
Atmosphere 2011, 2, 510-532; doi:10.3390/atmos2030510
OPEN ACCESS

atmosphere
ISSN 2073-4433

www.mdpi.com/journal/atmosphere

Article

Chemical Mechanism Solvers in Air Quality Models ‡

Hong Zhang 1, John C. Linford 2, Adrian Sandu 1,? and Rolf Sander 3

1 Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061-0106, USA; E-Mail: zhang@vt.edu

2 Northrop Grumman Electronic Systems. 7323 Aviation Blvd., Linthicum, MD 21240, USA;
E-Mail: john.c.linford@gmail.com

3 Air Chemistry Department, Max-Planck Institute of Chemistry, P.O. Box 3060,
Mainz 55020, Germany; E-Mail: rolf.sander@mpic.de

‡ The paper is dedicated to the memory of Dr. Daewon Byun, whose work remains a lasting legacy to
the field of air quality modeling and simulation.

? Author to whom correspondence should be addressed; E-Mail: sandu@cs.vt.edu;
Tel.: +1-540-231-2193; Fax: +1-540-231-9218.

Received: 18 July 2011; in revised form: 22 August 2011 / Accepted: 31 August 2011 /
Published: 13 September 2011

Abstract: The solution of chemical kinetics is one of the most computationally intensive
tasks in atmospheric chemical transport simulations. Due to the stiff nature of the system,
implicit time stepping algorithms which repeatedly solve linear systems of equations are
necessary. This paper reviews the issues and challenges associated with the construction of
efficient chemical solvers, discusses several families of algorithms, presents strategies for
increasing computational efficiency, and gives insight into implementing chemical solvers
on accelerated computer architectures.

Keywords: chemical mechanisms; stiff solvers; sparsity; KPP; parallelism; accelerator
architectures; KPPA

Atmosphere 2011, 2 511

1. Introduction

Chemical transport models solve the mass balance equations:

yt = −∇ · (ū y)︸ ︷︷ ︸
advection

+∇ ·
(

¯̄K∇y
)

︸ ︷︷ ︸
turbulent diffusion

+ f(t, y)︸ ︷︷ ︸
chemical kinetics

+

p∑
i=1

ri(t, y)︸ ︷︷ ︸
other processes

(1)

subject to appropriate initial and boundary conditions. The wind field vector ū and the turbulent diffusion
tensor ¯̄K are typically computed off-line by a numerical weather prediction model, and are constrained
by observations through off-line data assimilation. The vector field y of chemical tracer concentrations
evolves in time under the simultaneous action of advection, diffusion, chemical kinetics, and other
processes such as emission, deposition, aerosol thermodynamics, interphase mass transfer, etc.

The mass balance partial differential Equation (1) is usually discretized via an operator split
approach [1]: during each time interval [T, T + ∆T splitting] individual processes in Equation (1) are
solved in succession. Here ∆T splitting denotes the model time split step size and should be discriminated
against an integration step size, denoted by h in this paper, used by a chemical integrator. The integrator
may take several steps of length h within each ∆T splitting. This leads to a sequence of simpler problems
involving advection and diffusion, chemistry, etc. The solution of the chemical kinetic process leads to
a system of ordinary differential equations in each grid cell of the model:

y′ = f(t, y) = P (t, y) +D(t, y) y , T ≤ t ≤ T + ∆T splitting , y ∈ Rd (2)

The equivalent form of the ODE function splits the reactions that influence each species into production
terms P (t, y) ∈ Rd and destruction terms D(t, y) y, with D(t, y) ∈ Rd×d a diagonal matrix.

The solution of chemical kinetics Equations (2) is computationally intensive, and typically accounts
for 50%–95% of the total CPU time needed to solve the mass balance Equations (1). Special time
integration methods are needed to efficiently solve Equation (2). In the classical review paper [2] a
number of concerns are listed for the time integration of chemical kinetic models. We revisit them
in light of the experience accumulated over the past decade. The requirements and challenges for the
numerical solvers of chemistry are summarized in Table 1.

Accuracy considerations. The overall accuracy of a chemical transport simulation, roughly defined
as the difference between the model output and the real chemical concentration fields, is the result of
nonlinear interactions between errors coming from different sources:

• Data errors. Different data sources provide inputs to chemical transport calculations, and errors
in this data impact the accuracy of the results. Data errors are associated with the accuracy and
resolution of: the meteorological fields that drive the model, the rate coefficients, the emission
inventory estimates, and the initial conditions and of boundary conditions (in regional simulations).
• Modeling errors. The model provides an imperfect representation of the physical and chemical

processes in the atmosphere. Modeling errors are associated with the level of complexity of the
physical modules (e.g., representation by governing equations versus representation by subgrid
parameterizations) and the accuracy of the various model parameters (such as deposition velocities).

Atmosphere 2011, 2 512

• Numerical errors. A numerical process approximates the solution of the governing equations
within a certain accuracy level. Error due to operator splitting is important, though difficult to
quantify. Errors are also contributed by the individual processes solvers, e.g., the finite spatial and
temporal grid resolutions impact the accuracy with which the transport equations are resolved.

Table 1. Requirements and challenges for the numerical solution of atmospheric
chemical kinetics.

Consideration Requirements Challenges

Accuracy Relative error under 0.1%
Quickly adjust step size; estimate error
outside asymptotic regime

Stiffness Unconditional stability
Solve nonlinear system of equations at
each step

Special properties
Mass and charge balance;
positive concentrations

Linear invariants easy to preserve; enforcing
positivity requires special methods

Efficiency
Deliver target accuracy in the
shortest possible CPU time

Repeated LU factorizations are expensive;
step control should be aggressive, yet avoid
many step rejections

The overall simulation accuracy can be considerably improved by data assimilation [3,4]. Thus, the
overall simulation error also depends on the amount of information carried by external measurements,
and by the quality of the data assimilation system used [5–14].

Data and and modeling errors are difficult to quantify. A desirable level of overall numerical accuracy
is on the order of 1%; the overall simulation accuracy can be assessed aposteriori by comparing model
results and measurements. The size of the numerical errors should be at least one or two orders of
magnitude below the overall target.

The chemical kinetic mechanism is just one subsystem of a large chemical transport simulation. Data
errors are associated with the initial conditions. Model errors are associated with the level of detail of
the chemical mechanism, and with the accuracy of reaction rate coefficient values. Numerical errors are
associated with the particular numerical integration algorithm employed and with the length of the time
steps used.

The target level of relative accuracy (relative error tolerance) is 0.1%, i.e., about 3 accurate digits.
(Better accuracy is of course possible, but may demand longer compute times without improving the
overall simulation accuracy.) The final solution accuracy is determined by the order of accuracy of
the numerical algorithm, and by the sequence of step sizes (the temporal grid). Though both the time
step and the order can be adjusted dynamically to achieve the desired accuracy, the most common error
control mechanism is adjusting the step size.

Due to operator splitting [1], at the beginning of each integration interval the chemical system goes
through a transient phase. Step sizes need to be small to resolve the transient, and need to quickly increase
size after that. Therefore, numerical methods of choice are able to quickly adjust time steps (a property
of one-step integration algorithms). A robust step size adaptivity mechanism is also needed. As pointed

Atmosphere 2011, 2 513

out in [2], solvers targeting large relative error levels are likely to work outside the asymptotic error
regime for which they have been designed.

Stiffness and stability considerations. Different chemical species participating in atmospheric
chemical kinetics have widely different life times. Specifically, different species evolve on different
time scales, from milliseconds (e.g., for radicals such as OH) to years (e.g., for CH4). The resulting
system of ordinary differential equations is stiff [15], and special care needs to be exercised in the choice
of the numerical integration scheme.

Due to numerical stability considerations, explicit time integration methods cannot use time steps
that are much larger than the fastest time scale in the system. Roughly speaking, the current solution is
influenced by the approximation error made during the previous step, multiplied by the ratio of the step
size over the fastest dynamic time scale. If this ratio is large the errors accumulate extremely quickly
and the solution becomes unusable (numerical instability).

