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Abstract: The ‘Black Saturday’ fires were a series of devastating forest fires that burned 

across Victoria, Australia, during February and March of 2009. In this study we have used 

satellite data made publically available by NASA from the Ozone Monitoring Instrument 

(OMI) and the Atmospheric InfraRed Sounder (AIRS) to track the smoke plume from the 

Black Saturday firestorm and explore the chemical aging of the smoke plume in the first 

days after emission. We also determined emission ratios for formaldehyde and nitrogen 

dioxide within smoke from fires actively burning across Victoria between 7 and 17 

February 2009. The mean emission ratios with respect to carbon monoxide derived for 

these two tropospheric ozone precursors are (0.016 ± 0.004 mol.mol−1) for formaldehyde 

and (0.005 ± 0.002 mol.mol−1) for nitrogen dioxide. The mean emission ratio for 

formaldehyde with respect to CO is in broad agreement with values previously quoted  

in the literature for temperate forest fires. However, to our knowledge there are no  

previous measurements of emission ratios for nitrogen dioxide from Australian temperate 

forest fires. 

Keywords: fires; emissions; biomass burning; formaldehyde; nitrogen dioxide; carbon 
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1. Introduction 

Biomass burning releases trace gases and aerosol particles into the atmosphere with consequences 

for atmospheric chemistry and climate. Trace gases emitted by vegetation fires include greenhouse 

gases, precursors to greenhouse gases, and precursors to tropospheric ozone formation [1-4]. Several 

of the trace gases emitted by biomass burning can influence the acidity of precipitation [1,5] and both 

trace gases and aerosols can degrade air quality and pose a threat to human health [6]. Aerosols can 

also affect the transfer of radiation in the atmosphere directly by absorbing or scattering radiation or 

indirectly as cloud condensation nuclei [1,6].  

Emission ratios of nitrogen dioxide (NO2) and formaldehyde (H2CO) are important because of their 

role in the formation of tropospheric ozone. Tropospheric ozone is a major pollutant and powerful 

respiratory irritant, with detrimental effects on human health in urban environments [7]. In situ 

photochemical production of ozone is achieved via the multi-step photo-oxidation of organic 

molecules and accounts for approximately half of the global source of tropospheric ozone. The 

essential starting ingredients for this process are hydrocarbons and volatile organic compounds 

(including H2CO), nitrogen oxides (NO + NO2) and UV radiation. Carbon monoxide (CO) and H2CO 

are intermediates in the process and their oxidation also produces ozone. H2CO’s role as a key 

intermediate means that it has been used successfully to constrain the local emissions of volatile 

organic compounds [8]. In the Southern Hemisphere there are fewer industrial sources than in the 

Northern Hemisphere and thus the relative importance of biomass burning as a source of these 

precursor gases is larger. Thus combined knowledge of the emission ratios of H2CO and NO2 from 

Australian vegetation fires provides the main drivers for tropospheric ozone formation in the region. 

It has been estimated that Australia contributes 7–8% of the total carbon emissions from global 

biomass burning [9]. Whilst emissions from Australian savanna fires are well documented in the 

literature [10-13], emissions from Australian forest fires have received less attention. Studies by  

Paton-Walsh et al. [14-17] have used ground-based remote sensing to derive estimates of emissions of 

some trace gases from typical Australian forest fires including H2CO, hydrogen cyanide, methanol, 

ammonia, formic acid and some hydrocarbons. However, emissions of NO2 from Australian forest 

fires are not yet represented in emissions inventories. It is important to gather information on the 

emissions from Australian biomass burning in order to understand the role that the continent plays in 

global atmospheric chemistry and to accurately predict its future contribution. 

On Saturday 7 February 2009 (a date now known in Australia as ‘Black Saturday’), at least  

400 individual fires were ignited (by lightning and arson) in the southeastern Australian state of 

Victoria, which continued to burn throughout the state until mid-March. Smoke emitted by the fires 

was observed by numerous satellite-based sensors, including ACE, MLS, OMI and OSIRIS [18,19].  

In this study satellite data made publically available by NASA is used to determine emission ratios for 

H2CO and NO2 with respect to CO within the smoke from the Black Saturday fires. Descriptions of the 

satellite platforms and sensors used are given below. 

