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Abstract: The present study aimed to analyze the dynamics of vegetation within the Atrak catchment
area, as well as its interplay with precipitation patterns. Moreover, additional emphasis was placed
on exploring the impact of these dynamics on agricultural land cover type. To achieve this objective,
the Enhanced Vegetation Index (EVI) derived from MODIS data and the Comprehensive Historical
and Real-Time Satellite-based Precipitation (CHRIPS) data were utilized for the period from 2003 to
2021. Additionally, the Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI)
were employed to discern various degrees of drought and pluvial years within the Atrak basin. The
study revealed that the years 2008, 2014, 2017, and 2021 exhibited the lowest vegetation coverage,
while the years 2010, 2016, and 2019 showcased the most extensive vegetation extent. Notably, it was
revealed from the VCI index that the year 2008 was the driest, and the year 2016 was the wettest.
Furthermore, based on the SPI index findings, the years 2007, 2019, and 2020 were identified as
pluvial years, while in the years 2008, 2014, and 2021 drought conditions occurred. All other years
were classified as exhibiting normal conditions. Regarding seasonality, the observations ascertain that
the spring season substantiates the most extensive vegetation cover, and a high correlation between
spring precipitation and vegetation coverage was observed. Additionally, the anomaly detection
outcomes indicate that the eastern regions of the basin have experienced an upward trend compared
to the average of the first decade of the studied period.

Keywords: vegetation; agricultural lands; precipitation; remote sensing; Atrak watershed

1. Introduction

The exploration of topics such as sustainable vegetation management and control
encompasses a pivotal concern within ecological research, specifically those studies delving
into the sustainable processes governing vegetation fluctuations [1]. Given the significance
of climate change in contemporary discourse, significant efforts are dedicated to investigat-
ing the impact of meteorological factors on vegetation dynamics [2]. The study of changes
in vegetation patterns serves as an indicator of the dynamism of ecosystems, thereby al-
lowing for their management to uphold ecosystem stability [3]. Numerous natural and
anthropogenic factors, including climate change, lead to changes in various phenomena
and effects occurring on the Earth’s surface, including vegetation growth [4]. The pivotal
role of vegetation in supplying organic matter, regulating the carbon cycle, and facilitating
energy exchanges in response to climatic changes underscores the need to discern, predict,
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and proactively address such ecosystem changes [5–7]. Climatic characteristics exert a pro-
found influence on various environmental parameters. The interplay between vegetation
and climate exhibits a robust correlation, with alterations in either entity resulting in reper-
cussions for other ecological functions. Precipitation amount, timing, frequency, spatial
distribution, and intensity, alongside temperature regimes, intermingle with topographical
features to bestow distinct vegetation patterns in different geographical regions [8].

The geographical distribution of different plant communities depends heavily on pre-
vailing climatic conditions, to the extent that climate represents a preeminent determinant
of vegetation characteristics on both local and global scales. Among climatic variables,
temperature and precipitation have the most significant impact on the spatiotemporal
patterns of vegetation [9,10]. Drought, stemming from climate shifts and perturbations in
atmospheric circulation, emerges as a primary contributor to vegetation reduction. Given
the pivotal role that rainfall plays in both the growth and degradation of vegetation, the
reduction in vegetation is directly linked to insufficient rainfall. Moreover, when accom-
panied by elevated air temperatures, strong winds, and reduced relative humidity, this
combination exacerbates drought conditions and, conversely, diminishes the intensity of
green cover [11]. Vegetation is known to be a widely used biome in ecological assess-
ments due to such characteristics as immobility, or relatively rapid growth. The increase
in vegetation cover in an area reduces atmospheric carbon dioxide [12], mitigates lead
concentrations, regulates soil moisture, safeguards water resources [13,14], curtails soil
erosion, and diminishes flood risks, thereby contributing to ecological sustainability [15,16].
While in some regions droughts are the main problem, in others flooding takes place [17].
Consequently, environmental instability is liable to manifest as desertification, soil erosion,
climate perturbations, and other effects, heralding adverse economic, societal, and climatic
consequences [18].

A series of scientific studies have explored the dynamics of plant growth in various
geographical regions, employing sophisticated methodologies and data sources. For in-
stance, the changes in the vegetation cover in Fars province were investigated by utilizing
the NDVI index and the Mann–Kendall test [19]. These investigations revealed a consistent
increase in the rate of plant growth in mountainous regions compared to plain areas. In
another study, satellite data were utilized in conjunction with time series regression analy-
sis to examine the relationship between drought and vegetation in Afghanistan [20]. The
outcomes of this study indicated that in 2009 and 2010, there was a significant increase
in vegetation cover, amounting to 16.3%. This increase was attributed in part to lower
temperatures and greater precipitation compared to preceding years. MODIS NDVI and
ERA-5 temperature and precipitation datasets were used to scrutinize spatial and tempo-
ral transformations in NDVI [21], and the responses of vegetation to climate alterations
were analyzed using regression models and Pearson correlation coefficients. Furthermore,
NDVI MODIS data were used and the stability and regression analysis methodologies
were employed to explore spatiotemporal variations in vegetation cover within the Pearl
River Delta from 2000 to 2015 [22]. The findings highlighted an upward trend in vegetation
cover over this period, revealing a discernible correlation between changes in city-adjacent
vegetation and human activities.

The impact of climatic elements such as temperature, precipitation, and drought on
shifts in both linear and non-linear trends of vegetation cover was also investigated [23].
This study was conducted for the Khor-Sifiderak watershed within the Alborz province
and employed satellite images spanning from 2000 to 2019. Results indicated a lack of a
significant trend in regional precipitation over the two decades, while temperature exhibited
a noteworthy declining trend. The influence of drought on vegetation was evident, with
the most pronounced decline observed in 2008 due to severe drought conditions.

In an endeavor to comprehend the sustainability of vegetative fluctuations in the
northern catchment of Afghanistan, MODIS data were harnessed in conjunction with rain-
fall records (PDIRNOW) [18]. The analysis revealed that the mean vegetation coverage
throughout the entire period was 45.21%. The lowest levels of vegetation coverage were
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observed during the 2001–2008 period and 2011, attributed to scarce rainfall. Conversely,
in the years 2003, 2009, and 2010, increased precipitation alongside lower land surface
temperature (LST) corresponded to the peak of vegetation coverage. Through the applica-
tion of a structural equation model, the intricate relationship between driving factors and
variations in the Enhanced Vegetation Index (EVI) in Anhui, China, from 2000 to 2020 was
investigated [24]. The authors’ holistic analysis unveiled that EVI transformations were
predominantly steered by urbanization. Human activities significantly affected changes
in central and southern Anhui, with subsequent pronounced feedback in EVI alterations
due to annual rainfall fluctuations. Topographical factors exerted both direct and indirect
impacts on changes in the northern and central regions compared to their southern coun-
terpart. Conversely, alterations in annual temperature exerted minimal influence on the
vegetation across the entire region.