The time stepping methods used to solve atmospheric chemical kinetics should be unconditionally
stable, i.e., stable for any choice of the step size. A desirable property is L-stability [15], which implies
that the scheme is stable for any eigenvalues of the Jacobian (any dynamics) and any step size, and
that very high frequencies and very fast transients are completely damped out. General methods with
this stability properties are necessarily implicit. Thus, at each step the solution is obtained by solving a
nonlinear system of equations.

Preservation of special solution properties. The solution of a chemical kinetic system has several
intrinsic properties. The total mass and total electric charge are preserved during the system evolution,
and the concentrations remain positive at all times. It is desirable that the numerical solution preserves
such properties as well [16].

The total mass and the total charge are linear invariants of the system, i.e., they can be written as
M =

∑d
i=1miyi and Q =

∑d
i=1 qiyi where d is the number of chemical species. Most of the general

purpose time integration algorithms (Runge Kutta, linear multistep, and extrapolation methods) preserve
linear invariants within roundoff error. Thus mass and charge preservation are almost automatic.

The preservation of positivity is more difficult to achieve. Methods that preserve positivity
unconditionally (for any step size) are at most of order one [17]. For a typical integration method
(implicit or explicit) the preservation of positivity restricts the time step to a small multiple of the
fastest dynamic time scale; the step restriction due to positivity is as severe as that due to numerical
stability for explicit methods. A simple solution to preserve positivity is clipping, where small negative
concentrations are set to zero at each solution step. Clipping has the disadvantage that it consistently
adds artificial mass to the system. (The total mass is no longer preserved within the roundoff error,
but only within the truncation error). A more involved approach is positive projection [18] where
the solution is computed at each step, and if some concentrations are negative, a projection onto the
non-negative simplex is performed such as to conserve mass, and to preserve the accuracy of the original
solution. Positive projection overcomes the order one barrier [17], but can add a significant computational
overhead if the projection algorithm is called many times. A computationally lighter approach is offered
by methods that favor positivity [19].

Atmosphere 2011, 2 514

Note that the preservation of positivity is important only in those situations where negative
concentrations render the ODE dynamics unstable. For many chemical mechanisms used in practice,
small negative concentrations do not result in instability [18], thus the enforcement of positivity during
integration is not a necessity and the small negative values can be removed in a post-processing stage.

Computational efficiency considerations. Since the solution of chemical kinetics takes up an
important fraction of the total compute cycles in a chemical transport simulation, special care needs
to be paid to computational efficiency. Roughly speaking, an efficient computation achieves the target
accuracy in the shortest CPU time possible. The total compute time depends on the number of time steps
used to cover the interval [T, T + ∆T splitting], and on the CPU time spent in each of these steps.

We have seen that the solution of stiff chemistry requires implicit time integration algorithms.
Most of the computational effort per step is spent in solving the system of nonlinear equations. In a
Newton-Raphson approach, the LU factorization of the Jacobian is computed once, and is reused for all
iterations; most of the computational effort is spent on performing the LU factorization and the repeated
substitutions. The following ideas have proved successful in reducing the computational effort per step:

• Avoid solving coupled nonlinear systems by the use of approximate implicit algorithms [20];
• Use sparse linear algebra techniques [21,22];
• Reduce the number of forward and backward substitutions by using iteration-free (linearly-implicit)

time stepping algorithms [23,24].

The reduction in the number of necessary time steps requires a good mechanism for time step
adaptivity [25]. Such a mechanism should provide a sufficiently conservative error estimation to avoid a
large number of step rejections, yet should be aggressive enough to quickly increase the time step after
the transient and cover [T, T + ∆T splitting] in a small number of steps.

A considerable increase in efficiency is possible based on the important observation that chemical
systems Equation (2) need to be solved independently in each grid cell. Thus the overall chemistry
computation is embarrassingly parallel [26], with as many independent tasks as there are grid cells in
the spatial discretization. A direct parallel computation can be built via domain decomposition, where
the computational grid is split into tiles, and each tile is mapped onto a different processor. Each
processor solves chemistry in all gridpoints belonging to its associated tile [27–31]. An early approach
to exploit parallelism was through vectorization [21], where each instruction line of the chemical solver
acts repeatedly on different data items associated with different cells. This idea has found renewed
interest due to modern accelerator architectures such as the Cell Broadband Engine and general purpose
graphical processing units (GPGPUs) [32–35].

2. Stiff Integration Methods

Some early techniques for dealing with stiffness of chemical ODE systems in the atmospheric
chemistry include analytical techniques [36,37], iterative backward differentiation schemes [38,39],
family chemistry scheme [40] and many others. In this section, we look in detail at several contemporary
solution techniques and methods and discuss their efficient implementation.

Atmosphere 2011, 2 515

The Kinetic PreProcessor (KPP) [25,41–45] provides a comprehensive suite of stiff numerical
integrators has been widely used. The KPP library contains several stiff solvers. Efficient implementations
exploit the sparsity structure of the chemical system. The flexible KPP framework allows to easily
incorporate additional solvers. To date, KPP has been successfully integrated with major models including
CMAQ [46], GEOS-Chem [47], STEM [48], ECHAM5/MESSy [49], and WRF-Chem [50] and provides
users with good combination of accuracy and efficiency. We will discuss several popular families of stiff
integration methods and will present their KPP implementation.

2.1. QSSA

The QSSA method [51] is of historical significance since it was one of the earliest numerical schemes
used to treat chemistry in air quality simulations. QSSA uses an approximate implicitness and avoids
the solution of nonlinear systems completely.

Starting with the production-destruction form of the chemical kinetic ODE Equation (2), one keeps
the arguments of P and D fixed at the current time step tn. The resulting approximate ODE is linear

y′ = P (tn, yn) +D(tn, yn) y , tn ≤ t ≤ tn+1 = tn + h

where yn is the numerical solution that approximates y(tn) and h is the chemical integration step size
(typically smaller than the operator splitting time step ∆T splitting in Equation 2). This linear system can
be solved analytically:

yn+1 = e−hD(tn,yn) yn +
(
Id − e−hD(tn,yn)

)
D−1(tn, yn)P (tn, yn) (3)

where Id ∈ Rd×d is the identity matrix. Owing to the diagonal structure of D(tn+1, yn+1), the QSSA
formula Equation (3) is solved component by component, i.e., it involves only scalar operations. QSSA
can be interpreted as the exponentially fitted Euler method [52], with the Jacobian J(t, y) = fy(t, y)

approximated by the diagonal destruction matrix D(t, y).
A careful analysis of the QSSA method has revealed that it is of first order, and improved QSSA

methods remain of first order under stiffness [20]. QSSA provides positive solutions, but it does not
preserve the linear invariants of the system (i.e., total mass and charge). Since the calculations are
done component by component, the QSSA implicitness does not account for fast interactions happening
among multiple species. QSSA is stable when the eigenvectors associated with the stiffest eigenvalues
are close to unit vectors. When this is not the case, QSSA requires considerable reductions of the step
size for stability. KPP offers implementations of several versions of the QSSA method.

2.2. BDF Methods

Backward differentiation formulas (BDF) have become famous under the name “Gear” methods for
solving chemical kinetic problems. BDF are linear multistep methods with excellent stability properties
for the integration of stiff systems [15]. BDF methods have been applied extensively in chemical transport
modeling. An important instance is the celebrated SMVGEAR (sparse matrix vectorized Gear [21])
code. Examples of representative air pollution models using SMVGEAR or SMVGEAR II code include
CMAQ, GEOS-CHEM and GATOR-GCMO [40]. High quality, general purpose implementations of

Atmosphere 2011, 2 516

BDF methods are provided by the codes LSODE (Livermore Solver for ODEs, [53]), VODE (Variable
coefficient ODE solver [54]), and Sundials (suite of nonlinear and differential/algebraic equation
solvers [55]). The closely related algorithms NDF (numerical differentiation formulas) are implemented
by the ode15 s stiff ODE solver in Matlab.

