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Abstract: Chemical data assimilation is the process by which models use measurements
to produce an optimal representation of the chemical composition of the atmosphere.
Leveraging advances in algorithms and increases in the available computational power,
the integration of numerical predictions and observations has started to play an important
role in air quality modeling. This paper gives an overview of several methodologies used
in chemical data assimilation. We discuss the Bayesian framework for developing data
assimilation systems, the suboptimal and the ensemble Kalman filter approaches, the optimal
interpolation (OI), and the three and four dimensional variational methods. Examples of
assimilation real observations with CMAQ model are presented.
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1. Introduction

Chemical data assimilation produces improved estimates of the chemical state of the atmosphere
by combining information from three different sources: the physical and chemical laws of evolution
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(encapsulated in the model), the reality (as captured by the observations), and the current best estimate of
the distribution of pollutants in the atmosphere (encapsulated in the prior) – all with associated errors [1].
Considerable experience with data assimilation has been accumulated in the fields of numerical weather
prediction, ocean modeling, and oil reservoir simulation [2–7]. Chemical data assimilation has started
to play an important role in the atmospheric composition studies, and many successful applications
illustrate its benefits [8–18]. These benefits include improved initial and boundary conditions, and refined
top-down emission estimates, all contributing to better air quality forecasts. Chemical data assimilation
poses specific challenges related to the multiple physical processes included in models, the stiffness of
chemical equations, the sparseness of chemical observations, and the uncertainty in the anthropogenic
and natural emission levels.

The chemical interactions take place on a wide range of temporal scales (from milliseconds to days).
This makes the system numerically stiff. The concentrations of short lived radical species follow
the concentrations of long lived species through quasi steady state relations. After a short time the
chemical evolution collapses onto a low dimensional manifold in state space. As a consequence, when
meteorological fields are computed off line, ensembles of simulations will tend to converge to the same
trajectory. Moreover, a direct adjustment of radical species through data assimilation is not feasible.

In regional air quality simulations, the influence of the initial conditions fades in time, and the
concentration fields become largely driven by emission and removal processes (and by lateral boundary
conditions in regional simulations). Therefore, to improve the analysis capabilities of CTMs, it
is necessary to consider the estimation of emission parameters and lateral boundaries through data
assimilation [19,20]. Moreover, both the anthropologic and natural emissions are poorly constrained
(i.e., the prior information on emissions is highly uncertain). This makes the top down estimation of
emissions a challenging computational problem. Chemical transport models are often characterized by
non negligible biases, and data assimilation can benefit from bias correction schemes [21].

Chemical observations are still sparse, as the network is not as extensive as that used in numerical
weather prediction. Local observations of chemical and particulate concentrations are strongly
influenced by the local variability, yet they are used to constrain large scale three dimensional fields.
Recently there has a considerable growth in the available remote sensing (satellite) data on tracer
concentrations. This data is characterized by non-negligible biases; a method to alleviate this issue
is proposed in [22], where a single coherent dataset is created from all available ozone column
measurements.

An additional difficulty arises from the multiphysics nature of the simulation, where the evolution is
driven by multiple competing physical processes. A successful data assimilation system need to correctly
account for error correlations between chemical species (due to chemical interactions) and between
chemical and dynamic variables (due to transport processes).

This paper gives an overview of the state of the art in chemical data assimilation. We review
chemical transport models in Section 1.1 and chemical observations in Section 1.2. Section 2 is devoted
to the formulation of the chemical data assimilation problem in a Bayesian framework. Practical
assimilation methods discussed include optimal interpolation (OI) (Section 3.3), suboptimal Kalman
filters (Section 3.2), ensemble Kalman filters (Section 3.4), three dimensional variational (3D-Var,
Section 3.5) and four dimensional variational data assimilation (4D-Var, Section 3.6). Challenges to
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chemical data assimilation such as data inputs, the construction of adjoints, and the construction of error
covariance matrices are highlighted in Section 4. Assimilation results with real data and the CMAQ
model are presented in Section 5. Section 6 draws conclusions and pinpoints to future directions in
chemical data assimilation.

1.1. Chemical Transport Models

An atmospheric chemical transport model (CTM) solves the mass balance equations for
concentrations x(i) of tracer species 1 ≤ i ≤ s. The tracer species can be in gas, liquid, or particulate
phases, and their concentrations are continuously changed by multiple physical and chemical processes,

∂x(i)

∂t
= −u · ∇x(i) +

1

ρ
∇ ·
(
ρK∇x(i)

)
+

1

ρ
f(i)(ρx) + E(i), 1 ≤ i ≤ s, t0 ≤ t ≤ tF

x(i)(t0, x) = xinitial
(i) (x)

x(i)(t, x) = xinflow
(i) (t, x) on Γinflow (1)

Knn

∂x(i)

∂n
= 0 on Γoutflow

Knn

∂x(i)

∂n
= V deposition

(i) x(i) −Q(i) on Γground

Here u represents the wind velocity vector, K is the turbulent diffusion tensor, and ρ is the air density.
These variables are typically prescribed from simulations with a numerical weather prediction model, or
are part of the prognostic variables for meteorological models with online chemistry. The concentrations
x(i) are expressed as a mole fraction (e.g., the number of molecules of tracer per 1 billion molecules of
air); the absolute concentration of tracer i is ρx(i) (molecules/cm3). f(i) is the rate of transformations of
species i and depends on all other concentrations at the same spatial location. Such local transformations
are determined by gas and liquid phase chemical kinetics, by inter-phase mass transfer, by aerosol
dynamic processes (coagulation and growth), by thermodynamic processes, etc. The elevated emissions
of species i are E(i) and the ground level emissions are Q(i) . The deposition velocity is V deposition

(i) . The
model has prescribed initial conditions xinitial, and is subject to Neumann boundary conditions [23] at the
ground level boundary Γground. Dirichlet boundary conditions [23] are imposed at the inflow boundary
Γinflow (along the top and, for regional models, along the lateral boundary as well). A no diffusive flow
condition is imposed at the outflow boundary Γoutflow (along the top and, for regional models, along the
lateral boundary as well).

The numerical solution to (1) is represented by the discrete model

xi =Mti−1→ti
(
u,K,E,Q, V deposition,xinflow; xi−1

)
, i = 1, 2, . . . ; x0 = xinitial (2)

In (2), the solution xi is the discrete state vector containing the concentrations of chemical species
sampled at the grid points at time ti. The discrete initial condition x0 is obtained by sampling xinitial at
the grid points. The model solution operatorM depends on model parameters such as emission rates,
deposition velocities, and boundary fluxes. In principle, all the model parameters, as well as the initial
conditions x0, can be retrieved through data assimilation if there are enough observations. However, we
have to limit the number of model parameters to be determined as the observations in reality are lacking
to accurately constrain the problem.
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While there are numerous CTMs available for both regional and global applications, the community
Multiscale Air Quality (CMAQ) model is primarily used to provide examples in Section 5. As
an open-source community model, CMAQ is widely used by the air quality community worldwide
and continuously updated with support from the U.S. Environmental Protection Agency (EPA) and
Community Modeling & Analysis System (CMAS) [24]. CMAQ model was developed by the U.S.
EPA to meet the needs of both environmental managers and scientists to improve their ability to evaluate
the impact of air quality management practices and to probe, understand, and simulate chemical and
physical interactions in the atmosphere. CMAQ model has been designed to model multiple air quality
issues, such as tropospheric ozone, fine particles, toxics, acid deposition, and visibility degradation as
a whole; and it has capabilities to solve air quality problems in multiple scales including the urban
and regional scales [25,26]. CMAQ has been used in numerous chemical data assimilation studies. A
4D-Var data assimilation system, including an adjoint model for CMAQ, has been developed for version
4.5 [27]. The assimilation of AIRNow ozone observations [28] proved to be beneficial for improving
ozone predictions [29]. Zubrow et al. [30] presented an ensemble adjustment Kalman filter (EAKF)
approach using a a single tracer version of the CMAQ model to assimilate surface measurements of
carbon monoxide and showed its ability to provide skillful model results.

