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Abstract: This study proposes a deep neural network (DNN)-based downscaling model incorporating
kernel principal component analysis (KPCA) to investigate the precipitation uncertainty influenced
by typhoons in Taiwan, which has a complex island topography. The best tracking data of tropical
cyclones from the Joint Typhoon Warning Center (JTWC) are utilized to calculate typhoon and non-
typhoon precipitation. KPCA is applied to extract nonlinear features of the BCC-CSM1-1 (Beijing
Climate Center Climate System Model version 1.1) and CanESM2 (second-generation Canadian
Earth System Model) GCM models. The length of the data used in the two GCM models span from
January 1950 to December 2005 (historical data) and from January 2006 to December 2099 (scenario
out data). The rainfall data are collected from the weather stations in Taichung and Hualien (cities
of Taiwan) operated by the Central Weather Administration (CWA), Taiwan. The period of rainfall
data in Taichung and in Hualien spans from January 1950 to December 2005. The proposed model
is constructed with features extracted from the GCMs and historical monthly precipitation from
Taichung and Hualien. The model we have built is used to estimate monthly precipitation and
uncertainty in both Taichung and Hualien for future scenarios (rcp 4.5 and 8.5) of the GCMs. The
results suggest that, in Taichung and Hualien, the summer precipitation is mostly within the normal
range. The rainfall in the long term (January 2071 to December 2080) for both Taichung and Hualien
typically fall between 100 mm and 200 mm. In the long term, the dry season (January to April,
November, and December) precipitation for Taichung and that in the wet season (May to October)
for Hualien are less and more affected by typhoons, respectively. The dry season precipitation is
more affected by typhoons in Taichung than Hualien. In both Taichung and Hualien, the long-term
probability of rainfall exceeding the historical average in the dry season is higher than that in the
wet season.

Keywords: IPCC Fifth Assessment Report; climate change; deep neural network; typhoon; uncertainty;
kernel principal component analysis

1. Introduction

Since the Industrial Revolution, fossil fuels have been excessively used. Though in-
dustrial development has led to social, economic and technological improvements, the
enormous amount of fossil fuel combustion has largely increased the emissions of green-
house gases. This in turn has changed climatic features and brought about unprecedented
impacts on the world in many aspects. According to the Fifth Assessment Report (AR5)
released by the Intergovernmental Panel on Climate Change (IPCC), the global average
temperature increased by 0.85 ◦C from 1880 to 2012 [1]. This increment is unprecedented
in the previous decades, or even centuries. Regional climates are also under great stress.
Taking Taiwan as an example, the annual temperature in Taiwan increased by 1.3 ◦C from
1900 to 2012. The increasing trend has accelerated in the last half-century, and more obvi-
ously, the last decade. In particular, climate disasters have been seen more frequently in
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recent years, posing a great threat to our living environment. As a result, climate change
has been a hot topic in many countries around the world for years [1].

The general circulation model (GCM) is a scientific analysis tool that models future
climate under various scenarios based on different greenhouse gas emissions. It has been
widely used to analyze the impacts of climate change on natural processes, including
precipitation. Kitoh et al. (2013), for example, analyzed the global monsoon precipitation
variation phenomenon, and observed an increasing trend in extreme precipitation over the
Asian area [2]. Prior studies have argued that climate change may possibly concentrate the
precipitation, increase the precipitation intensity, increase the wet season precipitation, and
decrease the dry season precipitation [3,4].

Taiwan is an island located at the junction of the tropics and subtropics, profoundly
affected by tropical cyclones, typhoons, and their combined effects. Taiwan’s average
annual rainfall is approximately 2500 mm, which is concentrated in the rainy and typhoon
seasons from May to October. In addition, Taiwan has a special geographic layout; it is about
150 km wide from east to west and about 400 km long from south to north. The Central
Mountain Range is mostly composed of high mountains with elevations generally higher
than 1000 m. With steep sloped and rapid flowing rivers, Taiwan constantly encounters
numerous challenges related to its water resources, and these challenges are expected to be
magnified with the impact of climate change. It is therefore critical to quantify this impact,
such that the water resources can be better managed. However, the commonly available
grid size of the GCM output is about 0.75–2 degrees in the AR5 era. This is too coarse to be
used to characterize the variability of the regional climate features of Taiwan. Similarly, the
grid sizes of the original GCM models also make it impossible to resolve the features of
typhoons. Therefore, it is difficult to quantify the effects of typhoons on precipitation based
on the original GCM output [5,6]. A potential solution to this is to conduct downscaling to
obtain higher resolution estimates. Statistical downscaling methods (SDMs) are commonly
used for this purpose. Generally, SDMs use ground rainfall observations over a given
region to calibrate the co-located GCM output such that the calibrated model can be used
to predict future rainfall with the impact of climate change [7–9].