The k-step BDF method reads [15]

k∑
i=0

αi yn+1−i = hβ f(tn+1, yn+1) (4)

where the coefficients αi and β are particular to the method and ensure that the order of consistency
is k. The order k varies between one and five; higher order BDF formulas are unusable due to their lack
of stability.

Practical implementations of BDF formulas are able to adapt both the time step and the order to
achieve maximum efficiency. For easily adjusting the step size it is convenient to represent the past
history by the Nordsieck array [56], as is done in LSODE

zn = [yn, hẏn, · · · , hky(k)n /k!] ∈ Rd×(k+1) (5)

where, instead of storing yn+1−k, . . . , yn, one stores the derivatives of the solution at the current time.
(The solution reconstruction is based on a Taylor polynomial approximation, rather than on a polynomial
interpolant.) A step size change from h to rh is accommodated through a simple rescaling of the entries
of zn by powers of r.

The nonlinear system Equation (4)—in Nordsieck formulation—is solved for yn+1 by a Newton-
Raphson iterative approach. The starting point provided by the kth order “predictor” approximation of
zn is given by

z[0]n = zn−1A (6)

where the transformation matrix A is a lower-triangular Pascal matrix [56]. The product zn−1A can be
carried out by repeated additions to reduce the considerable computational effort. To save memory, A
need not be stored and z[0]n overwrites zn−1 directly.

The Newton-Raphson iterations proceed as follows

g(y
[m]
n+1) = h f(tn+1, y

[m]
n+1)− h ẏ

[0]
n+1 − e

[m]
n+1

e
[m+1]
n+1 = e

[m]
n+1 + P−1 g(y

[m]
n+1), m = 0, . . . ,M − 1 (7)

zn+1 = z
[0]
n+1 + e

[M]
n+1 [1, `1, · · · , `k]

where `i are appropriate coefficients. Note that the first column of zn+1 is the ODE solution yn+1. The
“prediction” matrix is P = I−hβ J(tn, yn). In order to reduce the number of LU factorizations, the step
size and the Jacobian can be held constant for multiple steps, in which case P = I−hn−j β J(tn−j, yn−j)

with j > 0.
After the iterations converge, the local truncation error is estimated by

dn+1 =
k! `k
k + 1

e
[M]
n+1 (8)

Atmosphere 2011, 2 517

For step size control one defines a scaled norm of the local truncation error

Err = ‖dn+1‖ =

√√√√1

d

d∑
i=1

(
di,n+1

RelToli ·max {|yi,n| , |yi,n|}+ AbsToli

)2

(9)

where RelTol and AbsTol are user-supplied vectors of relative and absolute error tolerances that describe
the target accuracy level. For a 3D chemical transport model it is necessary to use vector, rather than
scalar, absolute tolerances. Moreover, the concentrations of different species vary considerably across
grid points; for example, the pressure change with altitude leads to orders of magnitude differences
in the number of molecules per cubic centimeter. As a result, constant absolute error tolerances are
not appropriate in three dimensional simulations [57]. Absolute tolerance vectors should account for
different concentration levels of different species within the same grid point, and should vary with
location to capture the geographic and altitude variation of concentrations.

If ‖dn+1‖ ≤ φsafe the solution yn is accepted, otherwise it is rejected for being insufficiently accurate.
The safety factor has a value slightly smaller than one, typically φsafe = 0.9. In both situations a change
in stepsize and/or order is considered in order to maximize computational efficiency.

Note that VODE uses a variable-coefficient implementation (fixed-leading coefficient form) instead
of the fixed-step-interpolate methods in LSODE. The fixed-leading coefficient form shows better
performance on many, though not all, stiff problems. KPP offers interfaces to both LSODE and VODE
modified to use the optimized sparse linear algebra routines generated by KPP.

2.3. Implicit Runge Kutta Methods

A general s-stage implicit Runge-Kutta method reads [15]

ki = yn + h
s∑
j=1

aij f(tn + cj h , kj) , i = 1, 2, . . . , s

yn+1 = yn + h
s∑
j=1

bj f(tn + cj h , kj) (10)

where the coefficients aij , bi and ci define the method and are are chosen such that the desired accuracy
and stability properties are obtained. To reduce the influence of round-off errors, implementations use
the variable transformation zi = ki − yn [15] in Equation (10) to obtain the equivalent form

zi = h
s∑
j=1

aij f(tn + cj h , yn + zj) , i = 1, 2, . . . , s

yn+1 = yn +
s∑
i=1

di zi (11)

The nonlinear system Equation (11) is solved at each step to obtain z1, . . . , zs. For general, fully implicit
Runge-Kutta methods this system is of dimension ds× ds [41]

z1

z2
...
zs

 = (A⊗ Id) ·

f(tn + c1 h, yn + z1)

f(tn + c2 h, yn + z2)
...

f(tn + cs h, yn + zs)

 (12)

Atmosphere 2011, 2 518

where A = (aij) is the matrix of method coefficients, and ⊗ is the matrix Kronecker product. The
Kronecker product of P ∈ Rm×m and Q ∈ Rn×n is the following mn×mn matrix

P⊗Q =

p11Q p12Q · · · p1nQ

p21Q p22Q · · · p2nQ
...

...
pm1Q pm2Q · · · pnnQ

 (13)

Using the compact notation

Z =

z1

z2
...
zs

 , F (Z) =

f(tn + c1 h , yn + z1)

f(tn + c2 h , yn + z2)
...

f(tn + cn h , yn + zn)

 (14)

the nonlinear system Equation (12) can be written as

Z = (A⊗ Id) · F (Z) (15)

The system Equation (15) is solved by simplified Newton-Raphson iterations [15] of the form

[Ids − hA⊗ J(tn , yn)] ∆Z [m] = Z [m] − (hA⊗ Id)F (Z [m])

Z [m+1] = Z [m] −∆Z [m] , m = 0, . . . ,M − 1 (16)

Note that the Jacobian is only evaluated at the beginning of the current time step. Following [15], a
transformation of the system Equation (16) to complex form replaces the costly ds-dimensional real LU
decomposition by several d-dimensional LU decompositions of real and complex matrices.

A Singly Diagonally-Implicit Runge-Kutta (SDIRK) method is a special case of the fully implicit
Runge-Kutta method with coefficients satisfying aij = 0 for j > i and aii = γ for all i. In contrast to
the fully implicit Runge-Kutta method, the nonlinear system Equation (12) naturally decouples into a
sequence of d-dimensional real systems [41] of the form

zi = h

i−1∑
j=1

aij f(tn + cj h , yn + zj) + h γ f(tn + ci h , yn + zi) (17)

Each stage i solves for the vector zi by simplified Newton-Raphson iterations

[Id − h γ J(tn , yn)] ∆z
[m]
i = z

[m]
i − h

i−1∑
j=1

aij f(tn + cj h , yn + zj)

z
[m+1]
i = z

[m]
i −∆z

[m]
i , m = 0, . . . ,M − 1 (18)

The Jacobian matrix is only evaluated at the beginning of the time step. The LU factorization of
Id − h γ J(tn , yn) is shared for all iterations m and for all stages i, so that only one LU decomposition
is performed in each time step.

Atmosphere 2011, 2 519

An estimator of the local truncation error is obtained with the help of the embedded formula

ŷn+1 = yn +
s∑
i=1

b̂i ki (19)

This formula provides an alternative numerical solution ŷn+1 using the already computed increment
vectors ki, but different weights b̂i. The coefficients are usually chosen such that the order of consistency
of ŷn+1 is one less than that of yn+1. The difference vector dn+1 = ŷn+1 − yn+1 provides the local error
estimator. As pointed out in [41], such estimators work well with SDIRK methods, but they are more
difficult to construct for fully implicit Runge-Kutta methods since additional stages are needed.

The step adjustment strategy uses Equation (9) to compute the error norm Err = ‖dn+1‖ based on
the user specified relative and absolute tolerances. The step is accepted if Err ≤ φsafe, and rejected
otherwise. A rejected step is repeated with a smaller step size. The safety factor has a value slightly
smaller than one, typically φsafe = 0.9.