The non-parametric methodology proposed by Mann–Kendall was utilized in con-
junction with remote sensing and used to scrutinize the trend trajectory of vegetation
alterations within northeastern Iran from 2000 to 2018 [5]. The results underscored that
52% of the studied area exhibited a declining vegetation trend, while the remaining regions
demonstrated an ascending trend. Remote sensing data were used to investigate changes in
vegetation cover and weather patterns in the Kabul River Basin in Afghanistan during the
period 2001–2019 [25]. The results showed that precipitation and land surface temperature
are influential factors in the vegetation cover of this region, with land surface temperature
playing a more prominent role in winter. Weather patterns can serve as a warning system
to prevent water or temperature stress in agricultural areas [26].

The relationship between climatic parameters and vegetation cover changes in the
watersheds of the Caspian Sea was investigated using satellite images from 2001 to 2019 [27].
The results revealed that precipitation had little effect on vegetation cover during winter,
but was the main controlling factor of vegetation cover in spring. In summer, the surface
temperature was identified as the primary factor influencing vegetation cover.

The spatiotemporal characteristics of vegetation cover in the Middle East between 2001
and 2019 were analyzed using the NDVI [28]. The results indicate an increase in vegetation
cover in the Middle East, particularly in Egypt and Saudi Arabia, with government policies
being the main reason behind this. Additionally, both vegetation cover and density have
increased in Turkey, which can be attributed to the construction of dams such as Ataturk
and Ilisu. The impact of vegetation cover, land surface temperature, and precipitation on
changes in water level and area of seven inland lakes in the Middle East area from 2000 to
2019 were investigated using elevation data [29]. The study focused on Urmia Lake in Iran,
Mosul and Hamar 4 Lagoon in Iraq, and Bishahir and Archak Lakes in Turkey. The results
revealed an increase in vegetation cover and land surface temperature, and a decrease in
annual precipitation in the assessed area. Changes in temperature and vegetation cover
were similar in all three countries, but changes in water levels and the lake areas were
influenced by factors other than climate and varied significantly. Notably, Lake Urmia
exhibited the most pronounced reduction in water levels.

In another recent study, the remote sensing data from the MODIS-GPM and GLADAS
satellites were utilized to investigate the complex relationship between meteorological
parameters, drought conditions, and vegetation diversity within the eastern basins of
Afghanistan [30]. Employing regression methods, it was found that certain years, namely
2000, 2001, and 2008, displayed diminished vegetation cover, while the years 2010, 2013,
2016, and 2020 exhibited heightened levels of vegetation cover, accompanied by an ascend-
ing trend in the whole period. Overall, changes in soil moisture, precipitation, surface
temperature, and the presence of drought conditions collectively accounted for 45% of the
annual variations in vegetation cover.

However, there is still a need to assess how meteorological conditions influence the
vegetation in various areas of the world. The Atrak Basin faces challenges related to wa-
ter scarcity due to increasing demand from various sectors such as agriculture, industry,
and domestic use. Climate change exacerbates these issues by altering precipitation pat-
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terns and increasing evaporation rates. Research is needed to develop sustainable water
management strategies [26,31], including efficient irrigation techniques, water recycling,
and groundwater recharge methods. Intensive agricultural practices, deforestation, and
overgrazing contribute to soil erosion and degradation in the Atrak Basin. This diminishes
soil fertility, reduces agricultural productivity, and increases the risk of desertification.
Scientists are exploring soil conservation measures, such as terracing, reforestation, and
sustainable grazing practices, to mitigate these impacts. Therefore, the main aim of this
research was to contribute to a comprehensive understanding of the interplay between
rainfall patterns and the dynamics of vegetation within the Atrak basin area. Notably,
the Atrak basin, the focal point of the present study, represents one of the longest rivers
within Iran and forms a subunit of the broader Mazandaran Sea basin. This study analyzed
the relationship between vegetation cover and drought conditions, quantified through
the Vegetation Condition Index (VCI) and the Standardized Precipitation Index (SPI). It
aimed to identify the impact of precipitation variability on vegetation cover and drought
occurrence while examining changes in agricultural land coverage within the Atrak basin
over the study period. The paper is organized as follows: after the introduction, the study
area is described, followed by a presentation of the data sources and their features. The
methods used are then described. Subsequently, the obtained results are presented and
discussed, leading to the conclusion of the paper.

2. Materials and Methods
2.1. Study Area

The Atrak basin is classified as an open basin within Iran, and it holds the status
of being a sub-basin in the broader framework of Iran’s basin divisions. This particular
basin is categorized as a sub-entity within the Mazandaran Sea basin area. Situated in
the northeastern region of the country and positioned in the northern part of Khorasan
province, its geographical coordinates span from 54◦ to 59◦4′ E and 38◦57′ to 38◦17′ N. Ge-
ographically, this basin shares borders with multiple entities: the Republic of Turkmenistan
to the north, the Gorgan River basin and the Kal Shur (central desert) to the south, the
Qara Qom basin to the east, and the Mazandaran Sea to the west. Excluding the portion
situated in Turkmenistan, the overall expanse of the Atrak basin accounts for approximately
25,627 km2. A significant portion of this basin is located within the provinces of North
Khorasan and the northern region of Razavi Khorasan, encompassing an area spanning
about 19,075 km2. The principal river traversing this basin stretches approximately 520 km
in length, and its primary trajectory extends from east to west, ultimately terminating
at the Caspian Sea. The elevation of the Atrak River basin varies significantly, ranging
from approximately 2903 m upstream to −22 m in coastal areas near the Caspian Sea.
The landscape consists predominantly of mountains and plains, with mountains covering
5.76% of the area and plains encompassing 95.23% (Figure 1). The Atrak basin climate is
marked by semi-arid conditions and notable variability. Due to its mountainous terrain, the
distribution of rainfall across the Atrak basin showcases pronounced spatial fluctuations,
with rainfall ranging from approximately 200 mm in the northwestern regions to 750 mm
in mountainous areas. However, a significant portion of the watershed receives between
250 and 400 mm of precipitation. On the other hand, distinct seasonal variations in rainfall
are also observed, typically concentrated during the winter and spring months.