With advances in machine learning, recent developments in statistical downscaling
methods have shifted from using traditional statistical methods to machine learning (or
deep learning)-based methods in the past two decades [7–10]. In addition, in recent years,
with improved hardware computing speed, machine learning has come to be widely
applied in various fields [11,12]. Bai et al. (2016), for example, applied a deep neural
network (DNN) to the prediction of the flow capacity of the Three Gorges Dam. Despite
the widespread applications, deep learning methods are often subject to the noise caused
by excessive input data or complicated input variables [13]. Consequently, its computing
efficiency and output quality are affected. Relevant studies thus suggest applying data
transformation methods or data feature extraction methods, such as principal component
analysis (PCA), nonlinear principal component analysis (NLPCA) and kernel principal
component analysis (KPCA), to extract high-dimensional features for model training, such
that the noise interference and model complexity can be effectively reduced [14–16].

In view of the above, this study proposes a DNN-based statistical downscaling method
that can be used to model the effects of typhoons on local rainfall variations under a
changing climate. More specifically, this study aims to estimate the trends in future monthly
precipitation and the associated uncertainty in Taiwan. KPCA is implemented to extract
non-linear features of the original data, and then a DNN downscaling model is established
to reduce the model’s complexity and the data noise. Two GCM models that are provided
by the IPCC and are commonly used by the Water Resources Agency of Taiwan are selected.
Our case study focuses on Taichung and Hualien, two regions located at two sides of the
typhoon-prone area in the Western Pacific (i.e., two sides of the Central Mountain Range).
The trend of the monthly precipitation and the uncertainty due to climate change associated
with the effects of typhoons will be modeled and discussed.
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2. Materials
2.1. Ground Observations

Rainfall records from two ground weather stations in the Taichung and Hualien cities of
Taiwan are used (see locations of two stations in Figure 1). These two stations are operated
and qualified by Taiwan’s CWA (https://www.cwa.gov.tw/V8/C/ (accessed on 15 March
2024)). A total of 672 monthly rainfall records are available from 1950 to 2005; these records
are further divided 3:1:1 for training (January 1950 to December 1983), validation (January
1984 to December 1994) and test (January 1995 to December 2005) purposes.
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Figure 1. Geographical locations of the weather stations.

2.2. GCM Data

GCM output variables from two models, BCC-CSM1.1 and CanESM2, are selected in
this work. The backgrounds of these two models are summarized in Table 1.

Table 1. Details of CANESM2 and BCC-CSM1.1.

Model CanESM2 BCC-CSM1.1

Horizontal resolution
(km)× (km)

128 × 64 128 × 64

Output variable number 30 30

Length of historical data January 1995–December 2005 January 1995–December 2005

Length of scenario data January 2006–December 2099 January 2006–December 2099

Abbreviation CAN BCC

In this study, the duration of the historical scenario data is from January 1950 to
December 2005, and that of the future scenario data (rcp4.5 and rcp8.5) is from January 2006
to December 2099. The features of AR5 GCMs selected in this study are listed in Table 2.

https://www.cwa.gov.tw/V8/C/
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Table 2. List of the selected variables used in this work.

Long Name Output Variable Name

Total Cloud Fraction clt
Air Pressure at Convective Cloud Base ccb
Air Pressure at Convective Cloud Top cct

Cloud Area Fraction cl
Mass Fraction of Cloud Liquid Water clw

Condensed Water Path clwvi
Evaporation evspsbl

Relative Humidity hur
Specific Humidity hus

Surface Upward Latent Heat Flux hfls
Near-Surface Specific Humidity huss
Near-Surface Relative Humidity hurs

Precipitation pr
Convective Precipitation pre

Water Vapor Path prw
Surface Air Pressure ps
Sea Level Pressure psl

Surface Downward Longwave Radiation rlds
Surface Upwelling Longwave Radiation rlus

Surface Downwelling Clear-Sky Longwave Radiation rldsc
Surface Upwelling Shortwave Radiation rsus

Surface Upwelling Clear-Sky Shortwave Radiation rsuscs
Air Temperature ta

Near-Surface Air Temperature tas
Surface Temperature ts

Eastward Wind ua
Eastward Near-Surface Wind uas

Northward Wind va
Northward Near-Surface Wind vas

Daily-Mean Near Surface Wind Speed sfcWind

This study employed the method proposed by Li (2006) to separate typhoon-induced
precipitation estimates from the total monthly observed precipitation [17]. The Tropical Cy-
clone Best Track Data from the Joint Tropical Warning Center (JTWC) (https://www.metoc.
navy.mil/jtwc/jtwc.html?western-pacific, accessed on 31 January 2024) were collected for
the period of 1950–2005. As suggested by Li (2006), the domain covering 117E–125E in
longitude and 19N–28N in latitude is defined as the effective typhoon region [17]. The
accumulated precipitation observations from the time when a given typhoon center entered
this domain through the next six hours was deemed a typhoon; this is defined as an indi-
vidual typhoon precipitation. The sum of individual typhoon precipitations of all typhoons
in a month is thus defined as the monthly typhoon precipitation. Monthly non-typhoon
precipitation can therefore be derived by subtracting monthly typhoon precipitation from
the monthly precipitation totals.