Aqua and Aura are two of a series of satellites known as the A-Train, orbiting in a sun-synchronous 

near-polar orbit around the Earth. The satellites of the A-Train orbit at an altitude of 705 km and an 

inclination of approximately 98 degrees. Each satellite completes 14.55 orbits per day with each 

successive orbit separated by 24.7 degrees longitude at the equator due to the rotation of the Earth. The 
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flight formation of the A-Train means that each satellite instrument within the formation views the 

same area over the Earth within about 15 minutes of any of the other satellite instruments; this is 

approximately the amount of time by which Aura lags Aqua [20]. 

The Ozone Monitoring Instrument (OMI) is carried onboard Aura and consists of two grating 

spectrometers that record daily global measurements of solar radiation backscattered from the Earth 

and the Earth’s atmosphere in the wavelength range of 270–500 nm with a spatial resolution of  

13 × 24 km in global mode [21]. From this information OMI determines column amounts of trace 

gases including H2CO (measured at spectral resolution of 0.45 nm in the UV-2: 310–365 nm) and NO2 

(measured at spectral resolution of 0.63 nm in the visible: 350–500 nm) [22]. The column amount of a 

gas is the number of molecules of the gas in a square centimetre column extending from the Earth’s 

surface to the top of the atmosphere. 

Comparisons of OMI H2CO to aircraft measurements of H2CO show good agreement at background 

levels—however a 17% negative bias in OMI H2CO total columns is observed for higher H2CO values 

(above 5 × 1015 molecules cm−2) [23]. Validation of OMI NO2 in near cloud free conditions has shown 

good agreement with ground-based measurements [24], however there is evidence from comparisons 

with high resolution retrievals that operational products are biased high by as much as 30% in remote 

areas partially as a result of coarse resolution of albedo, terrain pressure and a priori profile 

assumptions [25]. In this study Level 2 operational data products from OMI were used and thus these 

biases will feed through into the uncertainty of the derived emission ratios.  

OMI Ultra-Violet Aerosol Index is also used qualitatively in this study to help to identify the 

regions affected by smoke from the Black Saturday fires. UV Aerosol Index is an empirical measure of 

the presence of UV-absorbing aerosols such as carbonaceous aerosols from biomass burning, desert 

dust or volcanic ash. It is a logarithmic expression of the ratio of observed over calculated intensity at  

354 nm [26]. The value of UV Aerosol Index increases with the altitude of the absorbing aerosols and 

is less affected by cloud interference than aerosol optical depth.  

The Atmospheric Infrared Sounder (AIRS) is an infrared spectrometer onboard the satellite  

Aqua that measures the Earth’s outgoing radiation in the wavelength ranges of 0.4–1.0 μm (visible) 

and 3.7–15.4 μm (infrared), separating wavelengths that are sensitive to different species including 

water vapour and some trace gases[27]. AIRS has an infrared spatial resolution of 13.5 km at nadir and 

provides measurements that contribute to a daily level 3 gridded CO column amount data product with 

one degree by one degree spatial resolution. Comparisons to aircraft measurements show agreement 

nearing the target accuracy for AIRS of 15% [28].  

With a swath width of 1650 km AIRS achieves almost global coverage twice a day[27] OMI has a 

swath width of 2594 km and is also capable of almost daily global coverage[21]. The instrument 

swaths do not overlap at all latitudes, so some areas are not scanned daily but are eventually covered 

within subsequent days. In this study only data with values within the swaths of both AIRS and OMI 

are used. 

A number of previous studies have used satellite-based measurements of H2CO to constrain biogenic 

isoprene emissions [8,29] (including the use of OMI H2CO [30]) or CO to constrain the total emissions 

from biomass burning sources [31] (including studies that used AIRS CO measurements [32,33]).  
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Mebust et al [34] used OMI tropospheric NO2 in conjunction with Fire Radiative Power from the 

MODIS instrument to characterize the emissions of NO2 from different vegetation fires in California 

and Nevada, but satellite-based measurements of smoke plumes are still an under-utilized resource for 

characterizing emissions from data poor regions of the Southern Hemisphere. 

In south eastern Australian forests the fuel source is predominantly varieties of Eucalyptus tree. 

These trees are adapted for fire and can survive repeated lower intensity burning. For this reason it is 

not clear that the emissions that result from such low intensity fires (that burn mainly in the 

understory) will be the same as the emissions that result from huge firestorms like those of Black 

Saturday. For practical reasons most measurements of emission ratios come from prescribed burns that 

are typically low intensity burns lit intentionally in order to reduce the fuels loads. Thus the satellite–

based sensor measurements of emission ratios from the Black Saturday fires are particularly interesting 

because they provide a means of characterising the emissions from the most intense wildfires. 