1.2. Chemical Observations

Measurements of atmospheric chemical fields have been significantly increasing for the past years
throughout the world. Many ground-based networks have been established to routinely monitor the air
quality on the surface level. For instance, in the U.S. the AIRNow network has been reporting ozone
and fine particle observation (PM2.5, i.e., particulate matter less than 2.5 micrometers in diameter) in
near-real-time [28]. However, surface measurements have to be combined with vertical profiles to obtain
the three-dimensional states of the atmospheric constituents. Jeuken et al. shows that assimilating
ozone columns alone has little impact on the shape of the vertical ozone profile which is mainly
determined by the transport [31]. To complement the surface measurements, there are observations
regularly taken by balloon and lidar networks. In adding the vertical profiles the chemical and dynamical
processes of the atmospheric chemistry can be better understood. Such networks include SHADOZ
(Southern Hemisphere Additional Ozonesondes) which has operated since 1998 [32–34]. Lidar networks
contribute to the atmospheric chemistry studies by providing vertically resolved data in an extended area.
Using observations from 14 Japan National Institute for Environmental Studies (NIES) lidars [35] and
RAMS/CFORS-4DVAR assimilation system, Yumimoto et al. investigated mineral dust transport and
emission in East Asia during a spring dust event in 2007 [36].

In addition to the in-situ measurement networks, multiple satellite instruments with capability to
measure the troposphere and stratosphere atmospheric chemical fields have been operating to provide
real-time measurements [37,38]. For instance, Aura [39], a multi-national NASA Earth Observing
System (EOS) satellite to study atmospheric chemistry following Terra (launched in 1999) and Aqua
(launched in 2002), was launched in 2004. Aura carries a High Resolution Dynamics Limb Sounder
(HIRDLS, which stopped operating in 2008), an Ozone Monitoring Instrument (OMI), a Tropospheric
Emission Spectrometer (TES), and a Microwave Limb Sounder (MLS) [40]. The retrieval of
Envisat-SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) by
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European Space Agency provides various atmospheric constituents [41]. Moderate resolution imaging
spectroradiometer (MODIS) aboard Terra (EOS AM) and Aqua (EOS PM) satellites provides near real
time aerosol optical depth (AOD) observations with good spatial resolution and coverage [42,43] and
they have been used in many aerosol assimilation applications [44–47]. One of the earlist efforts in
chemical data assimilation was a OI type statistical analysis scheme to assimilate the Total Ozone
Mapping Spectrometer (TOMS) total ozone data and the Solar Backscatter Ultraviolet/2 (SBUV/2)
partial ozone profile observations into an off-line ozone transport model by Štajner et al. [48]. With
a broad horizontal coverage, satellite observations are complementary to in-situ measurements that are
often located at places of interest. Nassar et al. showed the benefit of combining the two types of
observations together in chemical data assimilation systems by assimilating both satellite observations
of CO2 from TES and surface flask measurements [49].

In recent years, many field experiments have been carried out with intensive measurement activities.
For instance, the International Consortium for Atmospheric Research on Transport and Transformation
(ICARTT) field campaign took place in the northeastern United States and the Maritime Provinces
of Canada during summer 2004 [50]. Over 300 government-agency and university participants from
U.S., Canada, UK, Germany, and France carried out eleven independent but highly coordinated field
experiments with various objectives. Among them, the U.S. National Oceanic and Atmospheric
Administration (NOAA) New England Air Quality Study - Intercontinental Transport and Chemical
Transformation [51] 2004 experiment studied air quality along the Eastern Seaboard and transport of
North American emissions into the North Atlantic [52]. The European International Transport of Ozone
and Precursors (EU-ITOP) field program aimed at understanding the factors determining air quality over
America and Europe and over remote regions of the North Atlantic [53,54]. As another component of
ICARTT, NASA Intercontinental Chemical Transport Experiment - North America Phase A (INTEX-A),
focused on the transport and transformation of gases and aerosols on transcontinental/intercontinental
scales and their impact on air quality and climate. The continued NASA INTEX project, Phase B,
coincided with MIRAGE-Mex (Megacities Impact on Regional and Global Environment-Mexico) in the
spring of 2006 [55,56]. In the field experiments, coordinated measurements were made by multiple
in-situ instruments on board aircrafts in flights, additional ozonesondes on ground or a research vessel,
and airborne ozone lidars. Using ICARTT/INTEX-A data, Chai et al. [11] shows that the combined
ozone observations provide a much better representation of the ozone distributions when assimilated
simultaneously.

1.3. Chemical Data Assimilation

We now summarize some of the previous work in the field of chemical data assimilation. The field has
accumulated a large body of work from contributions by many authors. Among those, many excellent
papers were products of the Global and Regional Earth-System Monitoring Using Satellite and In situ
Data (GEMS [57]) project funded by European Commission to develop comprehensive data analysis
and modelling systems for greenhouse gases, global reactive gases, and aerosol, with a focus on Europe
from March 2005 to May 2009. Since June 2009, GEMS and the Protocol Monitoring for the GMES
Service Element: Atmosphere (PROMOTE [58]) merged into Monitoring Atmospheric Composition
and Climate (MACC [59]) project to continue the operation and improvement of the forecasting and
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assimilation developed during GEMS [60]. Some excellent previous work will inevitably end up not
being included in this paper’s citation list, and we apologize for this.

Two approaches to data assimilation have become widely used in applications: variational methods,
rooted in control theory, and Kalman filter methods, rooted in statistical estimation theory. The base
concepts of the variational approach to chemical data assimilation are discussed in [1,10,27,29,61,62].
Early work in chemical data assimilation using variational techniques has been reported in [63,64]. A
growing number of applications employ the 3D-Var technique [3,65–72]. The 4D-Var approach has been
used to adjust gas phase chemical tracer initial conditions [10,11,61,69,73–77], to improve estimates
of pollutant emissions, i.e., emission inversion, [15,78,79], and to improve aerosol fields [80–82].
Suboptimal Kalman filters have been employed successfully in chemical data assimilation for over a
decade [63,83–89]. More recently, the ensemble Kalman filter [90] has been studied in the context of
chemical data assimilation [91–93]. Several studies compare the relative merits and performance of
different approaches [93–98].

EnKF, extended Kalman filter [99] and reduced rank square root Kalman filter [100,101] have been
used in chemical data assimilation to recover ozone [99], and various ways of accurately quantifying the
uncertainty in sources have been investigated.

2. Data Assimilation Methods

The true state of the system (the true distribution of tracer concentrations in the atmosphere) is a
continuous vector field ct distributed across three space dimensions and one time dimension. The
number of components of the vector at a given location and a given moment equals the number of
chemical species present in the atmosphere. The true state is unknown and needs to be estimated from
the available information.

In practice we work with a finite dimensional representation of the continuous field xt = S (ct) ∈ Rn,
and look to estimate xt from the available information. The operator S maps the physical space to the
model space (for example, it can sample the continuous field at the grid points, or it can lump several
chemical species into a single representative family, then average the family concentration over each grid
cell, etc.)

In order to obtain an estimate of xt data assimilation combines three different sources of information:
the prior information, the model, and the observations. The best estimate that optimally fuses all these
sources of information is called the analysis, and is denoted by xa ∈ Rn.

The prior information. The background (prior) probability density Pb(x) encapsulates our current
knowledge of the tracer distribution. Specifically, Pb(x) describes the uncertainty with which one
knows xt at the present, before any (new) measurements are taken. The mean taken with respect to
this probability density is denoted by

Eb [f ] =

∫
f(x)Pb(x) dx
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The current best estimate of the true state is called the apriori, or the background state xb ∈ Rn.
(This is often taken to be the mean of the background distribution xb = Eb[x].) A typical assumption is
that the random background errors εb = xb−xt are unbiased and have a normal probability density, i.e..

εb = xb − xt ∈ N (0,B) (3)

Here B = Eb
[
εb (εb)T

]
∈ Rn×n is the background error covariance matrix. With many nonlinear

models (e.g., in the presence of nonlinear chemical kinetics) the normality assumption (3) might not
always be valid. Nevertheless, it is widely used because of its convenience.

The model. The model (1) encapsulates our knowledge about physical and chemical laws that govern
the evolution of the atmospheric composition. The model evolves an initial state x0 ∈ Rn at the initial
time t0 to future state values xi ∈ Rn at future times ti

xi =Mt0→ti (x0) (4)

The size of the state space in realistic chemical transport models is very large, typically n ∈ O(107)

variables for regional models and n ∈ O(108) for global models. The model is a first order Markov
process, meaning that the probability distribution of the state at time ti depends only on the probability
as time ti−1: P(xi | [x0, . . . ,xi−1]) = P(xi |xi−1).