Figure 2 shows the averages of monthly typhoon precipitation (OBS_TY_C, OBS_TY_H)
and monthly non-typhoon precipitation (OBS_NTY_C, OBS_NTY_H) calculated from
the total monthly observed precipitation in Taichung and Hualien over the period of
1950–2005. As illustrated, in both Taichung and Hualien, the monthly precipitation is
largely contributed by typhoons during the summer (from June to September).

https://www.metoc.navy.mil/jtwc/jtwc.html?western-pacific
https://www.metoc.navy.mil/jtwc/jtwc.html?western-pacific
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Figure 2. Averages of monthly typhoon (OBS_TY_C) and non-typhoon (OBS_NT_C) precipitation at
Taichung and Hualien weather stations.

3. Methodology
3.1. Overview

The proposed DNN-based downscaling model includes the following key steps:

a. Application of KPCA to the identification of key input variables to the DNN model;
b. DNN architecture design, which includes determining the number of hidden layers,

the number of neurons in each hidden layer and the neuron activation function;
c. Optimization of DNN model parameters.

Finally, the model will be assessed using five performance indicators. These are
(as shown in Equations (1)–(5)): percentage of underestimation (PU), root mean square
error (RMSE), mean absolute error (MeanAE), maximum absolute error (MaxAE) and bias
ratio (BR).

PU =
number o f predicted values which are less than observed value

number o f samples
× 100% (1)

RMSE =

√
∑(yi − ŷi)

2

n
(2)
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MeanAE =
∑|(yi−ŷi |

n
(3)

MaxAE = Max(|(yi−ŷi |) (4)

BR =
MeanAE
MaxAE

(5)

The details of each step, as well as the model assessment, will be explained in the
following sections.

3.2. Identification of Input Variables
3.2.1. Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a variant of the widely used Principle
Component Analysis (PCA) technique. As suggested by its name, the key difference lies
in that a kernel function is introduced into PCA [18]. This study applied KPCA to extract
non-linear data features. The basic idea is to first transform non-linear data into a high-
dimensional space, so that the data can be converted into linear separable data in the
high-dimensional space. Then, data noises are removed on the premise of maintaining data
features. Lastly, the original data are replaced by those variables contributing a majority of
variations to the original data. These variables are called kernel principal components. The
kernel function K used in this study is a radial basis function (RBF) (as shown in Equation
(6)). In Equation (6), the value of γ determines the dimension of the projective space; Xi and
Xj are any two sets of original data; ∥·∥is the norm of the two sets of data and is generally
termed the Euclidean distance.

K = exp
(
−γ

∥∥∥Xi − Xj
∥∥∥ 2

)
, 1 ≤ i, j ≤ n (6)

In the implementation of KPCA, γ and the number of kernel principal components
(KPCs) are two key meta-parameters that need to be optimized. The value of γ affects
the projection of data to the corresponding high-dimensional space. To determine its
value, this research adopts the automatic parameter selection (APS) method proposed by
Li et al. (2010), whereby the gradient descent method was used to efficiently identify the
optimal parameter for RBF [19]. In addition, this work determines the optimal number
of KPCs based upon the accuracy measures resulting from k-nearest neighbors (KNN)
classification [20]. The adopted accuracy measure is defined as follows:

Accuracy =
Accurately classified samples

mapping samples
(7)

3.2.2. KPCA for Identifying Key Input Features

In this study, the original data of predictor variables are normalized (as shown in
Equation (8)) to ensure that the upper and lower limits of each variable are consistent. After
the data are normalized, the model’s iteration speed could be increased, reducing the time
for gradient descent. In addition, the features between factors are maintained and scaled to
improve the precision of the model. In Equation (8), Z is the normalized value; X is the
average; Sx is the standard deviation.

Z =
X − X

Sx
(8)

As aforementioned, the parameters that need to be optimized in KPCA are γ and
n (number of kernel principal components). The former is automatically optimized as a
kernel function parameter according to the APS. In the BCC model, for Taichung area, the
value of γ is 0.01894 for non-typhoon precipitation and 0.01931 for the total precipitation.
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For the Hualien area, the value of γ is 0.05273 for non-typhoon precipitation and 0.03945
for total precipitation. In the CAN model, for the Taichung area, the value of γ is 0.03339
for non-typhoon precipitation and 0.01872 for total precipitation. For the Hualien area, the
value of γ is 0.06675 for non-typhoon precipitation and 0.03630 for total precipitation.

After the parameter γ is optimized, the original data are transformed using the corre-
sponding kernel functions. The simulated values and actual values of transformed data
are then assessed by applying KNN to obtain the accuracy measures (Equation (7)). The
number of kernel principal components can then be determined from the value leading to
the highest accuracy. A summary of the optimal parameters, resulting from BCC and CAN
models and for Taichung and Hualien areas, respectively, is given in Table 3.