2. Deriving Emission Ratios from OMI and AIRS Data 

Daily total column amounts of H2CO, NO2 and CO as well as maps visualizing these daily data 

products and OMI UV Aerosol Index [26] were downloaded from the Giovanni online data  

system [35]. The daily mapped column amounts for the reference gas, CO, were used in conjunction 

with MODIS thermal anomalies [36] and OMI UV Aerosol Index to define the region of the active 

fires. By limiting analyses to areas where CO and UV Aerosol Index were visibly enhanced on each 

individual day over the region of the active fires shown by MODIS thermal anomalies, CO emissions 

from the fires could be clearly distinguished from other sources of CO.  

Use of 1° latitude by 1° longitude gridded products allowed the different satellite products to be 

matched on a horizontal grid—however differences in their sensitivities, resolution and the 

approximately 15 minutes time lapse between Aura and Aqua all introduce errors in the sampling 

overlap. For total column amount CO only a single value was available per grid space, however, for 

the total column amounts of H2CO and NO2 up to 16 individual retrievals were averaged per grid 

space. Due to missing data points typically only 8–12 points were included in the averages and the 

mean values were weighted in the regression analysis by the square root of the number of points available.  

The uncertainties given for the NO2 total column amount data are derived by assuming an error of 

50% for OMI NO2 total column amount retrievals in the presence of pollution and clouds [37], then 

dividing by the square root of the number of data points averaged. Uncertainties of 25% have been 

reported for OMI H2CO total column amount measurements under biogenically enhanced  

conditions [38], however for the heavily polluted conditions of the smoke measurements used in this 

work the uncertainties may be greater and so a value of 50% was assumed, as for the NO2 retrievals. 

Mean total column amounts of H2CO and NO2 from 7 to 17 February 2009 for each grid  

space (1° latitude by 1° longitude) in the defined areas were plotted against the co-located total column 

amounts of CO. The gradient of the best straight line fit (using a linear least squares regression) to 

these points, yields the emission ratio of each gas relative to CO.  
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The CO column amounts from 7 February showed insufficient enhancements for any emission 

ratios to be determined with respect to CO, probably because the smoke plume had yet to develop 

strongly at the time of the satellite overpass on 7 February, as most of the major fires had only just 

begun on this day. There were significantly enhanced concentrations of CO, H2CO and NO2 over the 

active fire region on 8 February 2009. Data from this day yielded well correlated emission ratios with 

respect to CO (as previously reported at the Australian Meteorological and Oceanographic Society 

meeting [39]). There appeared to be a significant fraction of OMI data missing over the relevant areas 

on 9, 10, 11 and 14 February 2009, leading to increased uncertainties when averaging over the 1° 

latitude by 1° longitude grid spaces. Missing data occurs when the retrievals have been rejected by the 

processing algorithm for a variety of reasons. Significant cloud interference is likely to have 

contributed to the large amount of missing data on these days. The OMI H2CO and NO2 data that was 

available over the region on these days was poorly correlated with AIRS CO total columns. There was 

also a significant fraction of AIRS data missing on 12 February 2009 where the instrument could not 

retrieve CO total column amount data, so no emission ratios with respect to CO were determined for 

these days. Column amounts of H2CO, NO2 and CO were enhanced over the regions of the active fires 

on 13, 15, 16 and 17 February 2009 and there were no significant parts of the data missing. OMI total 

column amounts of H2CO and NO2 from these days (and 8 February 2009) at the time of the Aura 

satellite overpass are plotted against the co-located AIRS CO measured approximately 15 minutes 

earlier (at the time of the Aqua satellite overpass)—see Figure 1. The gradients of these plots (and 

their standard deviations) form daily estimates of the emission ratios and are shown in Table 1. Also 

shown are the mean values from the five days which we take as our best estimates for the emission 

ratios of H2CO and NO2 with respect to CO from the Black Saturday fires. 

Table 1. Emission ratios of H2CO and NO2 with respect to CO in smoke from the active 

Victorian fires including correlation coefficients from each linear regression analysis a. 