The new step size is estimated by the asymptotic formula

η = min
(
φmax , max

(
φmin, φsafe · Err−1/(p̂+1)

))
, hnew = hold · η (20)

where φmax is an upper bound, and φmin a lower bound on the step change factor. Typical values are
φmax = 10, φmin = 0.1, and φsafe = 0.9. If the step size has been recently rejected, the allowed increase
factor is further limited (e.g., φmax = 1 following a rejection). Furthermore, the step size is constrained
such that hmin ≤ h ≤ hmax, and the starting step size is specified h = hstart. Numerical experiments
in [41–43] demonstrate that this step size control strategy works well for a wide range of atmospheric
chemical kinetic problems.

Several Runge Kutta methods are available in the KPP numerical library. The fully implicit schemes
implemented are the 3-stage Radau-IIa, Radau-Ia, Lobatto-IIIc, and Gauss methods [15]. The SDIRK
schemes involve Sdirk-4a and Sdirk-4b (5 stages, order 4, L-stable), Sdirk3a (3 stages, order 2, stiffly
accurate), and Sdirk2a and Sdirk-2b (2 stages, order 2, stiffly accurate).

2.4. Rosenbrock Methods

Rosenbrock methods are competitive with other stiff solvers for low to modest accuracy, and therefore
are attractive for atmospheric chemistry applications [23]. Rosenbrock methods can be considered as
linearly-implicit versions of Runge Kutta methods. To avoid nonlinear systems, the Jacobian is used
directly in the integration formula [15,58] and each stage requires the solution of a linear system. For
example, the backward (fully implicit) Euler method solves at each step the nonlinear system

yn+1 = yn + h f(yn+1)

to obtain yn+1. The linearly implicit Euler method solves a linear system to obtain an increment vector
k, which is then used to update the solution

k = h f(tn, yn) + hJ(tn, yn) · k , yn+1 = yn + k (21)

This algorithm corresponds to a single Newton iteration solving the backward Euler equation. Note that
the system Jacobian matrix J appears explicitly in the discretization scheme.

Atmosphere 2011, 2 520

A general s-stage Rosenbrock method Rosenbrock [15,58] computes the next step solution as follows:

ki = h f

(
tn + αih, yn +

i−1∑
j=1

αijkj

)
+ γih

2 ft(tn, yn) + hJ(tn, yn) ·
i∑

j=1

γijkj

yn+1 = yn +
s∑
i=1

bi ki (22)

where the coefficients bi, αij and γij define particular methods and are chosen such as to obtain the
desired accuracy and stability properties [22]. We have that αij = 0 for j ≥ i, γij = 0 for j ≥ i+ 1, and

αi =
i−1∑
j=1

αij, γi =
i∑

j=1

γij

The term ft represents the partial derivative of the ODE function with respect to time, and is equal to
zero in the case of autonomous systems.

For implementation purposes, it is advantageous to choose all the diagonal coefficients equal to
each other, γii = γ for all stages i = 1, . . . , s, and to avoid Jacobian-vector products by changing
Equation (22) to the mathematically equivalent formulation [15](

1

hγ
I− J(tn, yn)

)
· ui = f

(
tn + αih, yn +

i−1∑
j=1

aijuj

)
+

i−1∑
j=1

cij
h
uj + h γi ft(tn, yn)

yn+1 = yn +
s∑
j=1

mj uj (23)

where

Γ = (γij)1≤i,j≤s , (aij)1≤i,j≤s = (αij)1≤i,j≤s · Γ−1 , (mi)1≤i≤s = (bi)1≤i≤s · Γ−1

Note that Equation (23) avoids not only the matrix-vector multiplications, but also the n2 multiplications
for constructing the matrix-scalar product hγJ. The computational cost per step for the Rosenbrock
method Equation (23) is that of one real d × d LU factorization, s forward and backward substitutions,
and one Jacobian plus s function evaluations. This cost is similar to that of one BDF step using M = s

simplified Newton iterations Equation (7) and no Jacobian factorization re-use.
The local error estimator for Rosenbrock methods is based on an embedded formula for error estimation,

similar to Equation (19). The step is accepted if the error norm Equation (9) is below φsafe = 0.9, and
rejected otherwise. The next time step size is calculated by Equation (20).

An important sub-class are the Rosenbrock-W methods, which allow the use of any approximation J̃

instead of the complete Jacobian J in Equation (23) without losing their order of accuracy. Rosenbrock-W
methods may result in considerable computational savings by replacing the Jacobian with a sparser
approximation, with a tensor product of smaller matrices, etc.

Careful benchmarks of stiff solvers [23,24,42,59] indicate that Rosenbrock methods are the most
efficient for the low to medium accuracy range required in chemical transport applications.

Several Rosenbrock methods are available in the KPP numerical library. They are Rodas (the 6-stage
method based on a stiffly accurate pair of order 4(3) [15]), Ros4 (based on a 4 stage, L-stable, embedded

Atmosphere 2011, 2 521

pair of order 4(3) [15]), Rodas3 (a 4-stage, stiffly accurate, embedded pair of order 3(2) [23]), Ros3 (a
3-stage, L-stable pair of order 3(2) [23]), and Ros2a and Ros2b (2-stage stiffly accurate pairs of order
2(1) [23]). In addition, the method Rang3 is a Rosenbrock-W scheme of order 3 with 5 stages.

2.5. Extrapolation Methods

This family of methods constructs numerical solutions by applying Richardson extrapolation to a
sequence of low order approximations, each made with a different step size [15]. The extrapolation
approach can be used to construct methods of arbitrarily high order. Extrapolation methods are very
effective for high accuracy calculations.

Consider a sequence of step sizes τ1, τ2, τ3, . . . defined by by τj = h/j. Further, consider the linearly
implicit Euler method Equation (21) as the “base” numerical method for solving the system Equation (2).
Denote by

Tj,1 := yτj(tn + h) , 1 ≤ j ≤ p (24)

the numerical approximation of y(tn+1) obtained as follows. Start from yn, and march over the interval
[tn, tn+1] using j steps of Equation (21), each with a step size τj . All steps use the Jacobian J(tn, yn),
and therefore share the same LU decomposition. The global error of the linearly implicit Euler method
has an asymptotic expansion of the form

y(tn+1)− yh(tn+1) = e1(tn+1) τ
1 + · · ·+ eN(tn+1) τ

N + Eτ (tn+1) τ
N+1 (25)

where ei(tn+1) are errors that do not depend on τ , and Eτ is bounded for tn ≤ t ≤ tn+1. (For very
stiff problems a different, perturbed expansion of the global error holds [15], but this does not change
the fundamental idea of this discussion). Using the M approximations Equation (24) obtained with
different hj’s, the error terms in the global error asymptotic expansion Equation (25) can be eliminated
by recursive Richardson extrapolation [60] to build new approximations:

Tj,k+1 = j Tj,k − (j − 1)Tj−1,k , j ≤ p , k < j (26)

The numerical scheme Equations (24)–(26) is called the extrapolation method, and it builds an entire
family of approximations. Each scheme Tj,k+1 is of order k, since extrapolation eliminates the terms
e1, . . . , ek from the global error expansion Equation (25). We remark that extrapolation provides a
sequence of lower-order embedded method, which can be used for step size and order control.

The KPP numerical library offers an interface to the SEULEX code [15] modified to use the optimized
sparse linear algebra routines generated by KPP.

3. Improving Computational Efficiency

In this section we discuss two approaches to improve the computational efficiency of the chemical
kinetic solvers in air quality models. The first approach is the use of sparse linear algebra, and the
second is harnessing the power of modern accelerator architectures.

Atmosphere 2011, 2 522

3.1. Sparse Linear Algebra

In a chemical kinetic solver, most of the computational effort is spent in solving the linear systems
associated with the implicit time integration algorithms. For all methods discussed here the matrix of
coefficients is of the form I− h γ J, and inherits the sparsity structure of the Jacobian.