Table 3. The accuracy of using KNN to determine the number of KPC.

Station GCM Model Source Of
Rainfall Data Accuracy (%) KPC

Taichung

BCC
noTy 0.11 23

Total 0.07 23

CAN
noTy 0.25 25

Total 0.10 6

Hualien

BCC
noTy 0.10 12

Total 0.06 2

CAN
noTy 0.11 10

Total 0.36 10

3.3. Deep Neural Networks: Architecture Design

Deep learning is a branch of machine learning, and it aims to extract representative
features of data through linear or non-linear transformation in multiple artificial neural
(AN) processing layers. In addition, deep learning is more time-saving and easier than
traditional feature engineering. Therefore, it has been widely applied in various fields.
The deep neural networks (DNN) theory aims to implement multiple computing and
training operations of different layers and architectures through a mathematical model that
simulates the biological nervous system to identify the optimal and most effective deep
learning model [21–24]. Figure 3 shows the concept, comprising the input layer, hidden
layer, and output layer. First, n values (X1, X2,. . ., Xn, n ∈ N) are inputted into the input
layer of the DNN model; then, multiple computing and training operations are executed
through multiple neurons in one or more processing layers in the hidden layer; lastly, the
output value (y) is obtained through computing in the output layer.

The basic components of the DNN downscaling model proposed in this study are
input variables, neuron link weights, and neuron activation functions. Input values are
weighted when passing through the neurons to better highlight the proportion of each
weight in training. Therefore, a non-linear activation function should be used to transform
the weights into the non-linear state by weight values. Common activation functions
include the Sigmoid function (as shown in Equation (9)) and the tanh function (as shown
in Equation (10)), where x is the input value of the activation function.

f (x) =
1

1 + e−x (9)

f (x) =
ex − e−x

ex + e−x (10)



Atmosphere 2024, 15, 371 8 of 18Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 3. The architecture of the deep neural network (ellipsis of input/output layer or neuron, three 
black dots in a row; neuron, White dot). 

The basic components of the DNN downscaling model proposed in this study are 
input variables, neuron link weights, and neuron activation functions. Input values are 
weighted when passing through the neurons to better highlight the proportion of each 
weight in training. Therefore, a non-linear activation function should be used to transform 
the weights into the non-linear state by weight values. Common activation functions in-
clude the Sigmoid function (as shown in Equation (9)) and the tanh function (as shown in 
Equation (10)), where x is the input value of the activation function. 

𝑜𝑜(𝑥𝑥) =
1

1 + 𝑛𝑛−𝑥𝑥
 (9) 

𝑜𝑜(𝑥𝑥) =
𝑛𝑛𝑥𝑥 − 𝑛𝑛−𝑥𝑥

𝑛𝑛𝑥𝑥 + 𝑛𝑛−𝑥𝑥
 (10) 

Assuming M datasets, each of which has n features {(𝑋𝑋1,𝑦𝑦1), (𝑋𝑋2,𝑦𝑦2), …, (𝑋𝑋𝑀𝑀,𝑦𝑦𝑀𝑀), 𝑋𝑋𝑖𝑖 
∈ 𝑅𝑅𝑛𝑛, 𝑦𝑦𝑖𝑖∈𝑅𝑅1}, the mapping function 𝛷𝛷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑋𝑋𝑖𝑖) would map input samples 𝑋𝑋𝑖𝑖 to the out-
put features 𝑦𝑦𝑖𝑖. Via the optimization process, the difference between the predicted (𝑦𝑦𝚤𝚤�) 
and the observed 𝑦𝑦𝑖𝑖 can be minimized, as shown in Equation (11). 

𝑣𝑣𝑛𝑛𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛
𝑾𝑾

𝐽𝐽(𝑾𝑾) = 𝑣𝑣𝑛𝑛𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛
𝑾𝑾

�‖𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�‖2

𝑀𝑀

𝑖𝑖=1

 (11) 

Then, the weights (𝑾𝑾) of transformed data (𝑋𝑋) are optimized and updated through 
an optimizer. The optimizer adjusts the weights through the assessment of preliminarily 
trained values and tagging factors that are obtained through computing in an error func-
tion, so that the weight variables of the model can be continuously optimized. Finally, the 
weights that can minimize the errors of the output values and tagging factors of machine 
learning can be obtained. Stochastic gradient descent (SGD) is a commonly used parame-
ter optimization method (as shown in Equation (12)), which controls the extent of weight 
modification by adjusting the learning rate. If the learning rate is higher, the extent of 
weight modification will be greater; if the learning rate is lower, the extent of weight 

Figure 3. The architecture of the deep neural network (ellipsis of input/output layer or neuron, three
black dots in a row; neuron, White dot).