Primary crops cultivated in the Atrak Basin include winter wheat (Triticum aestivum
L.), barley (Hordeum vulgare), alfalfa (Medicago sativa), and various fodder crops essential
for livestock husbandry. These crops are strategically planted to capitalize on seasonal
rainfall patterns, with winter wheat being a prominent staple due to its resilience to the
region’s climatic conditions. In addition to rainfed agriculture, irrigation plays a crucial
role in enhancing agricultural productivity, particularly in areas where water scarcity poses
challenges to traditional farming practices. The basin hosts several irrigation schemes and
cultivated areas where water resources are managed to support crop cultivation throughout
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the year. The agricultural lands of the region amount to 147,521 ha, of which 74% is rainfed,
and the remaining 26% is irrigated.
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Grassland ecosystems support a rich diversity of grass species and herbaceous veg-
etation. These ecosystems are vital for grazing livestock, conserving soil moisture, and
sustaining biodiversity within the region. Various pasture plants are found in this area,
with the primary type being darme (Astragalus spp.). Additionally, other species such
as goon (Ferula spp.), ferfion (Euphorbia rigida), saltgrass (Distichlis spicata), Iranian grass
(Agropyron cristatum), stipa (Stipa spp.), Poa spp., Festuca spp., and Aegilops spp., among
others, constitute key elements of the pastures in this region [32]. These grasses are well-
adapted to the semi-arid conditions of the basin, exhibiting traits such as deep root systems,
drought tolerance, and efficient water use efficiency. Grasslands in the Atrak Basin typically
display varying degrees of vegetation cover, influenced by factors such as precipitation
patterns, soil fertility, and grazing pressure. In areas with adequate moisture, dense stands
of grasses may form extensive carpets of greenery, providing valuable forage for livestock
and wildlife. However, in more arid regions, grassland vegetation cover may be sparse,
with patches of bare soil interspersed between tufts of grass. Like shrublands, grasslands
are susceptible to desertification when subjected to unsustainable land management prac-
tices and environmental stressors. Overgrazing, soil erosion, and habitat fragmentation can
contribute to the degradation of grassland ecosystems, leading to loss of biodiversity and
decreased productivity. Implementing holistic land management strategies, such as rota-
tional grazing and reforestation, can help mitigate the threat of desertification and promote
the resilience of grassland habitats. Grasslands cover 60% of the area of the watershed.

The shrubland ecosystems within the Atrak Basin are dominated by xerophytic shrubs
and drought-resistant vegetation. These ecosystems play a crucial role in stabilizing soil,
conserving water, and providing a habitat for a diverse array of flora and fauna. Common
shrub species found in the shrublands of the Atrak Basin include Artemisia spp. (such as
Artemisia aucheri and Artemisia sieberi), Zygophyllum spp., Salsola spp., and Haloxylon spp.
These shrubs are adapted to arid conditions, featuring deep root systems to access water
stored in the soil and mechanisms to minimize water loss through transpiration. Shrublands
are particularly vulnerable to desertification, a process exacerbated by factors such as
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overgrazing, deforestation, and unsustainable land management practices. In the Atrak
Basin, the encroachment of desertification threatens to degrade shrubland ecosystems,
leading to soil erosion, loss of biodiversity, and reduced ecosystem resilience. Effective land
conservation and restoration measures are essential to mitigate the impacts of desertification
and preserve the ecological integrity of shrubland habitats [33].

The rest of the lands of the Atrak watershed are residential, barren, marshy, and salt
marshy areas [34]

The land cover map of the Atrak basin, based on the classification scheme developed
by the University of Maryland [35] that divides land use into 17 distinct types [36], was ex-
tracted from the website of the United States government (https://earthexplorer.usgs.gov/
(accessed on 10 July 2023)). The land cover map of the Atrak basin was divided into 6
distinct classes, 0, 7, 10, 12, 13, and 15 using the MODIS Land Cover Type (MCD12Q1)
product, which provides global land cover maps with a 500 m spatial view and annual out-
put [37–39]. According to Figure 2, the Atrak basin includes water areas, open shrublands,
grasslands, croplands, and urban and non-vegetated land. A large part of the basin consists
of grasslands, concentrated mostly in the central and eastern areas, while the western parts
of the basin are characterized by open shrublands.
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2.2. Data

This study utilized the 16-day 250 m Enhanced Vegetation Index (EVI) data from
MOD13Q1, 8-day 1 km Land Surface Temperature (LST) data from MOD11A2, and monthly
precipitation data obtained from the CHIRPS satellite to investigate vegetation dynamics
and its correlation with rainfall patterns spanning the timeframe of 2003 to 2021 (Table 1).
The initial step involved calculating seasonal and yearly average vegetation cover, land
surface temperature, and precipitation values using the ArcGIS program. The winter,
spring, and summer vegetation indices were derived from averages of six images each,
while autumn vegetation was computed from averages of five images. Additionally, annual
coverage was computed from averages of twenty-three images. Furthermore, a total of
828 daily images for the land surface temperature were downloaded for the study area, with

https://earthexplorer.usgs.gov/
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46 images per year. These image datasets were sourced from the United States Geological
Survey website (www.usgs.gov (accessed on 10 July 2023)). To ascertain the trend of spatial
alterations in vegetation and to detect anomalies for assessing vegetation shifts within the
second decade of the analyzed time series (2011 to 2021) relative to the average reference
period (2003 to 2011), the study utilized the Google Earth Engine system. Furthermore,
based on each year’s land cover map, croplands were distinguished from other land classes
in land cover maps and analyzed on annual EVI satellite images.

Table 1. The datasets and satellite images used in the study.

Data Source Characteristics

EVI MODIS (MOD13Q1) 16-day composite EVI, 250 × 250 m
LST MODIS (MOD11A2) 8-day composite LST, 1 × 1 km

Precipitation CHIRPS Monthly CHIRPS precipitation, 0.05◦ × 0.05◦

Rainfall data for the winter season were computed from an average of three images
spanning December to February; for the spring season, they were derived from an average
of three images from March to May; the summer season’s data relied on an average of three
images for June to August; the autumn season’s information was obtained from an average
of three images between September and November. Furthermore, annual rainfall statistics
were generated from an average of twelve images, spanning January to December. After
generating seasonal and yearly image datasets, all pixel values corresponding to vegetation
cover and precipitation were compiled into Excel spreadsheets. These data were then
subjected to a comprehensive analysis involving classification, graphical representation,
quantification of precipitation and vegetation shifts, calculation of both seasonal and annual
Standardized Precipitation Index (SPI) values, and coverage area estimation.

MODIS Data

MODIS stands as a pivotal and practical satellite within the domain of monitoring
alterations across the Earth’s surface, oceans, and atmosphere. Its dataset and an array
of diverse products have been accessible since 2000 and are integrated into two satellite
platforms, Terra and Aqua. Among its noteworthy capabilities, it boasts a high radiometric
resolution of 12 bits and encompasses 36 spectral bands spanning from 0.4 to 14.4 µm. It
exhibits variable resolutions ranging from 250 m to 1000 m, tailored to specific spectral
bands. The satellite also offers a time resolution of 1 to 2 days, a facet that has positioned
it as one of the most extensively utilized platforms in the realm of environmental investi-
gations. From the MODIS images, the Enhanced Vegetation Index (EVI) and land surface
temperature (LST) were obtained directly.