The observations. Observations represent snapshots of reality available at several discrete time
moments. Specifically, measurements yi ∈ Rm of the physical state are taken at times ti, i = 1, · · · , N

yi = Ht
(
ct(ti)

)
− εmeas

i , i = 1, · · · , N (5)

The observation operator Ht maps the physical state space onto the observation space. The
measurement (instrument) errors are denoted by εmeas

i .
In order to relate the model state to observations we also consider the relation

yi = H
(
xt
i

)
− εobs

i , i = 1, · · · , N (6)

where the observation operator H maps the model state space onto the observation space. In many
practical situations H is a highly nonlinear mapping (as is the case, e.g., with satellite observation
operators). At present the chemical observations are sparsely distributed, and their number is small
compared to the dimension of the state space, m� n.

The observation error term εobs
i accounts for both the measurement errors εmeas

i , as well as the
representativeness errors εrepres

i (i.e., errors in the accuracy with which the model can reproduce reality,
and with which the numerical operatorH approximatesHt)

εrepres
i = H

(
xt
i

)
−Ht

(
ct(ti)

)
= H

(
S(ct(ti))

)
−Ht

(
ct(ti)

)
Typically observation errors are assumed to be unbiased and normally distributed

εobs
i ∈ N (0,Ri) , i = 1, · · · , N (7)

Observation errors at different times (εobs
i and εobs

j for i 6= j) are assumed to be independent. Often,
the observation errors are also assumed to be spatially uncorrelated. In matrix form this is equivalent
to assume that the observation error covariance matrix is diagonal. Moreover, observation errors and
background errors are assumed independent of each other.
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The analysis. Based on these three sources of information data assimilation computes the analysis
(posterior) probability density Pa(x). Specifically, Pa(x) describes the uncertainty with which one
knows xt after all the information available from measurements has been accounted for. The mean taken
with respect to this probability density is denoted by Ea [f ] =

∫
f(x)Pa(x) dx.

The best estimate xa of the true state obtained from analysis distribution is called the aposteriori, or
the analysis state. (This estimate can be the posterior mean xa = Ea[x], but this is not necessary; in
the maximum likelihood approach the refined estimate of the true state is obtained from the analysis
distribution mode). The analysis estimation errors εa = xa − xt are characterized by the analysis mean
error (bias) βa = Ea [εa] and by the analysis error covariance matrix A = Ea

[
(εa − βa) (εa − βa)T

]
∈

Rn×n. By design, the analysis errros are also normally distributed if the background and observation
errors are assumed such.

2.1. The Bayesian Estimation Framework

The chemical data assimilation problem is formulated in a Bayesian framework. The analysis
probability density is the probability density of the state conditioned by all the available observations
y = [y1, · · · ,yN ]. Bayes Theorem allows one to express the analysis probability density as follows:

Pa(x) = P(x|y) =
P(y|x) · Pb(x)

P(y)
(8)

The denominator P(y) is the marginal probability density of the observations and plays the role of
a scaling factor. The probability of the observations conditioned by the states P(y|x) is the probability
that the observation errors in (6) assume the valuesH

(
xb
)
− y

P (y|x) = Pobs
(
εobs = H

(
xb
)
− y

)
Since the observation errors εobs

1 , . . . , εobs
N at different times t1, . . . , tN are (considered to be)

independent, we have that:

P (y|x) =
N∏
i=1

Pobs
(
εobs
i

)
=

N∏
i=1

Pobs (H (xi)− yi) (9)

2.2. Bayesian Estimators

Bayes’ theorem (8) completely describes the posterior error distribution. In large scale models a direct
application of (8) is not possible, since it involves multidimensional probability densities defined over
very large spaces (recall that n ∼ 107). Approximations are needed in order to represent such densities.
One approach is to approximate all probabilities involved by normal distributions, in which case closed
form solutions for the posterior density are possible, see Section 2.3. Practical algorithms based on
normal approximations are the suboptimal Kalman filters, discussed in Section 3.2. Another possible
approximation is the Monte Carlo approach, where all the probability densities involved are represented
by samples in the state space. In this case the application of Bayes’ theorem (8) results in a random
sample from the posterior distribution. Practical algorithms based on the Monte Carlo approach include
ensemble Kalman filters (discussed in Section 3.4) and particle filters [102]. Finally, a less ambitious
goal is to obtain only the first several moments of the posterior probability density based on (8) .
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In practice we want to use (8) to define estimators xa of the true state xt that are optimal in a
certain sense. One way to define a best estimator is to minimize the expected values of the mean
square error minEa[‖xa − xt‖2]. The resulting minimum mean square error (MMSE) estimator is
given by the mean of the posterior distribution, xa = Ea[x]. This estimator is not practical for large
scale systems, as it requires an integration in the high dimensional state space. Practical estimators
are obtained by taking the mean of an approximation of the posterior distribution, see for example
Section 3.4. A computationally feasible estimator is given by the mode of the posterior distribution,
and is called the maximum aposteriori estimator (MAP), as discussed in Section 2.4. Of particular
interest are unbiased estimators, which are characterized by a zero posterior error mean (i.e., zero
bias, βa = 0). A minimum variance unbiased (MVUE) estimator xa has the smallest total variance
(min traceEa[(xa − Ea[xa])(xa − Ea[xa])T ]) among all unbiased estimators. MVUE estimators are not
guaranteed to exist, and when they do, they are difficult to compute for practical problems.

2.3. Analytical Solution in the Gaussian and Linear Case

Consider a time invariant ideal case where the observation operator is linear

H (x) = H · x , H ∈ Rm×n (10)

and both the background errors (3) and the observation errors (7) are normally distributed

Pb(x) = (2π)−n/2 (detB)−1/2 exp

(
−1

2
(x− xb)T B−1(x− xb)

)
(11a)

Pobs (y|x) = (2π)−m/2 (detR)−1/2 exp

(
−1

2
(Hx− y)T R−1 (Hx− y)

)
(11b)

After inserting (11a) and (11b) in (8) a direct calculation shows that the posterior probability density
is also Gaussian, Pa(x) = N (xa,A)

Pa(x) = (2π)−n/2 (detA)−1/2 exp

(
−1

2
(x− xa)T A−1(x− xa)

)
(11c)

with the analysis mean xa and covariance A given by the Kalman filter [103] formulas:

K = BHT
(
HBHT + R

)−1
=
(
B−1 + HT R−1 H

)−1
HT R−1 (12a)

xa = xb + K
(
y −Hxb

)
(12b)

A = (I−KH) B (12c)

where I is the identity matrix. The matrix K ∈ Rn×m is called the “Kalman gain” operator. A is the
covariance matrix of analysis error. Note that in the linear Gaussian case the estimate (12b) represents
both the MMSE estimator and the MAP estimator. In general, however, the MMSE and the MAP
estimates are distinct.

2.4. Maximum Aposteriori Estimator

In the maximum likelihood approach one looks for the argument that maximizes the posterior
distribution, or equivalently, minimizes its negative logarithm:

xa = arg max
x
Pa(x) = arg min

x
J (x) , J (x) = − ln Pa(x) (13)
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Equation (13) defines the maximum aposteriori estimator (MAP). In this context the data assimilation
problem is formulated as an optimization problem. Using (8) the minimization cost function can be
written as

J (x) = − ln Pa(x) = − lnPb (x)− lnP (y|x) + const (14)

The scaling factors of the probability densities, as well as the term − lnP(y), are constants in x and
do not influence the result of the minimization. Under the assumption that the background errors are
normally distributed (11a) we have that

− lnPb (x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+ const (15)

Similarly, under the assumption that observation errors are independent (9) and normally
distributed (11b) we have that

− lnP (y|x) = − lnPobs
(
εobs
)

=
1

2
(H (x)− y)T R−1 (H (x)− y) + const (16)

The maximum likelihood estimator is obtained as the minimizer of the cost function

J (x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2
(H (x)− y)T R−1 (H (x)− y) (17)

where the constant terms have been left out.
Note that if, in addition, the observation operator is linear (10) then the function (17) is quadratic, and

the minimizer can be computed explicitly from setting the gradient to zero

∇xJ (xa) = B−1
(
xa − xb

)
+ HT R−1w (Hxa − y) = 0 (18)

The result is the Kalman filter estimate for the mean (12b). Moreover, the Hessian of the cost function
coincides with the inverse of the Kalman filter analysis covariance matrix (12c)

∇2
x,xJ = B−1 + HT R−1 H = A−1 (19)

2.5. Time Dependent Systems

Typical data assimilation applications are concerned with time dependent systems, e.g., the evolution
of the chemical composition of the atmosphere. In such applications the interest is not focused on one
analysis at one time, but on a series of analyses for times t1, · · · , tN when observations are available.