Assuming M datasets, each of which has n features {(X1,y1), (X2,y2), . . ., (XM,yM),
Xi ∈ Rn, yi∈R1}, the mapping function ΦDNN (Xi) would map input samples Xi to the
output features yi. Via the optimization process, the difference between the predicted (ŷi)
and the observed yi can be minimized, as shown in Equation (11).

argmin
W

J(W) = arg min
W

M

∑
i=1

∥yi − ŷi∥2 (11)

Then, the weights (W) of transformed data (X) are optimized and updated through
an optimizer. The optimizer adjusts the weights through the assessment of preliminarily
trained values and tagging factors that are obtained through computing in an error function,
so that the weight variables of the model can be continuously optimized. Finally, the
weights that can minimize the errors of the output values and tagging factors of machine
learning can be obtained. Stochastic gradient descent (SGD) is a commonly used parameter
optimization method (as shown in Equation (12)), which controls the extent of weight
modification by adjusting the learning rate. If the learning rate is higher, the extent of
weight modification will be greater; if the learning rate is lower, the extent of weight
modification will be smaller. Note that an overly high learning rate may mean that the
most optimal solution is ignored, and non-convergence may even occur. An overly low
learning rate may, however, lead to a prolonged learning duration.

Wt+1 = Wt − lr∇J(W) (12)

where Wt is the original weight, Wt+1 is the updated weight, and lr is the learning rate.
The value of lr affects the extent of weight modification. ∇J(W) is the gradient of the error
function J(W).

AdaGrad and Adam are two adaptive optimizers extended from SGD. AdaGrad is
suitable for processing sparse data as it can adjust the value of the learning rate according
to the assessed value obtained by modeling each time, and it can then automate weight
modification according to the assessed value. At last, in the later stage of modeling, the
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learning rate will decrease gradually and eventually reach zero. Adam adds deviation
correction based on AdaGrad to correct and resolve other learning problems in the later
stage of modeling.

Batch size is a unit number of samples to be processed by a DNN for each weight
update. It determines the efficiency of DNN model training. To prevent from overfitting, in
each training iteration, a proportion of neurons in the hidden layers can be randomly re-
moved, such that only some of the neurons get updated [25]. This process is called dropout.

The parameter optimization procedure in this study was designed with reference to
the staged optimization practice in Bai et al. (2016, 2017) to obtain the local optimum [13,26].
In terms of the number of iterations, Bengio (2012) suggested that the minimal number of
trainings should be 10,000 [27]. In this study, the number of iterations was set at 50,000. In
terms of the number of hidden layers, Liu (2017) suggested the number of hidden layer(s)
be one to two [28], while Bai et al. (2016, 2017) indicated that one to three hidden layer(s)
should be designed, and parameters should be optimized in a progressive manner [13,26].
As mentioned by Coppola Jr. et al. (2005), if the input layer has n factors, the number of
hidden layers and nodes should be 2N + 1 [29]. Therefore, this study started parameter
optimization from one layer in a progressive manner, and set the number of nodes to be
tested at 10 and 50. The procedure is as follows:

(1) Choosing an optimizer (AdaGrad or Adam);
(2) Determining the activation function (sigmoid or tanh);
(3) Setting the learning rate (ranging from 0.01 to 0.0001);
(4) Selecting the batch size (ranging from 16 to 64);
(5) Determining the number of nodes (ranging from 10 to 100).

The following parameters are optimized: the optimizer options are Adagrad and
Adam; the activation function options are sigmoid and tanh; the batch size option is 16;
and the node number options are 10 and 50.

3.4. Optimization of Model Parameters

The parameter optimization procedure was designed based on the algorithm proposed
in Bai et al. (2016, 2017) [13,26]. The optimizer, activation function, and learning rate are
optimized. Then, the batch size is optimized after the preceding three are fixed. Lastly,
the layer number and node number are optimized. We took the Taichung Weather Station
monitoring no-typhoon precipitation in the BCC model as an example. Here, there are
four combinations of optimizers and activation functions. The batch size is set at 16, the
layer number is set at 1, and the node numbers are set at 10 and 50. The converging trend
is determined according to different learning rates and the RMSE is calculated. Table 4
describes the model optimization assessment. As seen, for the Taichung Weather Station
with no-typhoon precipitation, we selected the parameter optimizer Adam, the activation
function Sigmoid, a learning rate 0.001, 10 nodes, and one hidden layer.
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Table 4. Assessment results (normalized RMSE) of DNN downscaling models for four input variables.