Date 
H2CO NO2 

ER R2 ER R2 

8 Feb. 2009 0.017 ± 0.004 0.66 0.004 ± 0.001 0.65 
13 Feb. 2009 0.020 ± 0.003 0.88 0.008 ± 0.002 0.82 
15 Feb. 2009 0.010 ± 0.004 0.44 0.005 ± 0.002 0.57 
16 Feb. 2009 0.014 ± 0.005 0.52 0.004 ± 0.002 0.47 
17 Feb. 2009 0.017 ± 0.005 0.72 0.004 ± 0.001 0.75 

Mean ER 0.016 ± 0.004 0.005 ± 0.002 
a Here ER represents the emission ratio of each trace gas with respect to CO;  
R2 represents the square of the correlation coefficient of the linear regression 
performed to obtain each emission ratio; Mean ER is the average of the 
emission ratios obtained for the days listed for each trace gas. The standard 
deviation of the emission ratios calculated for each day was taken as the 
uncertainty of the mean emission ratio. 
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Figure 1. OMI total column amounts of (a) H2CO and (b) NO2 plotted against coincident 

AIRS CO total column amount measurements within smoke from the active Victorian fires 

on various days during February 2009. Each point on the plots corresponds to an average 

total column amount for a particular 1° latitude by 1° longitude grid space over Victoria.  
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3. Discussion of Derived Emission Ratios 

The mean emission ratio derived in this work for H2CO with respect to CO of 0.016 ± 0.004 is in 

broad agreement with the two previous published values for Australian forest fires (0.019 ± 0.008 [14] 

and 0.023 ± 0.007 [15]). By using the relevant emission factor for CO, the results may also be 

compared to emission factors given in the review papers by Andreae and Merlet [40] and  

Akagi et al. [41] that form the basis of inventories used by chemical transport models. Our emission 

ratio yields an emission factor for H2CO of 1.8 ± 0.5 g kg−1 comparable to Andreae and Merlet’s  

2.2 ± 0.5 g kg−1 for extra-tropical forests using their value of 107 ± 37 g CO per kg dry fuel burned 

[40]. Similarly, using Akagi et al. CO emission factor of 122 g kg−1 and our emission ratio for H2CO 

gives 2.1 ± 0.5 g kg−1 in good agreement with their value of 1.92 g kg−1 for H2CO from extra-tropical 

forests [41]. 

The emission ratio derived for NO2 with respect to CO in this work (0.005 ± 0.002) is, to our 

knowledge, the first emission ratio for NO2 from Australian temperate forest fires. NO2 is highly 

reactive and results for different types of vegetation and in different climatic regions of the world can 

vary by several orders of magnitude. This inconsistency of results is a combination of natural 

variability (caused by different vegetation types, climatic conditions and type of combustion) and the 

uncertainties inherent in the different measurement techniques used.  

Combining the emission ratio from this study with the CO emission factors for extra-tropical forests 

gives 0.9 ± 0.3 g NO2 kg−1 using Andreae and Merlet’s 107 ± 37 g CO kg−1 and 1.0 ± 0.4 g NO2 kg−1 

using Akagi et al. 122 g CO kg−1 [40,41]. However, if we follow the more usual convention of 

expressing NOx as NO in the conversion to an emission factor we get 0.6 ± 0.2 g kg−1 and  

0.7 ± 0.3 g kg−1 of NO2 expressed as NO using Andreae and Merlet’s and Akagi et al. CO emission 

factors respectively) [40,41]. Assuming that typically 75% of the NOx in the smoke is in the form of 

NO2 [42,43], our values are significantly lower than Andreae and Merlet’s equivalent value for NOx 

from extra-tropical forests of 3.0 ± 1.4 g kg−1 but in better agreement with more recent values such as 

Akagi et al. 1.22 g kg−1 or Alvarado et al. 1.06 g kg−1 [41,44]. Interestingly it is in excellent agreement 

with Mebust et al. 0.59 ± 0.16 g kg−1 NO2 as NO from forest fires over California and Nevada which 

also used OMI NO2 measurements [34]. 

4. Chemical Aging of the Smoke from Australia’s Black Saturday Fires 

The maps of OMI UV Aerosol Index showed that the smoke plume from the huge firestorm on 

Black Saturday (7 February 2009) separated from subsequent emissions and persisted for several 

weeks, providing the opportunity to track the chemical aging of the smoke plume. In this study we 

attempt to do this by deriving ratios of H2CO and NO2 to carbon monoxide as the smoke ages over the 

first 2–3 days. The total column amounts of H2CO and NO2 derived from OMI spectra over the region 

of the smoke plume showed no significant enhancements after 10 February 2009. This is because 

H2CO and NO2 are highly reactive with atmospheric lifetimes of the order of hours [45]. In comparison 

CO has a lifetime in the order of 2 months [46] and so changes in the ratio of H2CO and NO2 with 

respect to CO as the smoke ages will be dominated by the rapid changes in the more reactive gases. 