In a typical chemical mechanism, the pattern of chemical interactions leads to a Jacobian that has the
majority of entries equal to zero. Figure 1 displays the sparsity structure of the Jacobian of the MECCA
chemical mechanism, used in the numerical experiments presented in Section 5. This Jacobian has 2655
nonzero entries, i.e., 5.6% of its total number of elements.

Figure 1. Sparsity of the Jacobian of the MECCA chemical mechanism used in Section 5.

0 50 100 150 200

0

50

100

150

200

nz = 2655

Linear algebra algorithms can take advantage of this to avoid unnecessary operations and greatly
reduce CPU time. Since the sparsity structure depends only on the chemical network (and not on the
values of concentrations or rate coefficients) it can be computed offline [22,61]. This approach has been
taken by SMVGEAR [21] and by the Kinetic PreProcessor KPP [25]. KPP prepares highly efficient
routines for sparse LU decomposition and substitution that are specific to the particular sparsity of the
simulated chemical mechanism [24]. All stiff numerical methods implemented in the KPP library make
use of these routines.

3.2. Acceleration Aspects

Recent developments in multi-core chipset architectures can be leveraged to reduce chemical simulation
runtime. In general, good performance is achieved by using every tier of heterogeneous parallelism
available to the model. Chemical kinetics are embarrassingly parallel between grid cells, so there is
abundant data parallelism (DLP). Within the solver itself, the ODE system is coupled so that, while there
is still some data parallelism available in lower-level linear algebra operations, parallelization is limited

Atmosphere 2011, 2 523

largely to the instruction level (ILP). (Some specific chemical mechanisms are only partially coupled and
can be separated into a small number of sub-components, but such inter-module decomposition is rare.)
Thus, a three-tier parallelization is possible: ILP on each core, DLP using single-instruction-multiple-data
(SIMD) features of a single core, and DLP across multiple cores (using multi-threading) or nodes (using
MPI). The coarsest tier of MPI and OpenMP parallelism is typically supplied by the atmospheric model.

This section presents parallelization strategies for Rosenbrock integration in one-cell-per-thread,
N-cells-per-thread, and 4/2-cells-per-thread decompositions. For performance benchmarks of parallelized
Rosenbrock solvers, see [32–34,62].

One-cell-per-thread (multi-threaded CPUs) Although not an “accelerated” architecture,
multi-threaded CPUs are common, inexpensive, and a mature target platform. Modest performance
improvements are achievable by parallelizing the Rosenbrock integrator via OpenMP. Since the chemistry
at each grid cell is independent, the outermost iteration over grid cells is thread-parallel dimension; that
is, a one-cell-per-thread decomposition. Within the integrator itself, the inseparable Jacobian matrix
prohibits direct parallelization, though SIMD instructions may be introduced by the compiler for a small
intra-integrator performance improvement. The principal disadvantage of this architecture is a relatively
low peak performance.

N-cells-per-thread (NVIDIA CUDA) A CUDA implementation takes advantage of the high degree
of parallelism and independence between cells in the simulation. The outermost loops of the solver are
kept on the CPU and the GPU is used to accelerate the innermost computational kernels. Time loops,
Runge-Kutta loops, and error control branch-back logic are executed on the CPU. LU decomposition
and solve, the ODE function evaluation, Jacobi matrix operations, and BLAS operations, are coded and
invoked as separate kernels on the GPU. All data for the solver is resident on the GPU and arrays are
stored with cell-index stride-one so that adjacent threads access adjacent words in memory to coalesce
access to the chemical data across threads. Under this paradigm, parallelism occurs within the solver
across grid cells, rather than external to the solver and across grid cells as on a multi-core CPU. Although
each GPU thread still processes only one cell, the exact mapping of threads to grid cells is handled by the
GPU hardware, effectively achieving an N-cells-per-thread decomposition, where N is the total number
of grid cells in the simulation.

This implementation is easy to debug and profile since the GPU code is spread over many small
kernels with control returning frequently to the CPU. Additionally, resource bottlenecks such as register
pressure and shared-memory usage are limited to only those affected kernels. Performance critical
parameters such as the size of thread blocks and shared-memory allocation can be adjusted and tuned
separately, kernel-by-kernel, without subjecting the entire solver to worst-case limits. One disadvantage
is that all N grid cells are forced to use the minimum time step and iterate the maximum number of
times, even though only a few cells will typically require that many iterations to converge. The overhead
of these additional iterations can be mitigated by storing the per-cell time, time step length, and error in
a vector and using vector masks to “turn off” cells that have converged. The solver still performs the
maximum number of iterations, but thread-blocks assigned to cells that have converged do little or no
work and relinquish the GPU cores quickly.

Atmosphere 2011, 2 524

A CUDA implementation is straight-forward to program, but may prove difficult to optimize. CUDA’s
automatic thread management and familiar programming environment make solver implementations
simple to conceive and implement. However, a deep understanding of the underlying architecture is
required to achieve good performance. For example, memory access coalescing is one of the most
powerful features of the GPU architecture, yet CUDA neither hinders nor promotes program designs that
leverage coalescing. The principal limitation on performance is the size of the on-chip shared memory
and register file, which prevent large-footprint applications from running sufficient numbers of threads
to expose parallelism and hide latency to the device memory. In general, GPU implementations of
the Rosenbrock solver are faster than multi-core CPU implementations, but by less than a factor of two.
From a power consumption standpoint, this makes them less efficient than multi-core CPUs in this arena.

4/2-cells-per-thread (Cell Broadband Engine Architecture) The heterogeneous Cell Broadband
Engine Architecture can achieve exceptionally high levels of performance for the Rosenbrock integrator,
yet its complexity and uniqueness make it difficult to program. As a heterogeneous architecture, a
homogeneous one-cell-per-thread decomposition across all cores will not achieve maximum performance.
A master-worker approach resulting in multiple grid cells processed per thread is more appropriate.

The Power Processing Element (PPE), with full access to main memory, is the master. It prepares
the model data for processing by the Synergistic Processing Elements (SPEs) by padding and aligning
data to comply with architectural restrictions. The Rosenbrock solver tends to be computation-bound,
so the PPU has ample time to maintain a buffer of aligned data. The SPEs implement a 128-bit SIMD
instruction set architecture. Hence, every cycle operates on 128-bit vectors of either four single precision
or two double precision floating point numbers. The data of two or four grid cells, depending on
floating point precision, are packaged together by the PPE into a single padded, aligned, and buffered
payload for processing by the SPEs (a so-called “vector cell”). This achieves a four-cells-per-thread
(two-cells-per-thread in double precision) decomposition.

A small change is required in the Rosenbrock integrator design to operate on a vector cell. Typically,
the integrator iteratively refines the Newton step size h until the error norm is within acceptable limits.
This will cause an intra-vector divergence if different vector elements accept different step sizes. However,
it is numerically sound to continue to reduce h even after an acceptable step size is found. The vector cell
integrator reduces the step size until the error for every vector element is within tolerance. Conventional
architectures would require additional computation under this scheme, but because all operations in
the SPE are SIMD this actually recovers lost flops. This enhancement doubles (quadruples for single
precision) the SPE’s throughput with no measurable overhead. Rosenbrock integrators on the Cell
Broadband Engine Architecture tend to be about eight times faster than multi-core implementations
on contemporary 8-core CPUs, and have regularly achieve speedups of 20-40x when compared to
state-of-the-art Fortran implementations.

4. The Kinetic PreProcessor: KPP and KPPA

Writing chemical kinetics code is often tedious and error-prone work. The Kinetic PreProcessor
(KPP) [25,41–45] is a general analysis tool that enables the rapidly generation of correct and efficient
chemical kinetics code. The strength of KPP compared with other chemical processing tools such as

Atmosphere 2011, 2 525

SMVGEAR [21] lies in the integration of very efficient numerical analysis routines with its ability to
automatically generate FORTRAN or C code that computes the time-evolution of chemical species
from a specification of the chemical mechanism in KPP-Language (presented in detail in [25]). It
also generates the Jacobian in either sparse or full format, as well as other objects needed by different
numerical integration schemes. KPP provides a rich selection of numerical integration schemes including
VODE, LSODES, RODAS, ROS4, SDIRK, SEULEX, QSSA, EXQSSA, RADAU5, RODAS3 and ROS3.
The framework can be easily used as an accurate benchmarking platform for evaluating new integrators.