n_Components = 4
γ = 0.0189

Layer
Node 10 50

Ir 0.01 0.001 0.0001 0.01 0.001 0.0001

C

Adagrad sigmoid
1 RMSE

1.07403 1.02925 1.16097 1.16673 1.03443 1.16714

tanh 1.32746 1.19892 0.99706 1.34455 1.02353 1.02408

Adam
sigmoid

1 RMSE
1.34725 0.99238 1.03060 1.34434 1.16298 1.00758

tanh 1.33056 1.33417 1.02146 1.32340 1.34432 1.21584

H

Adagrad sigmoid
1 RMSE

0.85935 0.84993 0.82558 0.85779 0.84836 0.86098

tanh 0.89153 0.84601 0.86170 0.89997 0.87658 0.86690

Adam
sigmoid

1 RMSE
0.86541 0.86051 0.82198 0.92920 0.85073 0.81970

tanh 0.88730 0.89611 0.85805 0.89033 0.89681 0.82764

3.5. Model Assessment

The DNN downscaling model proposed in this study uses two GCMs. Each GCM has
two input factors (non-typhoon precipitation and original precipitation) and two weather
stations, totaling eight models. The data are divided into 3:1:1 (training: (January 1950 to
December 1983), validation (January 1984 to December 1994), and test (January 1995 to
December 2005)) by the number of data sets. In the training phase, the aforementioned
RMSE is used for assessment and the model is used as the selected model. Table 5 lists
the final optimized parameters for the Taichung (C) and Hualien (H) DNN models, as
well the optimal DNN architecture and parameters in view of the original total monthly
precipitation (total) and non-typhoon precipitation (no_typhoon) in the BCC and CAN
models. From the perspective of dimensionless RMSE, both the Taichung and Hualien
DNN models show that non-typhoon precipitation is superior to original total precipitation,
the number of nodes is mostly 10, and the number of hidden layers is one. As listed in the
Tab., the optimizer is mostly Adam, the activation function is half sigmoid and half tanh,
the learning rate is from 0.001 to 0.0001, the number of nodes is mostly 10, and the value of
dimensionless RMSE is small.

Table 5. Assessment results of DNN downscaling models.

GCM
Model

Source of
the Rainfall

Data
Station

Output
Variable
Number

γ Optimizer Activation
Function

Learning
Rate Node RMSE

BCC
Total

C 23 0.01931 Adagrad tanh 0.0001 10 1.09106
H 4 0.03945 Adagrad tanh 0.001 10 1.12866

No_typhoon C 4 0.01894 Adam sigmoid 0.001 10 0.99238
H 12 0.05273 Adam sigmoid 0.0001 50 0.81970

CAN
Total

C 6 0.01872 Adam sigmoid 0.01 10 0.82479
H 10 0.03630 Adam tanh 0.001 10 1.04221

No_typhoon C 25 0.03339 Adagrad sigmoid 0.01 10 0.82064
H 10 0.06675 Adam tanh 0.0001 10 0.80403

The associated performance measures are summarized in Table 6. As can be seen, in
terms of PU, the difference between total and non-typhoon precipitation in Hualien is much
smaller than that in Taichung. This confirms the observation summarized in Figure 2 that a
larger proportion of precipitation is contributed by typhoons in Hualien. The fact that the
BR values resulting from non-typhoon precipitation are generally lower than those from
total precipitation also confirms that the proposed method used to separate non-typhoon
precipitation from total precipitation is effective.
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Table 6. Performance assessment of the proposed DNN-based downscaling models for BCC and
CAN under historical scenarios.

Models PU (%) BR

Hualien_BCC_noTy 33 6.31
Hualien_BCC_Total 36 12.33
Hualien_CAN_noTy 31 2.24
Hualien_CAN_Total 37 2.25

Taichung_BCC_noTy 48 5.10
Taichung_BCC_Total 37 7.47
Taichung_CAN_noTy 32 5.69
Taichung_CAN_Total 42 8.58

4. Future Precipitation Assessment

This study further utilizes the proposed DNN-based downscaling model to predict
the future precipitation trend and uncertainty for the Taichung and Hualien areas with
or without the effect of typhoons. Future scenario data of the BCC and CAN models
were input into the DNN model for analysis and assessment. The data duration is from
January 2006 to December 2099 (scenarios used are rcp 4.5 and rcp 8.5). Future precipitation
analysis is conducted in three parts: (1) three-classification analysis of future scenario
precipitation of the weather stations; (2) probability analysis of monthly precipitation; and
(3) classification of future scenario data into mid-term (January 2051 to December 2060) and
long-term (January 2071 to December 2080), and analysis of monthly precipitation averages
and box plots to assess the trend and uncertainty.