2.3. Methods
2.3.1. Enhanced Vegetation Index (EVI)

A notable advantage of the EVI index is its ability to mitigate atmospheric and
aerosol-related influences [40]. The EVI indices were directly downloaded and subse-
quent relationships were employed to compute the EVI averages for both the annual and
seasonal assessments:

Winter vegetation =
∑(image 353 to image 65)

6
(1)

Spring vegetation =
∑(image 81 to image 161)

6
(2)

Summer vegetation =
∑(image177 to image 257)

6
(3)

Fall vegetation =
∑(image 273 to image 337)

5
(4)

www.usgs.gov
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Annual vegetation =
∑(image 17 to image 1)

23
(5)

2.3.2. Land Surface Temperature (LST)

The Earth’s surface temperature is a critical parameter in environmental studies and
assessments, such as monitoring drought conditions. Each pixel represents the temperature
of the Earth’s surface, reflecting the heat emitted by various objects. Therefore, in remote
sensing, the surface temperature of the Earth for each pixel corresponds to the average
temperature of the different types of surface cover [41]. Annual and seasonal averages of
these images were calculated as:

Winter LST =
∑12

i=1 LSTi

12
(6)

Spring LST =
∑24

i=13 LSTi

12
(7)

Summer LST =
∑36

i=25 LSTi

12
(8)

Fall LST =
∑46

i=37 LSTi

12
(9)

Yearly LST =
∑46

i=1 LSTi

46
(10)

where the index (i) counts the images of each year in date order.

2.3.3. Standardized Precipitation Index (SPI)

The standard precipitation index (SPI) is an index often used for assessing drought
conditions. Calculation of SPI for each specific region is based on long-term rainfall
statistics, which are usually fitted to a probability distribution function (gamma probability
function). The resulting function can be used to find the cumulative probability of rainfall
for a station and for a specific month and time scale. In practice, the following fact is often
utilized: for a random variable X with a gamma distribution, the variable Z = 3

√
X has an

approximately normal distribution. Using this fact, the following approximate method for
calculating the SPI coefficient can be proposed:

For a given value x ≥ 0 SPI =
3
√

xi − µ̂

SD
(11)

where µ̂ is the average and SD is the standard deviation for data subjected to the trans-
formation xi → 3

√
xi . The stages leading to the determination of the SPI indicator are the

normalization of periodic precipitation sums using xi → 3
√

xi , verification of the hypothesis
regarding the compatibility of the distribution of the transformed variable with the normal
distribution using the Shapiro–Wilk test, and the standardization of transformed data and
determination of the SPI.

SPI relies on quantifying the divergence of rainfall values from their long-term average
over a designated period, rendering it a preferable option compared to other meteorological
drought indices [42]. The classes associated with this index are displayed in Table 2.
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Table 2. Classification of drought severity based on SPI.

Index Values Class

More than 2 Extremely wet
1.5 to 1.99 Very wet
1 to 1.49 Moderate wet

−0.99 to 0.99 Near Normal
−1 to −1.49 Moderate dry

−1.49 to −1.99 Severely dry
−2 and less Extremely dry

2.3.4. Vegetation Condition Index (VCI)

The Vegetation Condition Index (VCI) was introduced in 1995 [43]. This index reflects
the vegetation status within a specific area, calculated based on the minimum and maximum
Normalized Difference Vegetation Index (NDVI) values spanning several years. The VCI is
expressed as a percentage. Since the Enhanced Vegetation Index (EVI) is an advancement
of the NDVI, the EVI was utilized for calculating the VCI index. The numerical range of the
VCI varies between 0 and 100. Values approaching zero signify stress and severe drought
within the region, while values approaching 100 indicate favorable vegetation conditions
and amelioration of drought conditions [44]. It is calculated as:

VCI =
(

EVI − EVImin

EVImax − EVImin

)
× 100 (12)

In the above relationship, EVI is the improved seasonal or annual vegetation cover
index, while EVImin and EVImax are the minimum and maximum long-term EVI in the
entire study area in the assessed period (in the case of this paper it was 2003–2021).

2.3.5. Anomaly calculation

The standardized anomaly, also known as the Z-score, quantifies the extent of devia-
tions from the mean of the quantity being analyzed. It is calculated using the formula [45]:

Zij =
Xij − U

σij
(13)

Here, i represents the assessed period, j stands for the time scale, Xij is an analyzed
parameter in a given year, U represents the mean value for the analyzed period, and σij
indicates the standard deviation. Positive values of the standardized anomaly indicate that
the values being assessed are larger than the mean, while negative values indicate that
the values are smaller than the mean. Values greater than |2| indicate that the result is
abnormal [46].

2.3.6. Pearson Correlation

The correlation coefficients were calculated using Pearson correlation, which measures
the strength of the linear relationship between two variables, one dependent and the other
independent [47]. It ranges in value from −1 to 1, with −1 meaning a total negative
linear correlation, 0 meaning that two quantities are not correlated, and + 1 meaning
a total positive correlation. The Pearson correlation, being the first formal measure of
correlation, remains one of the most widely used measures for assessing relationships
between variables [48]:

Rxy =
∑(xi − X)∑(yi − y)√

∑ (xi − X)2
√

∑ (yi − y)2
(14)
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where X denotes the mean of x and ȳ denotes the mean of y. The significance of the
correlation coefficients was judged using a t-test. The trends were fitted to the data using
linear regression.

3. Results

According to Figure 3, which depicts the average vegetation cover spanning 19 years
for each EVI date, it is evident that the more rapid phase of vegetation growth commences
in January during the winter season and reaches its zenith in April, registering at 39.5%
(equivalent to 10,434.11 km2). Thus, the spring period from March to June exhibits the
most extensive vegetation coverage. Starting from the initial days of May, the vegetation
gradually diminishes, culminating in the lowest extent of vegetation around November
at 1.16% (amounting to 307.3224 km2), characterizing the late autumn period. Notably,
a slight increase of 2.5% in vegetation occurred between the end of December and the
beginning of January. Between June and September, corresponding to the summer season,
the dehydration of plants contributes to a decrease in the vegetation area. Additionally,
due to the positive correlation between the evaporation of water from leaf surfaces and the
ground, the available water for plants in the soil increases, simultaneously reducing the
plants’ daily water requirements Początek formularza [27].
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Based on Figure 4, it is evident that during this specific season, the distribution of
vegetation cover presents a notable contrast between the eastern half of the basin situated
in North Khorasan province and the western half located in Golestan province. This
discrepancy is attributed to the region’s temperate and mountainous climate. During the
summer season, urban areas predominantly host green trees and parks. Furthermore,
elevated regions experience lower temperatures, which subsequently decrease evaporation
and transpiration rates in plants, effectively sustaining vegetation in the research area.
Consequently, in this particular season, vegetation is more prevalent in the eastern half
of the basin within North Khorasan province, characterized by a moderate mountainous
climate, compared to the western half encompassing a portion of Golestan province.
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Figure 4. Seasonal average EVI values in the Atrak basin area during 2003–2021.