4.1. The Kinetic PreProcessor: Accelerated (KPPA)

KPP makes it possible to rapidly generate correct and efficient chemical kinetics solvers on scalar
architectures, but these generated codes cannot be easily ported to multi-core accelerated or heterogeneous
architectures. KPPA (the Kinetics PreProcessor: Accelerated) [32], is the next generation KPP tool
that achieves significantly reduced time-to-solution for chemical kinetics kernels on both traditional
and emerging architectures. In addition to the basic KPP functionality, KPPA generates OpenMP code
with SSE or Alitivec for traditional CPUs, CUDA code for NVIDIA GPUs, and optimized C codes for
the Cell Broadband Engine Architecture (CBEA), in either double or single precision. KPPA-generated
mechanisms leverage platform-specific multi-layered heterogeneous parallelism to achieve strong
scalability. Compared to state-of-the-art serial implementations, speedups of 20×–40× are regularly
observed in KPPA-generated code.

KPPA combines a general analysis tool for chemical kinetics with a code generation system for scalar,
homogeneous multi-core, and heterogeneous multi-core architectures. It is written in object-oriented
C++ with a clearly-defined upgrade path to support future multi-core architectures as they emerge.
KPPA has all the functionality of KPP 2.1 and maintains backwards compatibility with KPP. Many
atmospheric models, including WRF-Chem and STEM, support a number of chemical kinetics solvers
that are automatically generated at compile time by KPP. Reusing these analysis techniques in KPPA
insures its accuracy and applicability.

KPPA’s code generation component accommodates a two-dimensional design space of programming
language/target architecture combinations superseding the one-dimensional design space of KPP
(Table 2). Given the model description from the analytical component and a description of the target
architecture, the code generation component produces a time-stepping integrator, the ODE function and
ODE Jacobian of the system, and other quantities required to interface with an atmospheric model.

KPPA’s key feature is its ability to generate fully-unrolled, platform-specific sparse matrix/matrix and
matrix/vector operations that achieve very high levels of efficiency. As KPPA parses it’s input, language
independent expression trees describing sparse matrix/matrix or matrix/vector operations are constructed
in memory. For example, the aggregate ODE function of the chemical mechanism is calculated by
multiplying the left-side stoichiometric matrix by the concentration vector, and then adding the result to
elements of the stoichiometric matrix. KPPA performs these operations symbolically at code generation
time, using the matrix formed by the analytical component and a symbolic vector, which will be calculated
at run-time. The result is an expression tree of language-independent arithmetic operations and assignments,
equivalent to a rolled-loop sparse matrix/vector operation, but in completely unrolled form.

Atmosphere 2011, 2 526

Table 2. Language/architecture combinations supported by KPP and KPPA. κ denotes
functionality found only in KPPA.

Serial OpenMP GPGPU CBEA

C KPP κ κ κ

FORTRAN77 KPP κ κ

Fortran 90 KPP κ κ

MATLAB KPP

KPPA uses its knowledge of the target architecture to generate highly-efficient code from the expression
tree. Vector types are preferred when available, branches are avoided on all architectures, and parts of
the function can be rolled into a tight loop if KPPA determines that on-chip memory is a premium.
An analysis of four KPPA-generated ODE functions and ODE Jacobians targeting the CBEA showed
that, on average, both SPU pipelines remain full for over 80% of the function implementation. Pipeline
stalls account for less than 1% of the cycles required to calculate the function. For example, in the
SAPRCNOV mechanism on CBEA, there are only 20 stalls in the 2989 cycles required by the ODE
function (0.66%), and only 24 stalls in the 5490 cycles required for the ODE Jacobian (0.43%). Code
of this caliber typically requires meticulous hand-optimization, but KPPA is able to generate this code
automatically in seconds. See [32] for further performance analysis of KPPA.

5. Numerical Results

For the numerical results we use the CAABA box model with MECCA chemistry [63]. A mechanism
suitable for calculating marine boundary layer chemistry containing 223 species and 560 reactions in
the gas phase and in aerosol particles was selected. In addition to the basic atmospheric chemistry of
ozone, methane, HOx and NOx, halogen (Cl, Br, I) and sulfur chemistry are also considered. The full
mechanism including rate coefficients can be found in the supplement.

A reference solution yref has been computed with the Radau-5A numerical method implemented in
the KPP Runge Kutta suite, with the tight tolerances RelTol = 10−10 and AbsTol = 102 molecules/cm3.
The accuracy of each numerical solution is measured by its RMS error, defined as

RMS =

√√√√√∑d
i=1

(
yi−yrefi

yrefi

)2
·
(
yrefi ≥ threshold

)
∑d

i=1

(
yrefi ≥ threshold

) (27)

The threshold value is 100 molecules/cm3. The logical expression
(
yrefi ≥ threshold

)
takes a value equal

to one if the reference concentration of the i-th species is above the threshold, and takes the value zero
otherwise. Thus only those species for which concentrations are sufficiently large contribute to the error
metric Equation (27).

The work-precision diagrams for several numerical integrators are shown in Figure 2. The RMS
errors Equation (27) of different solutions at the final time are plotted against the CPU effort needed

Atmosphere 2011, 2 527

to obtain them. Each curve corresponds to a different method. Several relative tolerances in the range
RelTol ∈ [10−6, 10−1] have been used to generate different points on each curve.

Figure 2. Work precision diagrams for stiff integration methods applied to the MECCA
chemical mechanism.

1 2 3 4 6 10 16 25
10 4

10 2

100

102

CPU time [sec]

R
M

S
er

ro
r

Runge Kutta
Rosenbrock
SEULEX
SDIRK

6. Conclusions

One of the most computationally demanding tasks in atmospheric chemical transport simulations is
the solution of chemical kinetic processes. Special considerations need to be taken into account when
designing chemistry time integration algorithms. Unconditionally stable methods are needed due to
the stiff nature of the equations; such algorithms perform expensive solves of (non)linear systems of
equations at each stage. The accuracy requirements are relatively low, with relative errors of 0.1%,
but compute times must be low as well. This is achieved with algorithms that quickly adjust time step
size, and efficient step size control mechanisms. A challenge comes from the fact that error estimators
based on asymptotic formulas may not work well in the low accuracy regime. Closed chemical systems
preserve mass and charge, and the concentrations remain positive. It is desirable to have numerical
solvers that also preserve this properties. Conservation is easy to achieve, but positivity requires more
involved computations.

Several families of solvers that are suitable for atmospheric chemical kinetics were discussed: QSSA,
BDF, implicit Runge-Kutta, Rosenbrock, and Extrapolation. Special implementations of general purpose
methods have taken the place of special integrators (e.g., QSSA) during the last decade. Among them the
Rosenbrock methods have become popular due to their efficiency at moderate accuracy requirements.

A major goal when implementing a chemical solver is efficiency, since many copies of the chemical
mechanism (one per grid cell) need to be solved at each operator split cycle. Careful exploitation of the
Jacobian structure and the use of efficient sparse linear algebra operations are key to obtaining efficiency.

Atmosphere 2011, 2 528

The ideal parallelism between the chemical tasks in different grid cells can be exploited either by domain
decomposition, or by vectorization. The latter approach has found renewed interest in the context of of
modern heterogeneous multicore (accelerator) architectures.

All the numerical methods discussed in this paper are implemented in the KPP numerical library [64]
and can be easily employed in applications. KPP prepares efficient sparse linear algebra routines that
are specific to the structure of the system at hand. KPPA [65] is able to automatically generate code
for accelerator architectures such as the IBM Cell Broadband Engine Architecture and general purpose
graphical units.

