of wind speed was significantly positive.

• The influence of wind speed on coastal urban clusters was not significant among the
meteorological factors, but it had a significant impact on inland urban clusters. The
direct effect of land use factors showed a significant U-shaped change with the change
in research scale in the YRD, and the direct effect was more than twice as large as the
spillover effect.

• Among the land use factors, human factors (impermeable surfaces) in inland urban
agglomerations were found to have a greater influence than natural factors in inland
urban agglomerations, while natural factors (forests) were found to have a greater
influence in coastal urban agglomerations.

• Targeted prevention and control measures should be utilized according to different
regions and scales in different urban agglomerations.

Author Contributions: All authors contributed to the study conception and design. Material prepa-
ration, data collection, data analysis, and software were performed by Z.D., H.Z., C.W., X.M., L.Z.
and P.W. The first draft of the manuscript was written by H.Z. and all authors commented on pre-
vious versions of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Director Fund of the International Research Center of
Big Data for Sustainable Development Goals (grant no. CBAS2022DF007) and the National Natural
Science Foundation of China under grant number 41907389.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the confidence of the data.

Conflicts of Interest: The authors declare no conflict of interest.



Atmosphere 2024, 15, 307 19 of 20

References
1. Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136.

[CrossRef]
2. Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of (PM2.5) air

pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [CrossRef]
3. Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of

meteorological conditions on PM (2.5) concentrations across China: A review of methodology and mechanism. Environ. Int. 2020,
139, 105558. [CrossRef] [PubMed]

4. Li, X.; Feng, Y.J.; Liang, H.Y. The Impact of Meteorological Factors on (PM2.5) Variations in Hong Kong. In IOP Conference Series:
Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 78.

5. Wu, W.; Zhang, M.; Ding, Y. Exploring the effect of economic and environment factors on (PM2.5) concentration: A case study of
the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2020, 268, 110703. [CrossRef] [PubMed]

6. Kodaka, A.; Leelawat, N.; Tang, J.; Onda, Y.; Kohtake, N. Status of Industrial Complex Activity Explained by Air Quality: Central
Thailand. In Proceedings of the 2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and
Robotics (ICA-SYMP), Bangkok, Thailand, 18–20 January 2023; pp. 123–126.

7. Wang, Y.; Liu, C.; Wang, Q.; Qin, Q.; Ren, H.; Cao, J. Impacts of natural and socioeconomic factors on PM(2.5) from 2014 to 2017. J.
Environ. Manag. 2021, 284, 112071. [CrossRef] [PubMed]

8. Veronesi, G.; De Matteis, S.; Calori, G.; Pepe, N.; Ferrario, M.M. Long-term exposure to air pollution and COVID-19 incidence: A
prospective study of residents in the city of Varese, Northern Italy. Occup. Environ. Med. 2022, 79, 192–199. [CrossRef] [PubMed]

9. Song, J.; Zhou, S.; Peng, Y.; Xu, J.; Lin, R. Relationship between neighborhood land use structure and the spatiotemporal pattern
of (PM2.5) at the microscale: Evidence from the central area of Guangzhou, China. Environ. Plan. B Urban Anal. City Sci. 2021, 49,
485–500. [CrossRef]

10. Li, C.; Zhang, K.; Dai, Z.; Ma, Z.; Liu, X. Investigation of the Impact of Land-Use Distribution on PM(2.5) in Weifang: Seasonal
Variations. Int. J. Environ. Res. Public Health 2020, 17, 5135. [CrossRef]

11. Lin, Y.; Yuan, X.; Zhai, T.; Wang, J. Effects of land-use patterns on PM(2.5) in China’s developed coastal region: Exploration and
solutions. Sci. Total Environ. 2020, 703, 135602. [CrossRef]
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