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Abstract: Drought forecasting plays a crucial role in drought mitigation actions. Thus, this 

research deals with linear stochastic models (autoregressive integrated moving average 

(ARIMA)) as a suitable tool to forecast drought. Several ARIMA models are developed for 

drought forecasting using the Standardized Precipitation Evapotranspiration Index (SPEI) in a 

hyper-arid climate. The results reveal that all developed ARIMA models demonstrate the 

potential ability to forecast drought over different time scales. In these models, the p, d, q, 

P, D and Q values are quite similar for the same SPEI time scale. This is in correspondence 

with autoregressive (AR) and moving average (MA) parameter estimate values, which are 

also similar. Therefore, the ARIMA model (1, 1, 0) (2, 0, 1) could be considered as a general 

model for the Al Qassim region. Meanwhile, the ARIMA model (1, 0, 3) (0, 0, 0) at 3-SPEI 

and the ARIMA model (1, 1, 1) (2, 0, 1) at 24-SPEI could be generalized for the Hail region. 

The ARIMA models at the 24-SPEI time scale is the best forecasting models with high R2 

(more than 0.9) and lower values of RMSE and MAE, while they are the least forecasting at 

the 3-SPEI time scale. Accordingly, this study recommends that ARIMA models can be very 

useful tools for drought forecasting that can help water resource managers and planners to 

take precautions considering the severity of drought in advance. 
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1. Introduction 

Water demand has significantly increased in many parts of the world, especially in hyper-arid regions 

that are facing a shortage of available water resources. To make matters worse, world-climatic change 

is leading to more droughts on the Earth’s surface [1]. Additionally, droughts have always been a normal, 

recurrent event in arid and semi-arid areas [2]. Floods and droughts projected for the 21st century show 

large significant changes from those in the 20th century [3]. Prominently, the impact of intense long 

drought on natural ecosystems essentially concerns regional agriculture, water resources and the 

environment [4]. The lack of a precise assessment of drought in certain situations may lead to incorrect 

decisions and actions by managers and policy makers [5]. Therefore, scientists categorized the drought 

phenomenon into four major groups: meteorological, agricultural, hydrologic and socio-economic [6,7]. 

These drought categories are usually described using drought detection and monitoring indices, which 

are based on different natural variables in given time intervals, such as precipitation (PCPN), soil 

moisture, potential evapotranspiration (PET), vegetation condition, ground water and surface water [8]. 

In other words, a drought index captures the physical characteristics and their associated impacts. 

The most important drought characteristics that may have to be taken into consideration within the 

index are: the duration, intensity, magnitude and spatial extent of the drought [9]. However, combining 

these characteristics in one index is extremely difficult. Thus, many researchers have proposed various 

indices; among these are: the Palmer Drought Severity Index (PDSI) [10], Surface Water Supply Index 

(SWSI) [11], Palfai Aridity Index (PAI) [12], Standardized Precipitation Index (SPI) [13] and 

Standardized Precipitation Evapotranspiration Index (SPEI) [14]. In fact, the drought analysis via one of 

these indices depends on the nature of the index, local conditions, data availability and validity [15]. 

The pros and cons of the above-mentioned drought indices depend on the simplicity and temporal 

flexibility of their application. The World Meteorological Organization (WMO) is recommending the SPI as 

a standard drought index [16]. This is because of the simplicity of its calculations, since precipitation data 

themselves are sufficient to conduct the test without requiring any statistical complications [17–19]. In 

addition, the SPI could show a high performance in detecting and measuring drought intensity [20]. 

Despite this convenience, the SPI has still some problems in terms of water balance. Therefore, the SPEI 

was developed to avoid these problems in the SPI version. The SPEI takes into consideration the 

sensitivity of PDSI to the changes in PET and the multi-scalar nature of the SPI [21]. The calculation 

procedure of SPEI is similar to that of SPI [14]. Hence, the difference between the two indices is that 

the SPEI uses the climatic water balance (the difference between PCPN and PET). The SPEI, therefore, 

has been used in recent studies as an appropriate index to monitor the drought in many locations of the 

world [21–24]. 

Nowadays, the major challenge in drought research is to develop suitable methods and techniques to 

predict the onset and termination points of droughts [25]. Hence, the importance of drought forecasting 

comes from the future mitigation of drought impacts [26]. Several attempts have been made to apply 
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statistical models in hydrologic drought forecasting based on time series methods, such as autoregressive 

integrated moving average (ARIMA) models, exponential smoothing and neural networks. The ARIMA 

is a typical statistical analysis model that uses time series data to predict future trends [27]. It can be used in 

predicting the hydrologic variables, such as: annual and monthly stream flows and precipitation [28].  