With the increase in complexity of gas phase chemical mechanisms, and the frequent inclusion of
aqueous and heterogeneous phase chemistry in three dimensional simulations, the importance of efficient
and robust solvers for atmospheric chemistry models is expected to continue to increase in future.

Acknowledgements

This work has been supported in part by NSF through awards NSF OCI-0904397, NSF CCF-0916493,
NSF DMS0915047, and by the United States Department of Defense High Performance Computing
Modernization Program through an NDSEG fellowship.

References

1. Yanenko, N.N. The Method of Fractional Steps; Springer-Verlag: Berlin, Heidelberg, Germany,
1971.

2. Verwer, J.; Hunsdorfer, W.; Blom, J.G. Numerical Time Integration of Air Pollution Models;
Modeling, Analysis and Simulations report MAS-R9825. CWI: Amsterdam, The Netherlands,
October 1998.

3. Sandu, A.; Daescu, D.; Carmichael, G.; Chai, T. Adjoint sensitivity analysis of regional air
quality models. J. Comput. Phys. 2005, 204, 222–252.

4. Chai, T.; Carmichael, G.; Tang, Y.; Sandu, A.; Hardesty, M.; Pilewskie, P.; Whitlow, S.;
Browell, E.; Avery, M.; Thouret, V.; et al. Four dimensional data assimilation experiments
with ICARTT (International Consortium for Atmospheric Transport and Transformation) ozone
measurements. J. Geophys. Res. 2007, 112, doi:10.1029/2006JD007763.

5. Constantinescu, E.; Sandu, A.; Chai, T.; Carmichael, G. Autoregressive models of background
errors for chemical data assimilation. J. Geophys. Res. 2007, 112, doi:10.1029/2006JD008103.

6. Sandu, A.; Zhang, L. Discrete second order adjoints in atmospheric chemical transport modeling.
J. Comput. Phys. 2008, 227, 5949–5983.

7. Constantinescu, E.; Sandu, A.; Chai, T.; Carmichael, G. Assessment of ensemble-based chemical
data assimilation in an idealized setting. Atmos. Environ. 2007, 41, 18–36.

8. Constantinescu, E.; Sandu, A.; Chai, T.; Carmichael, G. Ensemble-based chemical data
assimilation. I: General approach. Q. J. R. Meteorol. Soc. 2007, 133, 1229–1243.

9. Constantinescu, E.; Sandu, A.; Chai, T.; Carmichael, G. Ensemble-based chemical data
assimilation. II: Covariance localization. Q. J. R. Meteorol. Soc. 2007, 133, 1245–1256.

Atmosphere 2011, 2 529

10. Carmichael, G.; Chai, T.; Sandu, A.; Constantinescu, E.; Daescu, D. Predicting air quality:
Improvements through advanced methods to integrate models and measurements. J. Comput. Phys.
2008, 227, 3540–3571.

11. Zhang, L.; Constantinescu, E.; Sandu, A.; Tang, Y.; Chai, T.; Carmichael, G.; Byun, D.;
Olaguer, E. An adjoint sensitivity analysis and 4D-Var data assimilation study of Texas air quality.
Atmos. Environ. 2008, 42, 5787–5804.

12. Singh, K.; Eller, P.; Sandu, A.; Henze, D.; Bowman, K.; Kopacz, M.; Lee, M. Towards the
Construction of a Standard Adjoint GEOS-Chem Model. In Proceedings of the 2009 Spring
Simulation Multiconference (SpringSim’09), High Performance Computing Symposium
(HPCS-2009), San Diego, CA, USA, 22–27 March 2009; Ribbens, C., Sandu, A., Thacker, W.,
Eds.; Society for Modeling and Simulation International (SCS)/ACM: San Diego, CA, USA;
New York, NY, USA, 2009; p. 8.

13. Hakami, A.; Henze, D.; Seinfeld, J.; Chai, T.; Tang, Y.; Carmichael, G.; Sandu, A. Adjoint
inverse modeling of black carbon during ACE-Asia. J. Geophys. Res. 2005, 110, D14301.

14. Hakami, A.; Henze, D.; Seinfeld, J.; Singh, K.; Sandu, A.; Kim, S.; Byun, D.; Li, Q. The adjoint
of CMAQ. Environ. Sci. Technol. 2007, 41, 7807–7817.

15. Hairer, E.; Norsett, S.; Wanner, G. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems/E, 2nd ed.; Springer-Verlag: Berlin, Germany, 2002; Volume 2.

16. Rosenbaum, J. Conservation properties of numerical integration methods for systems of ordinary
differential equations. J. Comput. Phys. 1976, 20, 259–267.

17. Bolley, C.; Crouzeix, M. Conservation de la positivite lors de la discretization des problemes
d’evolution parabolique. R.A.I.R.O. Numer. Anal. 1978, 12, 237–245.

18. Sandu, A. Positive numerical integration methods for chemical kinetic systems. J. Comput.
Phys. 2001, 170, 1–14.

19. Sandu, A. Time-Stepping Methods that Favor Positivity for Atmospheric Chemistry Modeling.
In IMA Volume on Atmospheric Modeling; Chock, D., Carmichael, G., Eds.; Springer-Verlag:
Berlin, Germany, 2001; pp. 1–21.

20. Jay, L.O.; Sandu, A.; Potra, F.A.; Carmichael, G.R. Improved QSSA methods for atmospheric
chemistry integration. SIAM J. Sci. Comp. 1997, 18, 182–202.

21. Jacobson, M.Z.; Turco, R. SMVGEAR: A sparse-matrix, vectorized Gear code for atmospheric
models. Atmos. Environ. 1994, 17, 273–284.

22. Sandu, A.; Potra, F.; Damian-Iordache, V.; Carmichael, G. Efficient implementation of fully
implicit methods for atmospheric chemistry. J. Comput. Phys. 1996, 129, 101–110.

23. Sandu, A.; Verwer, J.; Blom, J.; Spee, E.; Carmichael, G.; Potra, F. Benchmarking stiff ODE
solvers for atmospheric chemistry problems. II: Rosenbrock methods. Atmos. Environ. 1997,
31, 3459–3472.

24. Sandu, A.; Verwer, J.; van Loon, M.; Carmichael, G.; Potra, F.; Dabdub, D.; Seinfeld, J.
Benchmarking stiff ODE solvers for atmospheric chemistry problems. I: Implicit versus explicit.
Atmos. Environ. 1997, 31, 3151–3166.

25. Damian, V.; Sandu, A.; Damian, M.; Potra, F.; Carmichael, G. The Kinetic PreProcessor KPP—A
software environment for solving chemical kinetics. Comput. Chem. Eng. 2002, 26, 1567–1579.

Atmosphere 2011, 2 530

26. Foster, I. Designing and Building Parallel Programs; Addison-Wesley: Boston, MA, USA, 1995.
27. Miehe, P.; Sandu, A.; Carmichael, G.; Tang, Y.; Daescu, D. A communication library for the

parallelization of air quality models on structured grids. Atmos. Environ. 2002, 36, 3917–3930.
28. Belwal, C.; Sandu, A.; Constantinescu, E. Parallel Adaptive Simulations of Regional Air Quality.

In Proceedings of the SIAM Conference on Parallel Processing PP04, San Francisco, CA, USA,
28 February 2004.

29. Belwal, C.; Sandu, A.; Constantinescu, E. Adaptive Resolution Modeling of Air Pollution. In
Proceedings of the ACM Symposium on Applied Computing (SAC-2004), Nicosia, Cyprus, 14–17
March 2004; pp. 235–239.

30. Sandu, A.; Daescu, D.; Carmichael, G.; Chai, T. Parallel Chemical Data Assimilation in
Atmospheric Models. In Proceedings of the SIAM Conference on Parallel Processing PP04,
San Francisco, CA, USA, 25–27 February 2004.

31. Sandu, A.; Belwal, C.; Constantinescu, E. Parallel Adaptive Simulations of Regional Air Quality.
In Proceedings of the SIAM Conference on Parallel Processing for Scientific Computing, Seattle,
WA, USA, 24–26 Fabruary 2004.