Measurements of other longer- lived species (e.g., C2H6 and HCN from the IASI and ACE satellite 

sensors) exist and could be used to further elucidate smoke aging in this and other cases, but are not 
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yet publically available and so are not included in this study. We found that OMI UV Aerosol Index 

[26] was an excellent product for tracking smoke plumes because gaps in the data are far rarer than for 

other products that we tried (such as aerosol optical depth or different trace gas products) that are 

badly affected by cloud interference.  

Figure 2(a) shows OMI UV Aerosol Index data from 33°S, 144°E to 51°S, 170°W revealing the 

location of the Black Saturday smoke plume on 8 February 2009. Gaps in the UV Aerosol Index data 

to the edge of each satellite swath on 8 February 2009 artificially break up the plume into three areas, 

one that is close to and incorporates the active fire region, the main section that extends across the 

south island of New Zealand and a small region to the east of New Zealand. The first two areas are 

clearly visible in the OMI H2CO column amounts (see Figure 2(b)) although the third area is less clear. 

Figure 2(c) shows the OMI NO2 total column amounts with clear enhancements visible in the first area 

and small areas of enhancements visible in the other two areas. Large areas of missing data indicate 

that much of the data may have been rejected by the algorithm and this may be the result of 

interference in the signal from the smoke aerosols [24]. 

Figure 2. Images representing the travelling plume from Black Saturday from 33°S, 144°E 

to 51°S, 170°W on 8 February 2009 using (a) OMI UV aerosol index, (b) OMI H2CO total 

column amount (×1015 molecules.cm−2), (c) OMI NO2 total column amount  

(×1015 molecules.cm−2) and (d) AIRS CO total column amount (×1018 molecules.cm−2). 

 

Figures 3 and 4 show that on 9 and 10 February 2009, the smoke plume was located to the northeast 

of New Zealand’s north island. Enhancements are clearly visible in the OMI UV Aerosol Index and in 

the AIRS CO total column amounts on 10 February 2009, whilst the plume is hard to see clearly in the 

other products as early as 9 February 2009. 
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Back trajectory analysis plots produced using the British Atmospheric Data Centre online  

service [47] were used to estimate the age of the smoke measured by the satellite sensors in the first 

two regions on 8 February 2009 (4 ± 4 hours and 19 ± 5 hours respectively) and on 9 February 2009 

(36 ± 6 hours) and 10 February 2009 (60 ± 6 hours). The gradients of plots of OMI H2CO and NO2 

total columns against AIRS CO total column yielded normalized excess mixing ratios (which are 

equivalent to emission ratios but for aged smoke) [41] for each of the regions of the travelling plume 

described above and plotted against the estimated age of the smoke (see Figure 5). (Note that these 

normalized excess mixing ratios go to zero at background levels since they represent the excess 

concentration of the trace gas divided by the excess concentration of carbon monoxide). 

Figure 3. Images representing the travelling plume from Black Saturday from 15°S, 170°E 

to 45°S, 140°W on 9 February 2009 using (a) OMI UV aerosol index, (b) OMI H2CO total 

column amount (×1015 molecules.cm−2), (c) OMI NO2 total column amount  

(×1015 molecules.cm−2) and (d) AIRS CO total column amount (×1018 molecules.cm−2). 
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Figure 4. Images representing the travelling plume from Black Saturday from 10°S, 165°E 

to 45°S, 156°W on 10 February 2009 using (a) OMI UV aerosol index, (b) OMI H2CO 

total column amount (×1015 molecules.cm−2), (c) OMI NO2 total column amount (×1015 

molecules.cm−2) and (d) AIRS CO total column amount (×1018 molecules.cm−2). 

 

The time-series of NO2 to CO normalized excess mixing ratios shown in Figure 5(a) reveals a rapid 

decline with age in the Black Saturday smoke plume. NO2 declines with respect to CO from  

0.004 ± 0.001 mol.mol−1 on 8 February over the active fire, to near background levels over Area 2 on 8 

February and over the areas for 9 and 10 February when considering the levels of uncertainty. This 

decline is likely to be a symptom of the numerous destructive reactions that NO2 undergoes in the 

atmosphere, such as the oxidation of NO2 to form HNO3, PAN and other organic nitrates [46]. 