At the end of September, coinciding with the onset of autumn, only urban locales
retain their verdant state, as water evaporation from tree leaves becomes full. In the heart
of the winter season, spanning 17 January to 18 February, substantial changes in vegetation
become evident due to intermittent rains and slight temperature fluctuations. Notably, the
distribution of vegetation in the western half of the basin within Golestan province, which
receives the most winter rainfall, becomes conspicuously distinct.

Based on Figure 5, which depicts the seasonal shifts in vegetation cover throughout
the analyzed time series, the spring season consistently exhibits the highest vegetation
coverage. Specifically, in the years 2010, 2016, and 2019, the peak was observed at 45.28%
(equivalent to 11,966.7 km2), 43.45% (equivalent to 11,483.4 km2), and 54.50% (equivalent
to 14,404.18 km2), respectively.

As shown in Figure 6, detailing the trend of variations during the second decade
(2011–2021) in comparison to the average of the first decade (2003–2010) within the studied
time series, a discernible pattern emerges. The eastern sectors of the basin, located within
North Khorasan province and a segment of Razavi Khorasan, contrast with the western
areas comprising the northern portion of Golestan province. The former regions exhibit
an increasing trend, while the central and western sections of the basin have witnessed
varying degrees of decline, with certain parts displaying no significant change.

The findings reveal that over the examined statistical timeframe, the years 2008,
2014, 2017, and 2021 exhibited the lowest total vegetation coverage, accounting for 4.89%,
5.75%, 6.81%, and 6.61% respectively, of the entire Atrak basin area (as shown in Table 3).
Conversely, during the years of abnormally high precipitation sums, such as 2004 (396.7
mm), 2007 (400.4 mm), 2009 (386.8 mm), and 2019 (429.7 mm), the corresponding vegetation
cover percentages were 12.8%, 10.78%, 9.6%, and 18.25%, respectively (Figure 7).
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Examining vegetation classes, the VC area classified as poor vegetation (EVI 0.2–0.3)
was 998 km2 in 2008, reaching its peak of 3135 km2 in 2019. The moderate coverage class
had the largest expanse in 2019, and it was 1090 km2, while the lowest occurred in 2008 with
215 km2. Across the categories of good, dense, and very dense cover, the most substantial
areas observed in 2019 were 402, 147, and 50 km2, respectively. Conversely, the smallest
extents were recorded in 2008, with 60, 16, and 4 km2, respectively. Overall, the 19-year
average areas for poor, moderate, good, dense, and very dense cover were 1979, 587, 205,
70, and 24 km2, respectively, encompassing the entire basin area.
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Table 3. The area of coverage of different EVI floors in the study area in terms of (km2) during the
period from 2003 to 2021.

Year EVI 0.2–0.3 EVI 0.3–0.4 EVI 0.4–0.5 EVI 0.5–0.6 EVI > 0.6 Total Area
(km2)

Total Area
(Percent)

2003 2349 727 258 84 28 3447.11 13.04

2004 2281 644 194 58 18 3193.24 12.08

2005 2263 767 264 87 30 3409.14 12.90

2006 2069 604 175 60 17 2923.80 11.06

2007 1912 578 234 92 33 2849.24 10.78

2008 998 215 60 16 4 1293.10 4.89

2009 1711 523 196 72 38 2540.67 9.61

2010 2518 915 341 118 39 3931.59 14.88

2011 1451 313 90 25 5 1884.73 7.13

2012 2435 725 253 78 22 3511.78 13.29

2013 2476 753 248 84 33 3593.63 13.60

2014 1155 263 76 20 5 1519.33 5.75

2015 1645 399 134 40 12 2229.28 8.43

2016 2688 974 382 141 65 4250.14 16.08

2017 1314 326 116 35 8 1799.74 6.81

2018 1525 408 153 63 26 2175.28 8.23

2019 3135 1090 402 147 50 4824.68 18.25

2020 2337 625 229 83 28 3302.07 12.49

2021 1335 296 86 23 5 1746.18 6.61

Average 1979 587 205 70 24 2864 11
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Figure 7. Annual changes in precipitation and vegetation during the period from 2003 to 2021.

Figure 8 illustrates the correlation between annual vegetation cover and the severity
of drought, employing the EVI and VCI indices, within the Atrak basin throughout the
study duration from 2003 to 2021. Using the classification established in the scientific
literature [43], regions experiencing drought conditions and those not affected by drought
are classified based on VCI index values ranging between 0% and 35%, and between 35%
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and 100%, respectively. Across the entire basin, which spans approximately 26,430 km2,
the vegetation area displays annual fluctuations, ultimately yielding an average vegetation
coverage of 2864 km2 (11% of the total study area) over the entire period. The VCI index
shows that the most pronounced instances of drought were in the years 2008, 2011, 2014,
2017, and 2021, registering percentages of 95.93%, 71.5%, 67.8%, 61.5%, and 57.6% of
the total area, respectively. Conversely, the least pronounced droughts were in 2010,
2013, 2016, 2019, and 2020, encompassing 2.6%, 5.4%, 2%, 2.19%, and 9.7% of the total
area, respectively.
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Figure 9 presents a visualization of vegetation density during both wet and dry years.
From this representation, it becomes apparent that 2008 stands out as the driest year,
characterized by a VCI index of 95.9%, whereas 2016 emerges as the wettest year, marked
by a VCI index of 1.98%, within the scope of the analyzed time series. Additionally, during
years with higher precipitation, the western regions of the basin, situated in Golestan
province, exhibit greater vegetation density compared to the eastern and central parts of the
basin in North Khorasan and Razavi provinces. This discrepancy is primarily attributed to
the substantial average annual rainfall experienced in these areas. Notably, certain locales
might demonstrate disparities in rainfall patterns, either high or low, due to influencing
environmental factors like topography.