There are two approaches to obtain the analysis probability densities Pa(xi). In the smoothing
(simultaneous) data assimilation approach all observations at all times t1, · · · , tN are considered at once.
Corrections of the concentration state vectors at all times are determined in the same analysis step.
The result is a sequence of posterior probabilities of states, P (xi | [y1, . . . ,yN ] ), i = 1, . . . , N , each
conditioned by all available observations. The application of (12) in the simultaneous setting leads to
the Kalman smoother approach, while the maximum likelihood estimator obtained from (17) leads to the
four dimensional variational (4D-Var) assimilation method.

In the filtering (sequential) data assimilation approach [63] the observations (6) are considered
successively at times t1, · · · , tN . Corrections of the concentration state vector are computed and applied
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at each ti as soon as observations become available. The result is a sequence of posterior probabilities of
states P (xi | [y1, . . . ,yi] ), i = 1, . . . , N , each conditioned by all past and current observations (but not
by the future observations). The application of (12) in the sequential setting leads to the Kalman filter
approach, while the maximum likelihood estimator obtained from (17) leads to the three dimensional
variational (3D-Var) assimilation method.

We now discuss the Kalman filter approach in the ideal case where the observation operator is
linear (10), and, in addition, the model dynamics (4) is also linear,Mti−1→ti (x) = Mti−1→ti · x.

The background state (i.e., the best state estimate) at time ti is given by the model forecast, starting
from the analysis (i.e., the best estimate at the previous time ti−1):

xb
i ≡ xf

i = Mti−1→ti · xa
i−1 (20a)

Note that a model forecast starting from the true state at ti−1 does not reproduce the true state at ti
since the model only approximates the dynamics of the physical system. Specifically, we have that

xt
i = Mti−1→ti · xt

i−1 − ηi

where ηi is the model error. Typically the model error is assumed to be a normal random variable
ηi ∈ N (0,Qi), where the zero mean represents the unbiased model assumption.

The background error at ti has two components: the analysis error at ti−1, transported through the
model equations, and the model error

εb
i = Mti−1→ti · εa

i−1 − ηi

The model error ηi and the solution error εa
i−1 are typically assumed to be independent. Consequently,

the background error covariance at ti (the forecast error covariance matrix Pf
i) is obtained by

transporting the analysis covariance at ti−1 to ti through the linearized dynamics, and adding the model
error covariance

Bi ≡ Pf
i = Mti−1→ti P

a
i−1 M

T
ti→ti−1

+ Qi (20b)

For every observation time ti, the filter starts with the model forecast state (xf
i) and provides an

analysis state (xa
i ) that reduces the discrepancy between the model forecast and the observations yi. The

analysis state vector is obtained from (12b)

xa
i = xf

i + Ki

(
yi −Hxf

i

)
(20c)

with the Kalman gain matrix given by (12a)

Ki = Pf
iH

T
i

(
HiP

f
iH

T
i + Ri

)−1
(20d)

where Ri is the observation error covariance matrix at time ti. At each observation time, along with the
analysis state, the analysis error covariance matrix Pa

i is also calculated via (12c)

Ai ≡ Pa
i = (I−KiHi) Pf

i (20e)
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3. Practical Algorithms for Chemical Data Assimilation

Practical data assimilation algorithms use the estimation approaches presented in Section 2.2, together
with various approximations most often related to Gaussian assumptions and to the structure of the
underlying physical model.

3.1. The Extended Kalman Filter

The extended Kalman filter (EKF) generalizes the original Equations (20) to nonlinear systems (4)
and nonlinear observations (6) by linearization about the forecast state. Consider the linearized model
and observation operators

Mti−1→ti =M′(xf) , Hi = H′(xf
i)

The EKF approach modifies (20) as follows. The forecast state equation uses the nonlinear modelM,
while the forecast covariance equation uses the linearized dynamics M. Similarly, the analysis equation
uses the nonlinear observation operator H, but both the gain equation and the analysis covariance
equation use the linearized operator H. The resulting EKF equations are:

xf
i =Mti−1→ti

(
xa
i−1

)
(21a)

Pf
i = Mti−1→ti P

a
i−1 M

T
ti→ti−1

+ Qi (21b)

xa
i = xf

i + Ki

(
yi −H(xf

i

)
(21c)

Ki = Pf
iH

T
(
HiP

f
iH

T
i + Ri

)−1
(21d)

Pa
i = (I−KiHi) Pf

i (21e)

3.2. Suboptimal Kalman Filters

The extended Kalman filter is not practical for large systems because of the O(n2) memory
size needed to store full covariance matrices, and the prohibitive computational costs associated
with inverting large matrices in (21c)–(21d), and with propagating the covariance matrices in time
via (21e). Suboptimal Kalman filters designate a wide class of assimilation algorithms which are based
on EKF formulas (21), but approximate the covariance matrices as well as the covariance propagation
Equation (21e) in order to obtain computationally feasible algorithms. The approximations lead to
suboptimal solutions, even in the case of linear Gaussian systems. There are multiple ways in which this
analysis covariance matrix is made available to the next observation window, and different approximation
strategies lead to different suboptimal filters.

A low memory approximation of a covariance matrix B can store only the diagonal terms (the
variances B(`),(`) = σ2

(`) of the error in state variables x(`) for ` = 1, . . . , n), and use a model to
represent the error correlation structure. For example, the correlation between the errors in x(`) and
x(k) can be modeled as decreasing with the distance between the gridpoints of ` and k. When a Gaussian
de-correlation formula is used, with a correlation distance of L (space units), the {(`), (k)} entry of the
approximate covariance matrix is

B(`),(k) = σ(`) σ(k) exp
(
−distance{gridpoint(`), gridpoint(k)}2/L2

)
(22)



Atmosphere 2011, 2 438

Polynomial models of spatial correlations [104] are also widely used.
The simplest approach to avoid the cost of (21e) is to keep the forecast covariance equal to the

background covariance for the entire assimilation period, Pf
i = B0 for i = 1, · · · , N [89]. A more

complex approach is to build diagonal approximations to Pf
i by transporting the standard deviations σ(`)

as passive tracers from ti−1 to ti [83]. The propagated variances can be used together with a model of
the correlation structure to reconstruct Pf

i.
The reduced rank Kalman filter approach [105] is based on the observation that the symmetric

positive definite matrix B can be completely described in terms of its eigenvalues λi and its orthonormal
eigenvectors vi. A rank r approximation of the matrix can be constructed from the dominant
eigenvalue-eigenvector pairs as follows:

B =
n∑
i=1

λi vi v
T
i ≈

r∑
i=1

λi vi v
T
i = VVT , V = [

√
λ1 v1, . . . ,

√
λr vr] ∈ <n×r (23)

Using a rank r approximation for the analysis covariance matrix at ti−1

Pa
i−1 = Va

i−1

(
Va
i−1

)T

leads to the following forecast covariance (21b)

Pf
i =

(
Mti−1→tiV

a
i−1

) (
Mti−1→tiV

a
i−1

)T
+ Qi ≈ Vf

i

(
Vf
i

)T
(24)

The terms Mti−1→tiV
a
i−1 are evaluated by propagating the r vectors through the linearized model

dynamics. A rank r approximation of the forecast covariance is obtained via (23). Using this
approximation, the Kalman gain matrix (21d) becomes

Wf
i = H ·Vf

i , Ki = Vf
i (Wf

i)
T
(
Wf

i · (Wf
i)

T + Ri

)−1

and the analysis covariance (21e) reads

Pa
i =

(
Vf
i −KiW

f
i

)
(Vf

i)
T = Va

i (Va
i )

T , Va
i = Vf

i

(
I− (Wf

i)
T
(
Wf

i · (Wf
i)

T + Ri

)−1
Wf

i

)1/2

It is immediate that the analysis increments xa
i − xf

i in (21c) are restricted to the r-dimensional
subspace spanned by the columns of Vf

i (the so-called “rank problem”). In particular, the r degrees
of freedom available to the analysis may be insufficient to produce a good fit to observations. One
way to overcome this problem is to perform local analyses, as discussed in Section 3.3. Another
way is through covariance localization [106], where an assumed correlation structure is overimposed
to the low rank approximation. For example, using (22), the {(`), (k)} entry of the forecast covariance
matrix (24) becomes

(Pf
i)(`),(k) = (Vf

i)(`) (Vf
i)(k) exp

(
−distance{gridpoint(`), gridpoint(k)}2/L2

)
Localization improves the accuracy of the approximation by removing spurious long-distance

correlations, and results in a full rank forecast covariance matrix.
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3.3. Optimal Interpolation

Optimal interpolation [107] simplifies the extended Kalman filter formulation (21) by assuming that,
during the analysis process, each model variable is influenced by only a subset of observations. Consider,
without loss of generality, that only µ� m observations have an impact on the model variable x(`). For
example, these can be observations located sufficiently close to the the grid point where x(`) is defined.
Let I` ∈ Rµ×m be the operator that selects the important µ components out of the m-dimensional vector
of observations, y` = I` y ∈ Rµ. Then H` = I`H ∈ Rµ×n is the observation operator associated with
the locally important observations, and R` = I`RIT` ∈ Rµ×µ is the corresponding observation error
covariance matrix.