4.1. Three-Classification and Range Analysis of Future Scenario Precipitation

This study applied the climatic forecast three-classification analysis method proposed
by the Central Weather Bureau of Taiwan to analyze the future precipitation trend in the
BCC and CAN models. In terms of the precipitation three-classification analysis result,
30% and 70% of the precipitation were used as the lower and upper limits of the normal
precipitation range. The “normal” category includes the precipitation that falls within the
range between the upper and lower limits. The “low” category includes the precipitation
that falls below the lower limit. The “heavy” category includes the precipitation that
is above the upper limit. Figure 4 shows the upper and lower limits of the historical
precipitation three-classification analysis for Taichung and Hualien.
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According to the three-classification upper and lower limits of historical precipitation,
precipitation classification could be implemented for two scenarios and two models at the
Taichung and Hualien weather stations. The model naming rules were GCM_with/without
the effect of typhoons_future scenario. For example, BCC_NTY_rcp8.5 denotes that the
GCM model is BCC, excluding the effect of typhoons, and the future scenario is rcp 8.5.
Similarly, BCC_TY_rcp8.5 denotes that the effect of typhoons is included, and the precipitation
properties of the wet season (May to October) precipitation and the dry season (January
to April, November, and December) are included, as shown in Figures 5 and 6. Figure 5
shows the three-classification analysis result of future wet and dry season precipitation for the
Taichung area. As shown in Figure 5, the wet and dry season precipitation in two scenarios
(rcp 4.5 and rcp 8.5) is affected by typhoons. Each DNN model presents roughly the same
trend: the wet season precipitation is less significantly affected by typhoons. The BCC model
shows that in any scenario, the wet season precipitation is too much, whereas the dry season
precipitation is too low. The CAN model shows a small wet-to-dry season precipitation
variation. Figure 6 shows the three-classification analysis result of future wet and dry season
precipitation for Hualien. As seen, each DNN downscaling model has nearly the same trend:
the wet season precipitation is less significantly affected by typhoons, whereas the dry season
precipitation in the rcp 8.5 scenario is more significantly affected by typhoons than that in the
rcp4.5 scenario. Overall, the summer precipitation is mostly within the normal range for both
Taichung and Hualien weather stations, and the winter precipitation is mostly too much for
Taichung, and is half normal and half too much for Hualien.
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Figure 7 shows the precipitation range prediction results, including the results with
and without the effects of typhoons. The mid-term precipitation is mostly within 100 mm
to 200 mm for both Taichung and Hualien. The long-term precipitation is mostly within
100 mm to 200 mm for Taichung and generally within 0 mm to 100 mm and 100 mm to
200 mm for Hualien.

4.2. Future Scenario Precipitation Assessment

Figure 8 shows the future monthly precipitation prediction for Taichung and Hualien.
The model naming rules are: mid-term/long-term or observation (obs)_with or without
typhoons_station. M/L represents mid-term/long-term, Ty/nTy denotes with/without
typhoons, and C/H denotes Taichung Weather Station/Hualien Weather Station. According
to the mid-term precipitation prediction for Taichung shown in the Figure 8, the wet season
precipitation in the two models is below the historical average, whereas the dry season
precipitation in the two models is above the historical average, and the dry season variation
is great. According to the long-term precipitation prediction for Taichung, the wet season
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precipitation variation is small, whereas the dry season precipitation variation is great.
The dry season precipitation is less significantly affected by typhoons and the long-term
wet season precipitation is more significantly affected by typhoons than the mid-term wet
season precipitation. According to the mid-term precipitation prediction for Hualien, the
dry season precipitation variation is greater than the wet season precipitation variation. The
model without the effect of typhoons shows a precipitation trend that is more approximate
to the historical precipitation trend. According to the mid- and long-term precipitation
predictions for Hualien, the dry season precipitation variation is greater than the wet season
precipitation variation, and the long-term wet season precipitation is more significantly
affected by typhoons. Overall, the mid-term dry season precipitation variation is greater
than the mid-term wet season precipitation variation for both Taichung and Hualien, and
the long-term precipitation variation is greater than the mid-term precipitation variation.
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Figure 7. Probabilities of the long-term wet and dry season precipitation ranges in the Taichung and
Hualien models.



Atmosphere 2024, 15, 371 15 of 18

Atmosphere 2024, 15, x FOR PEER REVIEW 16 of 19 
 

 

both Taichung and Hualien, and the long-term precipitation variation is greater than the 
mid-term precipitation variation. 

 
Figure 8. Future scenario (mid-term and long-term) precipitation predictions with and without ty-
phoons for Taichung and Hualien weather stations. 

Figure 9 shows the probability of the long-term monthly precipitation prediction ex-
ceeding the historical average for the two weather stations. As shown in the figure for the 
Taichung area, the mid-term/long-term precipitation is below the historical average in 
May, June, and August, and above the historical average in July. This indicates that the 
probability of falling below the historical average of future wet season precipitation for 
Taichung is high. The dry season monthly precipitation is above the historical average, 
and typhoon precipitation is higher than no-typhoon precipitation, indicating that for the 
Taichung area, the future precipitation has a higher probability of being affected by ty-
phoons due to climate change. The precipitation trend for Hualien is the same as that for 
the Taichung area, except for the fact that the dry season monthly precipitation for Hualien 
is less significantly affected by typhoons. Overall, for both Taichung and Hualien areas, 
the mid-term/long-term dry season precipitation has a much higher probability of exceed-
ing the historical average than the wet season precipitation. The dry season precipitation 
for Taichung is more significantly affected by typhoons than that for Hualien. 