Across the examined time series, the years 2004, 2007, 2009, and 2019 stand out as
having the highest average rainfall, with 396.7 mm, 400 mm, 386.8 mm, and 429.7 mm
respectively. These values indicate conditions ranging from a moderate wet year to a very
heavy wet year. Conversely, the years 2008, 2014, and 2021 exhibit the lowest annual rainfall
averages of 234 mm, 270.7 mm, and 233.6 mm respectively, characterizing conditions
of moderate and severe drought. The remaining years fall within the range of normal
conditions. Furthermore, the years 2010, 2016, and 2019 notably display the most extensive
vegetation coverage, spanning areas of 3931.5, 4250.1, and 4824.6 km2, respectively. In
contrast, the years 2008, 2014, and 2021 exhibit the smallest vegetation coverage areas,
corresponding to 129, 1519.3, and 1746.1 km2, respectively. Additionally, the highest
average temperature was recorded in 2021, with a temperature of 28.2 ◦C, and in 2017 and
2018, with temperatures of 27.6 and 27.4 ◦C, respectively, and the year 2003 has the lowest
average temperature at 24 ◦C (Figure 10). Within the winter season, particularly noteworthy
are the years 2010 and 2019, characterized by the highest recorded rainfall levels of 158 mm
and 156 mm, respectively. These values signify extremely wet conditions, as confirmed by
SPI results. Furthermore, the years 2014 and 2021 recorded the lowest rainfall at 86.5 mm
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and 82.3 mm, indicating a state of severe drought. On the other hand, the largest vegetation
coverage was observed in 2016, spanning an area of 4190 km2, while the smallest vegetation
area occurred in 2011, covering an area of 122.6 km2. The highest average LST was in 2018,
with a temperature of 11.7 ◦C, while the lowest average temperature was recorded in 2008
and 2012, with 5.21 and 5.12 ◦C, respectively.
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Transitioning to the spring season, the highest recorded rainfall of 227.5 mm was
documented in 2019, signaling a classification as an extremely wet year according to SPI
results. Conversely, 2015 experienced notably low rainfall at 78.2 mm, indicative of a state
of severe drought. Within this season, the maximum vegetation coverage occurred in
2019, encompassing an area of 14,404 km2, while the minimum was recorded in 2008 at
2776.6 km2. The highest average temperature, 33.34 ◦C, was recorded in 2021, and the
lowest average temperature was recorded in 2003 with a temperature of 25.7 ◦C. Moving to
the summer season, the peak rainfall of 31.7 mm transpired in 2004, signifying an extremely
wet year, while 2021 had the lowest rainfall at 15.7 mm, reflecting a moderate state as per
the SPI. Notably, the highest vegetation extent was documented in 2019, covering an area of
1929.8 km2, while the smallest occurred in 2008 at 799.1 km2. Additionally, the years 2017
and 2021 had the highest average temperatures, of 43.6 and 43 ◦C, respectively, while in the
years 2003 and 2009 the lowest average temperatures were recorded for this season, with
temperatures of 38.8 and 39 ◦C, respectively. Within the autumn season, the years 2011 and
2018 experienced the highest recorded rainfall at 76 mm and 62.7 mm, respectively, aligning
with an extreme wet and very wet year classification based on SPI results. In contrast, the
lowest autumnal rainfall was observed in 2021, measuring 28.2 mm and corresponding to
severe drought. Correspondingly, the maximum vegetation coverage materialized in 2005,
spanning an area of 820.9 km2, while the minimum was noted in 2014 at 102.4 km2. The
highest LST for this season was in 2010, with a temperature of 24.8 ◦C, and the lowest was
in 2011, with a temperature of 19 ◦C (Figure 10).
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While rainfall is commonly perceived as the primary driver of vegetation changes,
it is noteworthy that years with elevated rainfall levels do not necessarily correspond
to significant shifts in vegetation patterns. Therefore, other influential environmental
factors such as topography, soil composition, and salinity must also be considered in
this context [49]. According to Table 4, a significant relationship was observed between
annual vegetation cover and temperature in spring (−0.520, p = 0.01) and summer (−0.345,
p = 0.05). Additionally, a significant relationship (−0.380, p = 0.05) exists between annual
temperature and summer vegetation. Conversely, significant negative relationships were
noted between spring temperature and winter, as well as between spring and summer
vegetation. Moreover, summer temperature exhibits a significant negative correlation with
spring and summer vegetation. Generally, when humidity is low, particularly during the
summer season when water availability limits plant growth, a negative correlation between
temperature and vegetation is typical [50].
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Table 4. Correlation between LST and EVI during the assessed period from 2003 to 2021.

LST EVI Winter EVI Spring EVI Summer EVI Fall EVI Annual

Winter 0.053 0.006 −0.193 −0.018 −0.041

Spring −0.357 * −0.520 ** −0.415 * −0.099 −0.520 **

Summer −0.205 −0.345 * −0.357 * −0.228 −0.345 *

Fall 0.041 0.135 0.076 −0.099 0.111

Annual −0.111 −0.298 −0.380 * −0.228 −0.322
* Denotes a significant correlation at p = 0.05 ** Denotes a significant correlation at p = 0.01.

Table 5 presents the outcomes of the correlation analysis examining the relationship
between rainfall and vegetation, considering both seasonal and annual perspectives over
19 years. The analysis revealed several noteworthy findings. Specifically, a substantial
correlation exists between spring precipitation and the Enhanced Vegetation Index (EVI)
during both spring and summer (0.439,0.450, p = 0.01), and a statistically significant associ-
ation is observed between annual precipitation and EVI during the spring and summer
seasons (0.462, p = 0.01) and (0.404, p = 0.05), respectively. Additionally, there is a significant
correlation between winter rainfall and annual EVI (0.333, p = 0.05). Notably, no significant
correlation is observed between precipitation and annual and seasonal EVI in the autumn
season. Furthermore, a statistically significant correlation is identified between spring
precipitation and the annual EVI, once again (0.392, p = 0.05). This finding underscores
the highest level of correlation between spring precipitation and EVI-related vegetation
trends. To gain a deeper understanding of the annual and seasonal changes in EVI during
the period of the study, Table 6 presents the percentage of seasonal and annual changes in
vegetation cover, and Figure 11 illustrates the distribution of annual vegetation (in percent)
compared to annual and seasonal precipitation in the study area.

Table 5. Correlation between precipitation and EVI during the assessed period from 2003 to 2021.

Precipitation EVI Winter EVI Spring EVI Summer EVI Fall EVI Annual

Winter 0.240 0.310 0.251 0.263 0.333 *

Spring 0.181 0.439 ** 0.450 ** 0.158 0.392 *

Summer 0.170 0.240 0.205 0.193 0.240

Fall −0.111 −0.205 −0.193 −0.170 −0.158

Annual 0.251 0.462 ** 0.404 * 0.228 0.439 **
* Denotes a significant correlation at p = 0.05 ** Denotes a significant correlation at p = 0.01.