Let e` ∈ Rn be the `-th column of the identity matrix. From (12a) and (12b) the analysis of variable
x(`) is given by

xa
(`) = xb

(`) + e
T
` BHT

(
HBHT + R

)−1 (
y −Hxb

)
≈ xb

(`) + e
T
` BHT

`

(
H`BHT

` + R`

)−1 (
y` −H` x

b
)

The cost of forming and solving the matrix H`BHT
` +R` isO(µ3), instead ofO(m3) for the complete

matrix HBHT +R. Only the increments y`−H` x
b of the important observations are used. The weight

e
T
` BHT

` is a row vector obtained by applying the relevant part of the observation operator to the `-th
column of the background covariance H` (Be`), and transposing the result. The analyses for different
components ` can be computed in parallel.

When approximations of B are employed this is easy to compute. For example, using the
approximation (22), the weight vector reads

(H`Be`)(j) = σ(`)

∑
k

(H`)(j),(k) σ(k) exp
(
−distance{gridpoint(`), gridpoint(k)}2/L2

)
3.4. Ensemble Kalman Filters

The ensemble Kalman filter (EnKF) [90,105,108] uses a Monte-Carlo approach to propagate
covariances. An ensemble of E states (labeled e = 1, . . . , E) is used to sample the probability
distribution of the error. The analysis probability density at time ti−1 is represented by the sample
points xa

i−1[e], e = 1, . . . , E, in the state space. Each member of the ensemble is propagated to ti using
the model (4) to obtain the “forecast” ensemble

xf
i[e] = Mti−1→ti x

a
i−1[e] + ηi[e] , e = 1, . . . , E (25)

where the random variable ηi represents the model error, and is typically assumed to be Gaussian and
unbiased, ηi ∈ N (0,Qi). The forecast error covariance Pf

i is estimated from the statistical samples

〈xf
i〉 =

1

E

E∑
e=1

xf
i[e] , Pf

i ≈
1

E− 1

E∑
e=1

(xf
i[e]− 〈xf

i〉) (xf
i[e]− 〈xf

i〉)
T (26)

and the Kalman gain matrix is computed computed using Equation (20d).
Each member forecast ensemble is processed separately using (20c) to obtain the “analysis” ensemble

xa
i [e] = xf

i[e] + Ki (yi[e]−Hi(x
f
i[e]) ) , e = 1, . . . , E (27)
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To obtain the correct posterior statistics, a different set of perturbed observations is used for each
ensemble member, yi[e] = yi + θi[e], with perturbations drawn from the real observation error statistics
θi[e] ∈ N (0,Ri) [90,108]. The analysis covariance is estimated from the statistical samples xa

i [e],
e = 1, . . . , E, using the formula (26).

The ensemble Kalman filter raises several issues. First the rank of the estimated covariance
matrix (26) is typically several orders of magnitude smaller than the dimension of the matrix, and
additional approximations are needed to fix the rank-deficiency problem [106]. Next, the random errors
in the statistically estimated covariance decrease slowly, with only the square-root of the ensemble size
E. Furthermore, the subspace spanned by random vectors for expressing the forecast error is not optimal.

In spite of the problems, ensemble Kalman filter has many attractive features. The effects of
non-linear dynamics are captured by the use of the forward model (25). This model is used as is, and
there is no need for the tangent linear or adjoint models. EnKF allows one to easily account for model
errors, and the calculations are almost ideally parallelizable.

Numerous improvements of the original EnKF [90,109] have been proposed in the literature to
alleviate inbreeding [110], to increase computational efficiency [105,106,111], to relax the normal
error distribution assumptions [112,113], and to allows observations to occur at times different than
assimilation times [114,115]. The square-root implementations of EnKF [116,117] update the ensemble
by applying linear transformations to the prior ensemble, and avoid adding perturbations to observations
(e.g., the ensemble adjustment [118], the variance reduced [119], and the ensemble transform [120]
Kalman filters).

The use of EnKF [90] in chemical data assimilation has been studied in [91–93,121–124]. Three
techniques have proved essential for the practical performance of the EnKF. Due to the small ensemble
size many entries in the forecast covariance matrix are poorly approximated; such sampling errors are
referred to as spurious correlations. Covariance localization scales each entry Pf

(k,`) by a function
that decreases with the physical distance between the gridpoints where x(`) and x(k) are defined in
Equation (22). Covariance localization alleviates the effect of spurious correlations, and improves
the rank of Pf . It has been observed in practice that, after a number of assimilation cycles, all
ensemble members tend to be close to one another in the state space. In this case the estimated forecast
covariance (26) is small, and the filter trusts the model too much and starts rejecting the observations.
This situation is referred to as filter divergence. Covariance inflation scales Pf by a factor α > 1 at
each cycle. The scaling has the net effect of accounting for larger model errors, and helps prevent
filter divergence. It has also been observed in practice that the inflation goes uncorrected in data-sparse
regions, and the ensemble spread continues to grow to unreasonable values. To alleviate this, the third
important technique is adaptive inflation (inflation is localized to data-rich areas) [93].

3.5. Three Dimensional Variational Data Assimilation (3D-Var)

Variational methods solve the data assimilation problem in an optimal control
framework [125–127]. Specifically, one finds the control variable values (e.g., initial conditions)
which minimize the discrepancy between model forecast and observations; the minimization is subject
to the governing equations, which are imposed as strong constraints in most practical applications.
Similar as OI, 3D-Var does not consider evolution of the model in the assimilation. Thus, it is possible
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to have a dual formulation of OI/3D-Var [128]. In OI applications, analysis is often solved in blocks
due to the computation difficulties of the large size matrix inversion problems. Complicated observation
operators are often obstacles to use OI in practice. In this discussion, for simplicity of presentation, we
focus on discrete models where the initial conditions are the control variables.

In the 3D-Var data assimilation the observations (6) are considered successively at times t1, · · · , tN .
The background state (i.e., the best state estimate at time ti) is given by the model forecast, starting from
the previous analysis (i.e., best estimate at time ti−1)

xb
i =Mti−1→ti

(
xa
i−1

)
The discrepancy between the model state xi and observations at time ti, together with the departure

of the state from the model forecast xb
i , are measured by the 3D-Var cost function (17):

J (xi) =
1

2

(
xi − xb

i

)T
B−1
i

(
xi − xb

i

)
+

1

2

(
H(xi)− xobs

i

)T
R−1
i

(
H(xi)− xobs

i

)
(28)

While in principle a different background covariance matrix should be used at each time, in practice
the same matrix is re-used throughout the assimilation window, Bi = B, i = 1, . . . , N . The 3D-Var
analysis is the MAP estimator, and is computed as the state which minimizes (28)

xa
i = arg min J (xi) (29)

Typically a gradient-based numerical optimization procedure is employed to solve (29). The gradient
∇J of the cost function (28) is

∇J (xi) = B−1
i

(
xi − xb

i

)
+ HT

i R
−1
i

(
H(xi)− xobs

i

)
(30)

Note that the gradient requires to computation of the adjoint HT
i of the linearized observation operator

Hi = H′(xi) about the current state.
Preconditioning is often used to improve convergence of the numerical optimization problem (29). A

change of variables is performed by shifting the state and scaling it with the square root of covariance:

x̂i = B
1/2
i

(
xi − xb

i

)
(31)

and carrying out the optimization with the new variables x̂i.