32. Linford, J.C.; Michalakes, J.; Vachharajani, M.; Sandu, A. Automatic generation of multicore
chemical kernels. IEEE TPDS 2011, 22, 119–131.

33. Linford, J.C.; Sandu, A. Scalable heterogeneous parallelism for atmospheric modeling and
simulation. J. Supercomput. 2011, 56, 300–327.

34. Linford, J.C.; Michalakes, J.; Vachharijani, M.; Sandu, A. Multi-Core Acceleration of Chemical
Kinetics for Modeling and Simulation. In Proceedings of the 2009 ACM/IEEE Conference on
Supercomputing (SC’09), Portland, OR, USA, November 2009.

35. Jöckel, P.; Kerkweg, A.; Pozzer, A.; Sander, R.; Tost, H.; Riede, H.; Baumgaertner, A.;
Gromov, S.; Kern, B. Development cycle 2 of the Modular Earth Submodel System (MESSy2).
Geosci. Model Dev. 2010, 3, 717–752. Available online: http://www.geosci-model-dev.net/3/717
(accessed on 2 September 2011).

36. Chapman, S. On ozone and atomic oxygen in the upper atmosphere. Phil. Mag. 1930
10, 369–383.

37. Bates, D.R.; Nicolet, M. The photochemistry of atmospheric water vapor, J. Geophys. Res.
1950, 55, 301–327.

38. Hunt, B.G. Photochemistry of ozone in a moist atmosphere, J. Geophys. Res. 1966, 71,
1385–1398.

39. Shimazaki, T.; Laird, A.R. A model calculation of the diurnal variation in minor neutral
constituents in the mesosphere and lower thermosphere including transport effects, J. Geophys.
Res. 1970, 75, 3221.

40. Turco, R.P.; Whitten, R.C. A comparison of several computational techniques for solving some
common aeronomic problems, J. Geophys. Res. 1974, 79, 3179–3185.

41. Sandu, A.; Miehe, P. Forward, tangent linear, and adjoint Runge Kutta methods in KPP-2.2 for
efficient chemical kinetic simulations. Int. J. Comp. Math. 2010, 87, 2458–2479.

Atmosphere 2011, 2 531

42. Eller, P.; Singh, K.; Sandu, A.; Bowman, K.; Henze, D.; Lee, M. Implementation and evaluation
of an array of chemical solvers in a global chemical transport model. Geophys. Model Dev. 2009,
2, 1–7.

43. Sandu, A.; Sander, R. Modeling chemical kinetic systems in Fortran90 and Matlab with KPP-2.1.
Atmos. Chem. Phys. 2006, 6, 187–195.

44. Daescu, D.; Sandu, A.; Carmichael, G. Direct and adjoint sensitivity analysis of chemical
kinetic systems with KPP: II—Numerical validation and applications. Atmos. Environ. 2003,
37, 5097–5114.

45. Sandu, A.; Daescu, D.; Carmichael, G. Direct and adjoint sensitivity analysis of chemical kinetic
systems with KPP: I —Theory and software tools. Atmos. Environ. 2003, 37, 5083–5096.

46. Community Multiscale Air Quality (CMAQ) modeling system. Available online: http://www.
cmaq-model.org (accessed on 5 May 2011).

47. Goddard Earth Observing System (GEOS)-Chem. Available online: http://acmg.seas.harvard.
edu/geos (accessed on 5 May 2011).

48. Sulphur Transport Eulerian Model (STEM). Available online: http://cgrer.uiowa.edu/projects
(accessed on 5 May 2011).

49. 5th generation of European Centre Hamburg Model/Modular Earth Submodel System
(ECHAM5/MESSy). Available online: http://www.messy-interface.org (accessed on 5 May 2011).

50. Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Available
online: http://www.acd.ucar.edu/wrf-chem (accessed on 5 May 2011).

51. Hesstvedt, E.; Hov, O.; Isaacsen, I. Quasi-steady-state-approximation in air pollution modelling:
comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kinet. 1978,
10, 971–994.

52. Hochbruck, M.; Lubich, C.; Selhofer, H. Exponential integrators for large systems of differential
equations. SIAM J. Sci. Comput. 1998, 19, 1552–1574.

53. Radhakrishnan, K.; Hindmarsh, A. Description and Use of LSODE, the Livermore Solver for
Ordinary Differential Equations. Report UCRL-ID-113855. Lawrence Livermore National
Laboratory: Livermore, CA, USA, 1993.

54. Brown, P.; Byrne, G.; Hindmarsh, A. VODE: A variable step ODE solver. SIAM J. Sci.
Stat. Comput. 1989, 10, 1038–1051.

55. Hindmarsh, A.C.; Brown, P.N.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.;
Woodward,C.S. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw. 2005, 31, 363–396.

56. Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice Hall
PTR: Upper Saddle River, NJ, USA, 1971.

57. Jacobson, M.Z. Vecotr and scalar improvement of SMVGEAR II through absolute error tolerance
control. Atmos. Environ. 1998, 32, 791–796.

58. Rosenbrock, H.H. Some general implicit processes for the numerical solution of differential
equations. Comput. J. 1963, 5, 329–330.

http://www.cmaq-model.org
http://www.cmaq-model.org
http://acmg.seas.harvard.edu/geos
http://acmg.seas.harvard.edu/geos
http://cgrer.uiowa.edu/projects
http://www.messy-interface.org
http://www.acd.ucar.edu/wrf-chem

Atmosphere 2011, 2 532

59. Carmichael, G.; Sandu, A.; Potra, F.; Damian-Iordache, V.; Damian-Iordache, M. The current
state and the future directions in air quality modeling. Syst. Anal. Model. Simul. 1996,
25, 75–105.

60. Hairer, E.; Norsett, S.; Wanner, G. Solving Ordinary Differential Equations I. Nonstiff Problems;
Springer-Verlag: Berlin, Germany, 1993.

61. Jay, L.; Sandu, A.; Potra, F.; Carmichael, G. Efficient Numerical Integration for Atmospheric
Chemistry. In Proceedings of the 3rd International Congress on Industrial and Applied
Mathematics (ICIAM-1995); Hamburg, Germany, 3–7 July 1995; Kreuzer, E., Mahrenholtz, O.,
Eds.; pp. 450–453.

62. Linford, J.C.; Sandu, A. Chemical Kinetics on Multi-core SIMD Architectures. In Proceedings
of the 9th Internation Conference on Computational Science—ICCS 2009, Baton Rouge, LA,
USA, 25–27 May 2009; Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J.,
Sloot, P.M., Eds.; Springer: Hoboken, NJ, USA, 2009; Volume 5544.

63. Sander, R.; Baumgaertner, A.; Gromov, S.; Harder, H.; Jöckel, P.; Kerkweg, A.; Kubistin, D.;
Regelin, E.; Riede, H.; Sandu, A.; Taraborrelli, D.; Tost, H.; Xie, Z.Q. The atmospheric chemistry
box model CAABA/MECCA-3.0. Geosci. Model Dev. 2011, 4, 373–380. Available online:
http://www.geosci-model-dev.net/4/373 (accessed on 5 May 2011).

64. Kinetic PreProcessor (KPP). Available online: http://www.cs.vt.edu/∼asandu/Software/Kpp
(accessed on 5 May 2011).

65. Kinetic PreProcessor : Accelerated (KPPA). Available online http://code.google.com/p/kppa/
(accessed on 5 May 2011).

c© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

http://www.cs.vt.edu/~asandu/Software/Kpp
http://code.google.com/p/kppa/

	Introduction
	Stiff Integration Methods
	QSSA
	BDF Methods
	Implicit Runge Kutta Methods
	Rosenbrock Methods
	Extrapolation Methods

	Improving Computational Efficiency
	Sparse Linear Algebra
	Acceleration Aspects

	The Kinetic PreProcessor: KPP and KPPA
	The Kinetic PreProcessor: Accelerated (KPPA)

	 Numerical Results
	Conclusions