Considering the crucial role of agricultural lands in the country’s food security, econ-
omy, and the preservation of biodiversity [51], as well as their relationship with climate
change [52,53], the changes occurring in the agricultural land class in the Atrak basin area
was investigated separately from other land classes. According to Table 7, the years 2003,
2007, and 2020, with an area of 751 km2, followed by 2004 with 756 km2 and 2019 with
758 km2, had the highest area of croplands. In contrast, 2008 with an area of 525 km2, 2011
and 2014 with 573 km2, 2015 with 588 km2, and 2021 with an area of 486 km2 had the
lowest cropland area. The largest area of cropland in this basin falls into the “very poor”
and “poor” classes, covering 393 and 269 km2, respectively. According to Figure 12 and
Table 8, a significant decreasing trend can be observed in the “very poor” and “dense”
classes (−0.392, −0.415, p = 0.05), while the “moderate” class shows a significant increasing
trend (−0.551, p = 0.01). However, a significant trend of changes is not observed in the
“poor” classes and the total annual cropland area.
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Table 6. Changes in the percentage of the total vegetation area for yearly and seasonal data in the
Atrak basin (2003–2021).

Year Annual Winter Spring Summer Fall

2003 13.04 5.95 34.85 6.42 0.97

2004 12.08 7.02 31.69 4.67 1.66

2005 12.90 11.98 31.78 5.18 3.11

2006 11.06 10.48 24.95 3.73 0.57

2007 10.78 4.06 29.95 4.97 0.75

2008 4.89 1.03 10.51 3.02 0.42

2009 9.61 2.48 27.65 4.20 0.65

2010 14.88 10.98 45.28 4.63 0.74

2011 7.13 0.46 14.39 4.24 2.13

2012 13.29 7.64 34.43 6.18 1.27

2013 13.60 11.41 35.39 5.06 0.68

2014 5.75 1.36 12.86 3.70 0.39

2015 8.43 3.37 19.97 4.02 1.15

2016 16.08 15.85 43.45 5.20 0.72

2017 6.81 4.69 16.27 4.69 0.86

2018 8.23 5.46 20.43 3.73 0.76

2019 18.25 13.03 54.50 7.30 1.29

2020 12.49 1.76 37.21 7.00 1.47

2021 6.61 2.84 13.00 4.20 0.78

Table 7. The coverage area for different cropland EVI classifications in the study area (km2) during
the period from 2003 to 2021.

Year EVI 0.1–0.2 EVI 0.2–0.3 EVI 0.3–0.4 EVI > 0.4 Total Area
(km2)

2003 461.75 287.19 1.69 0.38 751
2004 489.75 261.94 4.25 0.19 756.13
2005 433.31 300.63 5.44 0.25 739.63
2006 502.06 213.63 2.25 0.13 718.06
2007 432 316 3.56 0.13 751.75
2008 467.75 55.25 2.63 0 525.69
2009 339.25 282.25 4.81 0.25 626.56
2010 301.19 391.5 8.19 0.31 701.19
2011 468.94 102.44 2.38 0.13 573.88
2012 360.44 265.81 4.94 0.25 631.44
2013 322.88 408.56 5.06 0.19 736.69
2014 466.44 103.38 3.75 0.06 573.63
2015 356.63 225.69 6 0.19 588.50
2016 279.13 442.06 13.94 0.31 735.44
2017 465.44 182.44 6.13 0.13 654.13
2018 338.63 296.44 5.06 0.06 640.19
2019 277.13 464.63 16.88 0 758.63
2020 347.31 391.75 12.75 0.06 751.88
2021 357.19 121.75 7.31 0.06 486.31

Average 393 269.13 6.16 0.16 668.46
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Figure 11. Distribution (scatter plot) of annual vegetation cover (in percent) dependence on the
annual and seasonal rainfall in Atrak Basin during the period of 2003–2021. Data is represented by
blue dots, while the dotted line indicates the linear fit.

Table 8. The linear trend coefficients for different classes of cropland during 2003–2021.

EVI 0.1–0.2 EVI 0.2–0.3 EVI 0.3–0.4 EVI > 0.4 Total Area
(km2)

Year −0.392 * 0.123 0.551 ** −0.415 * −0.158
* Denotes a significant trend at p = 0.05. ** Denotes a significant trend at p = 0.01.

According to Table 9, which presents the correlation between the total area of croplands
in the Atrak Basin and annual and seasonal rainfall, a significant relationship between the
total area of cropland and winter and spring rainfall can be observed (0.333, p = 0.05 and
0.556, p = 0.01, respectively). Additionally, concerning annual precipitation, a very strong
and significant trend is evident (0.532, p = 0.01). As shown in Figure 13, during the winter
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and summer seasons, as well as annually, a positive relationship between precipitation and
cropland is observed (an increase in rainfall is followed by an increase in crop cover).
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Table 9. Correlation between annual EVI of cropland with seasonal and annual precipitation.

Precipitation Winter Spring Summer Fall Annual

EVI 0.333 * 0.556 ** 0.193 −0.111 0.532 **
* Denotes a significant correlation at p = 0.05 ** Denotes a significant correlation at p = 0.01.

4. Discussion

In this research, the dynamics of vegetation in relation to the detection and quan-
tification of drought was investigated using remote sensing data in the Atrak basin for
2003–2021. According to the land use map (Figure 2), and as indicated in Table 3, which
highlights that the vegetation cover classified as “poor” occupies the largest area, a huge
part of the Atrak basin is covered by grasslands. Furthermore, as depicted in Figure 6, the
vegetation anomaly has an increasing trend in the eastern parts of the basin and a slightly
decreasing trend in the western parts of the basin, while in some specific areas, it is stable.
The findings showed that the lowest vegetation area was observed in 2008 (4.89%), 2014
(5.75%), 2017 (6.81%), and 2021 (6.61%). According to the VCI index, 2008 was identified
as the driest year, with a VCI of 95.9%, consistent with the findings of other studies [54].
Conversely, during the years with very high rainfall, such as 2004, 2007, 2009, and 2019, the
vegetation coverage occupied 12.08%, 10.78%, 9.61%, and 18.25% of the total vegetation
area, respectively. To some extent, vegetation cover follows the occurring rainfall pattern of
change, with low rainfall years leading to decreased soil moisture, stress for vegetation,
and, subsequently, reduced vegetation cover.