3.6. Four Dimensional Variational Data Assimilation (4D-Var)

In strongly-constrained 4D-Var data assimilation all observations (6) at all times t1, · · · , tN are
considered simultaneously over the assimilation window. The control parameters are the initial
conditions x0; they uniquely determine the state of the system at all future times via the model
Equation (4). The background state is the prior value of the initial conditions xb

0 .
Given the background value of the initial state xb

0 , the covariance of the initial background errors
B0, the observations yi at ti and the corresponding observation error covariances Ri, i = 1, · · · , N , the
4D-Var problem looks for the MAP estimate xa

0 of the true initial conditions by solving the optimization
problem (13). Combining (14), (15), and (16) leads to the 4D-var cost function:

J (x0) =
1

2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)
+

1

2

N∑
i=1

(H(xi)− yi)
T R−1

i (H(xi)− yi) (32)
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Note that the departure of the initial conditions from the background is weighted by the inverse
background error covariance matrix, while the differences between the model predictions H(xi) and
observations yi are weighted by the inverse observation error covariance matrices. The 4D-Var analysis
is computed as the initial condition which minimizes (32) subject to the model equation constraints (4)

xa
0 = arg minJ (x0) subject to: xi =Mt0→ti (x0) , i = 1, · · · , N (33)

The model (4) propagates the optimal initial condition (32) forward in time to provide the analysis at
future times, xa

i =Mt0→ti x
a
0.

The large scale optimization problem (33) is solved numerically using a gradient-based technique.
The gradient of (32) reads

∇J (x0) = B−1
0

(
x0 − xb

0

)
+

N∑
i=1

(
∂xi
∂x0

)T
HT
i R

−1
i (H(xi)− yi) (34)

The 4D-Var gradient requires not only the linearized observation operator Hi = H′(xi), but also the
transposed derivatives of future states with respect to the initial conditions (∂xi/∂x0)T = MT

t0→ti . It can
be demonstrated that the solution of the adjoint equations at the initial time provides the gradient of the
cost function with respect to the initial condition in a computationally efficient way. The 4D-Var gradient
can be obtained effectively by forcing the adjoint model with observation increments, and running it
backwards in time. The construction of an adjoint model is a nontrivial task.

In the incremental formulation of 4D-Var [129,130], the estimation problem is linearized around the
background trajectory. By expressing the state as xi = xb

i + δxi, i = 1, · · · , N , we have

J ′(x0) δx0 =
1

2
δx0

T B−1
0 δx0 +

1

2

N∑
i=0

(
Hiδxi + db

i

)T
R−1
i

(
Hiδxi + db

i

)
(35)

db
i = H

(
xb
i

)
− yi

where δxi = Mt0→ti · δx0, and Hi is the linearized observation operator. The incremental 4D-Var
problem (35) uses linearized operators and leads to a quadratic cost function J ′ whose minimizer is δxa

0.
The incremental 4D-Var estimate is xa

0 = xb
0 + δxa

0. A new linearization can be performed about this
estimate and the incremental problem (35) can be solved again to improve the resulting analysis. The
iterated incremental 4D-Var is nothing but a sequential quadratic programming approach [131] to solve
the constrained optimization problem (33).

Weakly constrained 4D-Var avoids the assumption of a perfect model, implicit in the
formulation (33), at the expense of solving a larger optimization problem. The state xi at ti is allowed to
differ from the model prediction; the difference is the model error, considered to be a random variable.
With the assumption that the model is not biased, and the model error is normally distributed, we
have that

xi =Mti−1→ti (xi−1) + ηi , ηi ∈ N (0,Qi) , i = 1, · · · , N

The weakly constrained 4D-Var estimate of x = [x0,x1, . . . ,xN ] is the unconstrained minimizer of
the following cost function:
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J weak (x) =
1

2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)
+

1

2

N∑
i=1

(H(xi)− yi)
T R−1

i (H(xi)− yi) (36)

+
1

2

N∑
i=1

(
xi −Mti−1→ti(xi−1)

)T
Q−1
i

(
xi −Mti−1→ti(xi−1)

)
The optimization variables are the model states at all times x ∈ Rn(N+1), and therefore the resulting

optimization problem is of larger dimension than that for strongly-constrained 4D-Var.

3.7. A Comparison of Various Data Assimilation Approaches

Insightful comparisons of the relative merits of EnKF and 4D-Var [132–134], and of EnKF and
3D-Var [95] have been reported in the context of numerical weather prediction. Similar arguments hold
in the context of CTMs. A comprehensive comparison of the performance of several methods applied
to the assimilation of ozone satellite measurements in a global chemistry and transport framework has
recently been carried out [17].

EnKF is simple to implement, while 4D-Var requires the construction of adjoint models, a non-trivial
task in the presence of stiff chemistry [61]. EnKF allows for a simple integration of model errors,
whereas strong-constrained 4D-Var assumes a perfect model. The ensemble propagates the forecast
covariance and an estimate of the background covariance is readily available at the beginning of the next
assimilation cycle.

On the other hand the 4D-Var optimal solution is consistent with model dynamics throughout
the assimilation window. 4D-Var naturally incorporates asynchronous observations while for EnKF
asynchronous observations require a more involved framework [114]. A consistent derivation of the
initial ensemble in EnKF is difficult. Moreover, in the presence of stiff chemistry, each application of the
filter throws the model state off balance; consequently, after each assimilation cycle a new stiff transient
will be introduced, and this may considerably impact the computational time needed to advance the
model state for each ensemble member.

Very recent wok has focused on the development of hybrid data assimilation methods, that attempt to
combine the advantages of both variational and ensemble techniques [135,136].

4. Challenges to Chemical Data Assimilation

4.1. Data Assimilation Inputs

Running chemical transport models requires several essential components. Firstly, model-ready
emission files have to be processed using emission inventories. Secondly, meteorological states are
needed for commonly-used off-line CTMs. Lastly, the realistic initial concentrations for various
constituents are required. A spin-up period is often chosen to generate such initial fields when no
previous run results are available. Chemical data assimilation adds two more components to these,
i.e., the observational inputs and model background error statistics.

Obtaining and utilizing atmospheric chemical observations remains a challenge. Currently
atmospheric chemical observations come from many different sources. They vary greatly in their



Atmosphere 2011, 2 444

dissemination methods, availability, data reliability due to different validation and quality control
methods, instrument descriptions and measurement uncertainties, temporal and spatial resolutions, and
data formats. “Integrated Global Atmospheric Chemistry Observations” (IGACO) is an ongoing effort
as a component of the Integrated Global Observing Strategy (IGOS) partnership [137]. To manage and
utilize the observational data from various sources, preprocessing is often required. In the preprocessing,
the observations with higher spatial and temporal resolutions can be re-gridded into the model grid and
model representative errors can be approximated in such steps [11,15].

4.2. Construction of Adjoint Chemical Transport Models for 4D-Var

The most important challenge posed by 4D-Var data assimilation is the need to construct and maintain
an adjoint of the chemical transport model. The construction of adjoint models is a labor intensive and
error prone task. Moreover, the adjoint is specific to the chemical transport model version at hand;
any new release of an improved version of the code requires changes in the adjoint model to reflect the
changes in the forward model. The construction of the adjoint model is a continuous process that follows
closely the development of the forward chemical transport model.

The adjoint of a chemical transport model consists of adjoints of all the individual science
processes [61,138,139]. Two routes can be taken toward building science process adjoints. In the
continuous adjoint approach the mathematical equations governing the science model are differentiated
analytically, in an appropriate framework, to obtain a new set of “adjoint” mathematical equations.
The latter system is discretized with the numerical methods of choice. In the discrete adjoint
approach one starts with the numerical implementation of the science process, as available in the
CTM, and differentiates it in the discrete setting. The resulting computational process yields the
sensitivities of the numerical solution. Discrete adjoints can be obtained with the help of automatic
differentiation [140,141].

The two approaches lead to different results, since taking the adjoint and discretization operations do
not commute. Considerable work has been done to understand the theoretical properties of different
types of adjoint models, and the implications they have on sensitivity analysis and chemical data
assimilation [142–149]. A good choice is to use continuous adjoints for advection, and discrete adjoints
for other processes like chemistry and particles [16]. Recent work has proposed the use of simplified
adjoint models for 4D-Var chemical data assimilation [150].

Specialized tools have been developed to assist the construction of chemical transport adjoint models.
The chemical kinetic preprocessor KPP produces efficient code for the simulation of stiff chemistry,
together with efficient tangent linear and discrete adjoint chemical kinetic models [151–153]. Sustained
effort from several research groups in the past few years has lead to the construction of complete adjoints
for the widely used chemical transport models STEM [1,61], CMAQ [27], and GEOS-Chem [62,154].