H2CO is released from the ground as a direct product of biomass burning but it has a lifetime of 

approximately three hours in daylight [45]. This is largely due to destruction by photolysis or reaction 

with the hydroxyl radical. To a lesser extent, H2CO reacts with NO3 resulting in abstraction of a 

hydrogen atom, aqueous conversion of H2CO results in formic acid and the addition of HO2 destroys 

H2CO and forms the hydroxyl methyl peroxy radical [46].  
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Figure 5. Normalized excess mixing ratios with respect to CO for (a) NO2 and (b) H2CO 

plotted as a time-series as the smoke ages from the youngest smoke measured over the 

active fire area on 8 February 2009 (~4 hours old) to the oldest smoke measured to the 

north of New Zealand on 10 February 2009 (~60 hours old). 

 

Based on its short lifetime as a consequence of destructive reactions, it could be expected that the 

ratio of H2CO to CO would appear highest on 8 February, particularly over the area of the active fires 

where the emissions were the freshest. Whilst the ratio of H2CO to CO was high over this area  

(0.017 ± 0.004 mol.mol−1), the relative amounts of H2CO were highest on 8 February over Area 2 (the 

H2CO to CO ratio was 0.024 ± 0.003 mol.mol−1), where the smoke is slightly older, having travelled 

further from the site of the fires. The high uncertainties in the derivation of these ratios mean that the 

increase may not be statistically significant, however such an increase has been reported before in aged 

smoke [13] and could result from reactive sources of H2CO from within the plume itself. H2CO is a 

known product of the oxidation of many hydrocarbons that would be prominent in a smoke  

plume [45,46]. In particular, model studies have indicated that non methane volatile organic 

compounds (NMVOCs) such as acetic acid, methanol and ethene can be a significant secondary source 

of H2CO in smoke; these compounds are estimated to account for 43% of final H2CO production [48]. 

It is also possible that the larger H2CO to CO ratio calculated for the older part of the smoke plume on 

8 February (area 2) resulted from a greater original emission ratio from the earlier stages of the active 

fires. This is plausible because the earliest fires would be expected to be dominated by flaming rather 

than smoldering combustion, and CO is associated more with smouldering phase whilst H2CO can be 

associated with both flaming and smoldering combustion [49]. 

The H2CO to CO ratios on 9 and 10 February reveal a subsequent decrease in the amount of H2CO 

within the plume as it ages. By these days the composition of H2CO had decreased to background levels 

within the respective uncertainties of the estimates, indicating that the excess H2CO from the fires and 

possible resultant reactions within the plume had disappeared. 

5. Conclusions  

We have presented emission ratios with respect to CO for the tropospheric ozone precursors H2CO 

and NO2 in smoke from the active fires that burned throughout Victoria, Australia during February 

2009. The emission ratios were derived from total column amounts obtained from the satellite-based 

instruments OMI (for H2CO and NO2) and AIRS (for CO). Mean emission ratios with respect to CO 

were determined for H2CO (0.016 ± 0.004 mol.mol−1) and NO2 (0.005 ± 0.002 mol.mol−1) within 
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smoke from fires actively burning between 7 and 17 February 2009. The mean emission ratio for 

H2CO with respect to CO is in broad agreement with values previously quoted in the literature for 

temperate forest fires. The result for NO2 is especially significant because (to our knowledge) it is the 

first measurement of an emission ratio for this important gas from Australian forest fires. 

OMI UV Aerosol Index has been used to track the smoke plume emitted from the Black Saturday 

firestorm on 7 February 2009. Comparison of the changing column amounts of H2CO and NO2 from 

OMI with CO columns from AIRS reveals information about the changing composition of the smoke 

plume as it ages. Large enhancements in all three of these trace gases were observed in the plume. NO2 

column amounts exhibited a rapid decline with time, whilst H2CO column amounts peaked once the 

plume had begun to age, then declined and eventually dissipated after the third day. The apparent 

increase after aging (if statistically significant) could actually result from a larger emission ratio from 

the earlier stages of the active fires but also may be attributed to reactive sources of the trace gas from 

within the plume itself.  

We found that OMI UV Aerosol Index was an excellent product for tracking smoke plumes and 

believe that this method could yield exciting new information on the chemical aging of smoke if applied 

to datasets from other satellite based sensors (such as IASI) which include longer lived species. 
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