Based on the results of the VCI index, the highest occurrence of drought area occurred
in the years 2008 (95.93%), 2011 (71.5%), 2014 (67.8%), 2017 (61.5%), and 2021 (57.6%),
while the lowest drought area was recorded in 2010 (2.6%), 2013 (5.4%), 2016 (2%), 2019
(2.19%), and 2020 (9.7%). This result is in line with other studies’ conclusions [18,55].
Additionally, the Standardized Precipitation Index (SPI) has been employed to monitor
drought conditions [56]. The SPI analysis indicates that the years 2004, 2007, 2009, and
2019 exhibited conditions ranging from moderately wet to very heavy wet, whereas the
years 2008, 2014, and 2021 experienced moderate to severe drought conditions [27,57]. In
2010, 2016, and 2019 the highest percentage of vegetation area was observed. According
to the Standardized Precipitation Index (SPI), 2019, with 227.5 mm of rainfall, is classified
as a very wet year, and it exhibited the maximum vegetation coverage during this year,
spanning an area of 14,404 km2. Conversely, the lowest amount of rainfall in this season
occurred in 2015, with 78.2 mm, while the minimum vegetation cover was in 2008, covering
an area of 2776.6 km2. It is worth noting that while rainfall is a crucial factor in vegetation
changes, it may not always be the sole determining factor, as other factors such as soil
texture and salinity can also play a role [49].

The conducted analyses demonstrate a significant relationship between precipitation
and vegetation cover, which is also indicated by other authors [58,59]. This correlation
indicates that changes in vegetation cover are somewhat influenced by the amount of
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rainfall in the region, and these two factors have a linear and direct relationship with
each other. This finding aligns with the results of previous studies [60–63]. However, our
results also suggest a phase delay between precipitation and EVI cycles, with a relatively
higher correlation observed between spring precipitation and summer EVI than spring
precipitation and spring EVI. This observation aligns with the greening response typically
occurring a few weeks after rainfall events. This was shown in one of the papers using
the cross-wavelet analysis for eight eco-regions of Italy to show that the forested regions
with higher altitudes had a positive correlation with almost in-phase annual coherency
between NDVI and precipitation, while, for vegetation in the warmest eco-region, lowest
annual coherencies between NDVI and precipitation were observed [64]. Additionally, a
negative correlation between vegetation and temperature was observed, indicating another
climatic factor influencing vegetation dynamics in the Atrak River basin. It is also worth
noting that, similar to the observations in the referenced paper [64], we found that the
correlations between EVI and LST were almost out of phase, with the highest correlation
between spring LST and spring EVI, and relatively high correlations between summer LST
and summer EVI. However, high correlations were also observed between spring LST and
summer EVI, as well as spring EVI and summer LST, underscoring the complexity of the
relationships between climatic variables and vegetation dynamics.

Furthermore, considering the critical role of agricultural lands in food security and
the country’s economy, the agricultural lands within the Atrak basin were separately
investigated. The analysis indicates fluctuations in the extent of agricultural land over the
study period, with some years witnessing larger agricultural areas compared to others.
However, the majority of agricultural lands fall into the “very poor” and “poor” classes,
underscoring the need for targeted interventions to improve soil fertility and agricultural
productivity in the region. Additionally, a significant correlation was found between
spring precipitation and cropland cover. Seasonal rainfall plays a crucial role in agriculture,
influencing decisions such as the selection of seed species, the quantity of species to plant,
and the timing of seed planting. A staggering 79% of farmers base their planting decisions
on their predictions for the upcoming season’s weather. Interestingly, approximately two-
thirds of these predictions stem from past experiences, while the remaining third relies
on observations from the previous season. However, a notable challenge arises from
the lack of precise correlation between rainfall patterns in consecutive seasons, making
accurate rainfall predictions difficult. Consequently, this uncertainty poses challenges for
farmers in selecting appropriate seed varieties and drought-resistant cultivars. Ultimately,
farmers’ anticipations regarding future seasonal weather serve as a pivotal factor in guiding
cropping decisions [65]. In semi-arid regions like the Atrak basin, where grasslands are
prevalent, an annual rainfall range of 300–600 mm (mm) may be considered favorable for
maintaining healthy grassland coverage, while, generally, for successful dry agriculture,
regions may require annual rainfall ranging from 200 to 500 mm, with variations based on
specific crop requirements and local conditions [66]. Sustainable management strategies
should prioritize measures to mitigate the impact of droughts, enhance soil moisture
retention, and improve the resilience of ecosystems and agricultural systems to climate
variability. Additionally, integrated approaches that consider the complex interactions
between climatic variables, land use practices, and vegetation dynamics are essential for
fostering sustainable development and resilience in the region.

5. Conclusions

Understanding the factors that influence changes in vegetation cover is a critical
aspect of vegetation management and protection. These factors encompass both climatic
aspects and human-driven influences, such as management practices, human activities,
restoration efforts, and exploitative actions. It is of great importance to elucidate the
intricate relationship between these factors and the dynamics of vegetation, unraveling
the mechanisms behind the changes. This study focused on understanding the factors
impacting changes in vegetation cover, focusing on weather elements. Conducted in the
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Atrak River basin from 2003 to 2021, the research employed satellite data and indices like
VCI and SPI to analyze the connection between rainfall patterns and vegetation dynamics.
The VCI helps identify drought and moisture levels, revealing trends over the years.
Additionally, the SPI revealed years of moderate drought and normal conditions, with
varying annual rainfall amounts.

Anomaly detection highlights rising vegetation trends in the eastern basin over time.
The basin’s vegetation cover varies, with poor vegetation being the largest category. Season-
ally, spring sees the most extensive vegetation growth, particularly in 2010, 2016, and 2019.
Contrasting vegetation distribution between the eastern and western halves is observed in
summer and winter, with the eastern half displaying more scattered vegetation. The study
established a notable correlation between spring precipitation and EVI in both spring and
summer, indicating its significance. This emphasizes the pivotal role of spring precipitation
in influencing vegetation dynamics within the Atrak basin area during the spring season.
Additionally, in order to better understand the SPI in relation to vegetation dynamics, the
LST index was used.

In conclusion, the findings of this study offer valuable insights for policymakers in-
volved in vegetation management, water resource allocation, and environmental protection
within the Atrak River basin. Our analysis of factors influencing vegetation cover, particu-
larly focusing on weather elements, sheds light on the dynamics of the Atrak River basin’s
ecosystem. By utilizing advanced satellite imagery and indices, we established a clear
correlation between rainfall patterns and vegetation dynamics, providing a data-driven
understanding of how climatic shifts impact the region’s vegetation health. While the
identification of specific years marked by severe drought and abundant rainfall is crucial
for policymakers, it is essential to note that addressing the predictability of droughts was
beyond the scope of this study. However, acknowledging the limitations, our findings
can still inform proactive measures during critical periods of water scarcity or excess. By
understanding the intricate relationship between climatic factors and vegetation dynamics,
policymakers can potentially mitigate the impacts of drought, support ecosystem restora-
tion, and ensure the long-term sustainability of the region’s environment and communities.

In summary, while our study does not delve into the predictability of droughts, it
provides a foundation for informed decision making and resource allocation strategies,
thus contributing to the overall resilience and well-being of the Atrak River basin.
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