4.3. Correct Models of the Background and Observation Error Covariances

The quality of the assimilation depends on the accuracy with which the background and observation
error covariances are known; misspecification of these covariances directly impacts the accuracy of the
analysis [155]. Models of observation errors include information about the measuring instrument noise
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and bias (measurement error), and about the resolution with which the model reproduces the pointwise
variability of the physical system and the quality of the observation operator (representativeness error).

Background error covariances determine the relative weighting between observations and a priori
data, and dictate how the information is spread in space and among variables. Background error
covariances are based on models of the error at the current time (or at initial time in 4D-Var). In
case of cyclic data assimilation the analysis error covariance from the previous cycle, transported to
the current time, may be used as the new background error covariance. Background error covariance
matrices need to:

• capture the spatial error correlations created by the flow (transport and diffusion),

• capture the inter-species error correlations created by the chemical interactions,

• have full rank, such that terms of the form xT B−1 x make sense, and

• allow for computationally efficient evaluations of matrix vector operations of the form Bx, B1/2 x,
and B−1 x.

Reasonable approximations and representations of the background error are crucial to data
assimilation applications. Chai [11] has estimated the CTM error statistics through both the NMC
(National Meteorological Center) and the Hollingsworth-Lönnberg methods. The statistics were
successfully implemented through a truncated singular vector decomposition regularization method in
4D-Var data assimilation applications with the STEM model.

An autoregressive (AR) model approach to represent background error covariance matrices has been
proposed in [156]. The background error field is assumed to have zero mean 〈εb〉 = 0, and background
covariance B. The background state error field is modeled as a multilateral autoregressive (AR)
process [157] of the form

δxb
i,j,k = αi±1,j,kδx

b
i±1,j,k + βi,j±1,kδx

b
i,j±1,k + γi,j,k±1δx

b
i,j,k±1 + σi,j,k ξi,j,k (37)

Here (i, j, k) are gridpoint indices on a three dimensional structured grid. The model (37) captures
the correlations among neighboring grid points, with α, β ,γ representing the correlation coefficients in
the x, y and z directions respectively. The last term represents the additional uncertainty at each grid
point, with ξ ∈ N (0, 1) normal random variables and σ local error variances. The AR model coefficients
α, β ,γ depend on the wind field vector at each point and are obtained from a monotonic discretization
of the linearized dynamics on the structured grid. Relation (37), with proper coefficients, is nothing but
a finite difference approximation of the advection-diffusion equation. This approach accurately captures
the flow dependent correlations, does not need any prior assumptions regarding correlation lengths,
can be extended to include chemical correlations, is computationally inexpensive, and results in well
conditioned covariance matrices.

A simplified approach proposed in [158] constructs multidimensional correlation matrices as tensor
products of one-dimensional correlations. This method has resulted in improved chemical data
assimilation results with GEOS-Chem.

In the context of 4D-Var chemical data assimilation the hybrid approach discussed in [159] estimates
the analysis covariance at the end of one assimilation window (i.e., the background covariance at the
beginning of the next window). An ensemble drawn from the background distribution is run side by
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side with the optimization process, the subspace of errors corrected by 4D-Var is identified, and this
information is used to transform the background ensemble into one that samples the analysis distribution.

4.4. Estimating the Quality of the Analysis

At the end of any data assimilation calculation one would like to estimate the quality of the analysis,
i.e., the magnitude of the posterior estimate error, and its impact on given aspects of the subsequent
forecast. The most robust way is to use an independent data set (not used directly in assimilation, and
not correlated with the assimilated observations). The discrepancy between the model results and the
independent data set, before and after data assimilation, gives a good indication of the error reduction
through assimilation.

In operational data assimilation the goal is to improve forecasts. The model is initialized with the
analysis that incorporates information from all past observations; the model is run, and the forecast
is compared against the new observations that become available in the subsequent time window.
Well established metrics for model-observation discrepancies in forecast mode are the forecast skill
scores [107]. To estimate the quality of the analysis in hindcast (reanalysis) mode one can withhold part
of the data from the assimilation system, and use it to assess the accuracy of the result.

The data assimilation system itself has the ability to provide estimates of the posterior error
magnitude. If an ensemble Kalman filter is used, estimates of the analysis covariance matrices Pa

i

are readily available at each assimilation time ti. For variational methods additional calculations are
necessary. The second order adjoint (SOA) of the chemical transport model [160,161] computes matrix
vector products between the Hessian of the 3D/4D-Var cost function∇2

x0,x0
J and user-supplied vectors.

The SOA model provides information about the aposteriori error via the observation that the Hessian
inverse approximates the posterior error covariance [162]

A0 ≈
(
∇2

x0,x0
J (xa

0)
)−1

In [160] the smallest Hessian eigenvalues, and the associated eigenvectors, were computed using
a Lanczos approach for an ozone data assimilation problem. (The Lanczos approach uses only
matrix-vector products, provided by the SOA). The inverses of the smallest eigenvalues, and their
eigenvectors, approximate the principal components of the 4D-Var analysis error.

5. Chemical Data Assimilation Results with CMAQ

5.1. CMAQ Model Error Statistics

As described in Section 4.3, model background error statistics are crucial in data assimilation
applications. It is important to gain knowledge of model uncertainties for a CTM with its specific
setups, including the gas phase chemistry mechanism and aerosol module, model resolution, emission
inventories, etc. In the following vertical ozone error statistics estimation and ozone OI data assimilation
test runs, the CMAQ model is from the released version 4.6 with the Carbon Bond IV (CBIV) gas-phase
chemical mechanism and aerosol module version 4 (AERO-4) [163,164]. In the aerosol optical depth
assimilation test cases presented in Section 5.3, an updated Carbon Bond version (CB05) is used with the
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same AERO-4 aerosol module [165]. The 2001 National Emission Inventory (NEI) with recent updates
is used.

A computational grid with a 12-km resolution covering the contiguous United States (CONUS, shown
in Figure 1) used in the United States National Air Quality Forecast Capability (NAQFC) is adopted
here [166]. A sub-domain covering the Mid-Atlantic region (see [29] for detail) is used in ozone
data assimilation tests and the horizontal error statistics estimation. The aerosol optical depth (AOD)
assimilation tests in Section 5.3 and vertical error statistics estimation using the ozonesondes are carried
out over the CONUS domain. The grid has a 22 sigma pressure hybrid vertical layers spanning from
surface to 100 hPa.

Repeating the steps described in [11], the CMAQ error statistics were estimated using the
Hollingsworth-Lönnberg method. AIRNow hourly ozone observations in the sub-domain were used
to calculate the horizontal error statistics.

Model error correlation coefficients are shown in Figure 2 (left) as a function of horizontal distance
between pairs of two surface stations. Pair density is also shown to indicate the number of station
pairs used in the calculation. The CMAQ background model error for ozone is about 14 ppbv and its
horizontal correlation length is around 50 km. Ozonesonde profiles from the measurements sites shown
in Figure 1 were used to calculate the vertical model error statistics shown in Figure 2 (right) as a
correlation coefficient contour plot.

Figure 1. CMAQ CONUS computational domain and ozonesonde locations. Red circles
indicate ozonesonde locations where observations are used to calculate vertical model error
statistics. Unit of longitude and latitude: degree.
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Figure 2. Ozone error statistics results through Hollingsworth-Lönnberg approach. AIRNow
observations are used to get horizontal error statistics (left). Ozonesonde observations are
used in calculating vertical model error statistics (right). Unit of height: meter.

5.2. AIRNow Ozone Assimilation

Two CMAQ data assimilation systems are built with 4D-Var and OI approaches separately. The data
assimilation time window is set to start from 1200Z on August 5, 2007 until 1200Z on August 6, 2007.
In this 24-h period, the AIRNow hourly-averaged observations are assimilated and the observations are
assumed to be un-correlated with each other and have a uniform root-mean-square error set as 3.3 ppbv.
To check the effect of the data assimilation tests, an additional “forecast” day, starting from 1200Z on
August 6, 2007 until 1200Z on August 7, 2007 is continuously run and will be evaluated against the
AIRNow observations that are not assimilated in any of the assimilation tests.

In the 4D-Var data assimilation, the initial ozone concentrations are chosen as the only control
parameters to be adjusted. Currently, the ozone background error covariance matrix B is assumed to
be diagonal, with the root-mean-square errors set as 14.3 ppbv at every grid point. A quasi-Newton
limited memory L-BFGS [167,168] is used in the cost functional minimization. The maximum number
of iterations is set to be 15.