0

100

200

300

400

R
ai

nf
al

l (
m

m
)

J F M A M J J A S O N D
Month

obs_Ty_C
M_Ty_C
M_Ty_C (sample)

obs_nTy_C
M_nTy_C
M_nTy_C (sample)

(a) Midterm future - Ty_C & nTy_C

0

100

200

300

400

R
ai

nf
al

l (
m

m
)

J F M A M J J A S O N D
Month

obs_Ty_C
L_Ty_C
L_Ty_C (sample)

obs_nTy_C
L_nTy_C
L_nTy_C (sample)

(b) Longterm future - Ty_C & nTy_C

0

100

200

300

400

R
ai

nf
al

l (
m

m
)

J F M A M J J A S O N D
Month

obs_Ty_H
M_Ty_H
M_Ty_H (sample)

obs_nTy_H
M_nTy_H
M_nTy_H (sample)

(c) Midterm future - Ty_H & nTy_H

0

100

200

300

400

R
ai

nf
al

l (
m

m
)

J F M A M J J A S O N D
Month

obs_Ty_H
L_Ty_H
L_Ty_H (sample)

obs_nTy_H
L_nTy_H
L_nTy_H (sample)

(d)  Longterm future - Ty_H & nTy_H

Figure 8. Future scenario (mid-term and long-term) precipitation predictions with and without
typhoons for Taichung and Hualien weather stations.

Figure 9 shows the probability of the long-term monthly precipitation prediction
exceeding the historical average for the two weather stations. As shown in the figure for
the Taichung area, the mid-term/long-term precipitation is below the historical average
in May, June, and August, and above the historical average in July. This indicates that the
probability of falling below the historical average of future wet season precipitation for
Taichung is high. The dry season monthly precipitation is above the historical average,
and typhoon precipitation is higher than no-typhoon precipitation, indicating that for
the Taichung area, the future precipitation has a higher probability of being affected by
typhoons due to climate change. The precipitation trend for Hualien is the same as that for
the Taichung area, except for the fact that the dry season monthly precipitation for Hualien
is less significantly affected by typhoons. Overall, for both Taichung and Hualien areas, the
mid-term/long-term dry season precipitation has a much higher probability of exceeding
the historical average than the wet season precipitation. The dry season precipitation for
Taichung is more significantly affected by typhoons than that for Hualien.
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5. Conclusions

This study applied KPCA to extract non-linear features of high-dimensional data as
inputs of the DNN model, so as to reduce the model complexity and data noise. A DNN-
based downscaling model was designed for monthly precipitation. This study selected the
BCC-CSM1.1 model and CanESM2 model from the IPCC AR5 models, and conducted a
case study of Taichung and Hualien. The following conclusions were drawn:

1. For both Taichung and Hualien DNN downscaling models, the number of hidden
layers is 1, the learning rate ranges from 0.001 to 0.0001, and the number of nodes is
mostly 10;

2. The DNN downscaling models were BCC and CAN models. Dimensionless RMSE
shows opposite trends for Taichung and Hualien. Specifically, for the Hualien area,
the performance of the BCC model is superior to that of the CAN model, and for
the Taichung area, the performance of the CAN model is superior to that of the
BCC model;

3. According to the three-classification analysis of future scenario precipitation predic-
tions, the summer precipitation for both Taichung and Hualien weather stations is
mostly within the normal range, whereas the winter precipitation for Taichung is
mostly too much, and the winter precipitation for Hualien is half normal and half
too much;

4. According to the analysis of future precipitation ranges, the mid-term precipitation for
both Taichung and Hualien is mostly within 100 mm to 200 mm, while the long-term
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precipitation is mostly within 100 mm to 200 mm for Taichung and is generally within
0 mm to 100 mm and 100 mm to 200 mm for Hualien;

5. According to the analysis of future monthly precipitation, the wet season precipitation
is below the historical average and the dry season precipitation is above the historical
average. For both Taichung and Hualien areas, the dry season precipitation variation
is greater than the wet season precipitation variation and the long-term precipitation
variation is greater than the mid-term precipitation variation. For the Taichung area,
the long-term dry season precipitation is less significantly affected by typhoons and
the long-term wet season precipitation is more significantly affected by typhoons.
For Hualien mid-term precipitation, the model without the effect of typhoons shows
a mid-term precipitation trend closer to the historical precipitation trend and the
long-term wet season precipitation is more significantly affected by typhoons;

6. According to the analysis of the probability of the future monthly precipitation exceed-
ing the historical monthly average precipitation, for both the Taichung and Hualien
areas, the mid-term/long-term dry season precipitation has a much higher probability
of exceeding the historical average than the wet season precipitation, and the dry
season precipitation for Taichung is more significantly affected by typhoons than that
in Hualien.
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