For the OI data assimilation runs, the assimilation happens every hour by combining the model results
with the observations. To illustrate the effect of the background error covariance, we designed a case
that eliminates the spatial correlation usage, both horizontally and vertically. It is listed in Table 1 as
Case 3. In the other OI case, i.e., Case 4 in Table 1, the horizontal background error covariance is
approximated as

B = H ⊗ V ⊗ C (38)

where H and V are matrices that represent the error correlation in horizontal and vertical directions
respectively. C is the error covariance matrix at a single grid point that represents the error variances.
⊗ denotes the Kronecker product [169]. The horizontal correlation between two grid points are
calculated using a simple function e−

∆
lh , where ∆ is the horizontal distance between the two grid points
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and lh is set as 48 km. The background error variances are 14.32 ppbv2. Instead of using a constant
vertical correlation structure obtained in Section 5.1, we use the boundary layer depth information
available from the meteorological inputs. In Case 4, the vertical correlation coefficients are set as 1.0 for
any two model grid layers inside the boundary layers. Otherwise, it is assumed there is no correlation
for the background error.

Table 1. Model ozone biases and root-mean-square errors (RMSE) against AIRNow
observations during 8:00 am–8:00 pm local time on Day 1 (August 5, 2007) and Day 2
(August 6, 2007). Case 1 is the base case, i.e., without data assimilation. B: background
error covariance matrix. Unit: ppbv.

Assimilation B Day 1 Bias Day 1 RMSE Day 2 Bias Day 2 RMSE
1 N/A N/A 8.3 15.9 8.7 16.3
2 4D-Var Diagonal −0.8 11.0 7.6 15.6
3 OI Diagonal 2.6 12.7 7.5 15.8
4 OI H⊗V⊗C −1.3 13.2 3.1 12.8

Figure 3 shows the comparisons between the model predictions and observations of ozone during the
assimilation and forecast periods for the base case and the OI case with spatial correlation accounted,
i.e., Cases 1 and 4 in Table 1 respectively. After assimilation, the model has a much better agreement
with AIRNow ozone measurements. The correlation coefficient improved from 0.59 to 0.81 during
the daytime, 1300-2400Z on August 5, 2007. For the next day “forecast” run, the improvement of
model ozone predictions is also apparent, with the daytime correlation coefficient between model and
observations changed from 0.56 to 0.68.

Table 1 lists the comparisons between the different assimilation cases and the base case run. All
three assimilation cases prove to be able to generate better results not only in the assimilation day,
but also in the next day “forecast”. Without fully accounting for the background error covariance,
the 4D-Var case still generates the best results during the first day in terms of the model biases and
root-mean-square errors (RMSEs) against the AIRNow observations. By utilizing the error statistics
obtained from Section 5.1, Case 4 with the simple OI method provides the best “forecast” for the second
day, where the model bias and RMSE are reduced from 8.7 ppbv to 3.1 ppbv and from 16.3 ppbv to
12.8 ppbv respectively. Without using the model background error spatial correlations, Case 3 is only
slightly better than the base case for the “forecast” day. From Table 1, we can see that the 4D-Var
case has comparable results as Case 3, which implements the simple OI method. As indicated by the
comparison between Case 3 and Case 4, replacing the diagonal background error covariance used in
Case 2 with one accounting for the spatial correlation is expected to improve next day forecast for the
4D-Var case. It cannot be generalized to conclude the 4D-Var system has the same performance as OI
approach. It has to be noted that the 4D-Var system is based upon CMAQ version 4.5 and the other cases
implement CMAQ version 4.6.
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Figure 3. Scatter plots of AIRNow ozone observations and CMAQ predictions for the
assimilation (upper, (a) and (b)) and hindcast (lower, (c) and (d)) period of the base (left,
(a) and (c)) and OI assimilation (right, (b) and (d)) runs. (a) and (b): 1300-2400Z on August
5, 2007; (c) and (d): 1300-2400Z August 6, 2007. Correlation coefficients are 0.59, 0.81,
0.56, and 0.68 for (a), (b), (c), and (d) plots, respectively.

5.3. MODIS Aerosol Optical Depth Assimilation

Compared to ozone predictions, CMAQ PM2.5 predictions are much worse for the NAQFC
experimental runs [170]. MODIS AOD observations can be used to constrain the model input parameters
such as emissions or initial concentrations. As a test case here, we assimilate the MODIS AOD using
OI approach.

In the test, the MODIS AOD fine mode products are used. The model counterpart can be reconstructed
by integrating the hourly extinction coefficients over the whole vertical columns. The extinction
coefficients calculated from two visibility methods, Mie theory approximation and mass reconstruction
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method [171], are quite similar and we chose to use the results from the mass reconstruction method.
Both Terra and Aqua fine mode AOD data are used during the assimilation time period (August 14–20,
2009). Before the data assimilation tests, the AOD background error statistics is first estimated using
Hollingsworth-Lönnberg approach. As an integrated quantity, only horizontal correlation is needed in
constructing the error statistics. The horizontal correlation between two grid points are modeled as a
function e−

∆
lh , where lh is set as 84 km. The AOD background error is assumed to be 0.6× AODMODIS .

In the OI assimilation, the analysis process takes place once a day, at 1700Z, which is close to the
midpoint of the Terra and Aqua observation time. The adjust factor of AOD at each grid point is then
uniformly applied to mass concentrations of all the aerosol species.

Figure 4. MODIS AOD (fine mode) and CMAQ reconstructed AOD. AOD-Recona
and AOD-Reconb are calculated before and after assimilation. The differences
(AOD-Recona-AOD-Reconb) are also shown.

Figure 4 shows the AOD distributions from MODIS and CMAQ simulation with and without data
assimilation. The differences after assimilation are also shown. Note that the MODIS AOD data are
quite sparse, but the OI assimilation spreads the information using the obtained horizontal correlations
between AOD background errors. The CMAQ PM2.5 predictions before and after AOD assimilations are
evaluated using the AIRNow PM2.5 observations for each day. Table 2 shows the correlations between
the MODIS observed and CMAQ predicted AOD before and after OI in the upper Midwest and Northeast
of the U.S. (see [172] for region definition), where most of data reside. It is seen that theR2 improve over
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four out of six days in both regions. It is encouraging as the correlation between the column quantity of
AOD and the surface PM2.5 is not linear. A better reconstructed AOD cannot guarantee better predictions
of surface aerosol. The current simplification of placing the observations at a single time each day and
adjusting all the aerosol species using a single factor will be modified in the future. In addition, switching
OI approach to 3D-Var or 4D-Var method is expected to generate better assimilation results.

Table 2. Correlation between CMAQ PM2.5 predictions and AIRNow hourly observations
in Upper Midwest (UM) and Northeast (NE) US before and after (OI) MODIS
AOD assimilation.

R2 8/15/09 8/16/09 8/17/09 8/18/09 8/19/09 8/20/09
UM 0.420 0.138 0.355 0.154 0.234 0.021

UM-OI 0.399 0.178 0.311 0.180 0.270 0.041
NE 0.253 0.416 0.097 0.070 0.156 0.217

NE-OI 0.306 0.367 0.110 0.207 0.171 0.206

6. Conclusions and Future Directions in Chemical Data Assimilation

New developments in chemical data assimilation techniques and algorithms, and the increased volume
and diversity of available chemical measurements, have opened exciting opportunities for better science
through the integration of chemical transport models and observations. Chemical data assimilation has
begun to play an essential role in air quality assessments for environmental management. Widely used
chemical transport models such as STEM, CMAQ, and GEOS-Chem, have been endowed with adjoint
sensitivity analysis and data assimilation capabilities, and are now being used by the community to
answer important scientific questions. The availability of these tools, and the growing importance of
chemical weather forecasting to society, should help stimulate significant advances in chemical data
assimilation in the foreseeable future.

Future advances will require a sustained development of new chemical data assimilation algorithms.
While there is much to build upon from the assimilation experience in weather prediction, there are
significant differences and challenges that are specific to chemical weather. Promising possibilities
are opened up by combining the strengths of 4D-Var and EnKF techniques in hybrid data assimilation
methods. Feedbacks between the meteorological and air quality components, which have mostly been
studied as separate systems, are critical to improving the understanding of air quality. Future work
needs to built the infrastructure required to couple meteorological and air quality forecasting and data
assimilation systems. Finally, current chemical data assimilation system capabilities should be extended
to enable the optimal design of the observing systems, and to rigorously quantify the informational value
added by each instrument in heterogeneous sensor networks.
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