The ARIMA model approach can outperform most other statistical models, like exponential smoothing and 

neural network, in hydrologic time series [29]. This relative advantage of the ARIMA model is due to its 

statistical properties, as well as the well-known methodology in building the model. 

Much research has focused on drought forecasting in recent years. Mishra and Singh developed a new 

hybrid wavelet-Bayesian regression model for simulating the hydrological drought time series [30]. 

Özger et al. created a combination model based on wavelet and fuzzy logic for long lead-time drought 

forecasting [31]. Özger et al. investigated the use of a wavelet fuzzy logic model to estimate the PDSI 

based on meteorological variables [32]. Mishra et al. developed a drought forecasting model using 

hybrid, individual stochastic and artificial neural network (ANN) models for drought forecasting based 

on SPI [33]. These attempts were useful and satisfactory in forecasting time series droughts. 

It should be emphasized that, in the previous mentioned published articles, the SPEI was not used as 

the drought index. Therefore, the main objective of the present study is to develop the stochastic models 

(ARIMA) to fit and forecast the SPEI series at different time scales, in addition to providing a descriptive 

analysis of drought-relevant climate parameters during 61 years (1950–2011). 

2. Methodology 

2.1. Study Area 

This study was conducted in the Al-Qassim and Hail regions in the central part of the kingdom of 

Saudi Arabia (KSA). The regions have a total area of 157,000 km2 (Figure 1a). The predominant terrain 

according to the digital elevation model (DEM) is plain lands with some peaks higher than 2000 m  

(Figure 1b). Five cities across both regions are selected to perform the study: Buraydah, Ar Rass and Ash 

Shinan from Al-Qassim and Hail and Al Ghazalah from Hail. Their altitudes vary from 616 to 1083 m 

above sea level. 

2.2. Data Sources and Preparation 

The available monthly records of precipitation, maximum and minimum air temperature of the 

selected locations were obtained from two data sources: the first is the Global Precipitation Climatology 

Center [34], while the second is the Presidency of Meteorology and Environment (PME) of the KSA. 

Data from both sources were compared to each other in order to complete the missing data and establish 

data series for the period 1950–2011. The other missing climatic data were estimated from the 

neighboring weather stations using linear regression methods [35]. The quality of established data series 

was investigated through non-parametric tests. 

A long-term dataset for SPEI series of 3-, 6-, 12- and 24-month time scales for each selected location 

(Figure 1b) were created from the Global SPEI database (SPEIbase V2.0) [36]. This database offers 

long-time, robust information about drought conditions at the global scale, with a 0.5-degree spatial 

resolution and a monthly time resolution. It has also a multi-scale character that provides time-scales for 
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the SPEI between 1 and 48 months. This dataset is made available under the open database license [37]. 

According to drought classification based on SPEI (Table 1), drought events occur at a time when the 

value of SPEI is negative, while they end when the SPEI value turns positive. The calculation of the 

SPEI in V2.0 is based on the original SPI (the calculation procedure is described in detail by  

Li et al., [38]) and the climatic water balance (PCPN-PET) that uses the FAO-56 Penman–Monteith  

equation [39]. The PET equation can be expressed as follows:  

𝑃𝐸𝑇 =  
0.408 ∆ (𝑅𝑛  −  𝐺) + 𝛾 (900

(𝑇 +  273)⁄ ) 𝑈2 (𝑒𝑠 − 𝑒𝑎)

∆  +  (1 +  0.34 𝑈2)
 (1) 

where Δ is the slope of the vapor pressure curve (kPa·°C−1), Rn the surface net radiation (MJ·m−2·day−1), G the 

soil heat flux density (MJ·m−2·day−1), 𝛾 the psychometric constant (kPa·°C−1), T the mean daily air temperature 

(°C−1), U2 the wind speed (m·s−1), es the saturated vapor pressure and ea the actual vapor pressure. 

 

Figure 1. (a) Map of the administrative regions of the Kingdom of Saudi Arabia (KSA) with 

the indication of the study location (dotted blue area). (b) Digital elevation map for  

Al-Qassim and Hail with the study’s selected weather stations that are used in this paper. 
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Table 1. Classes of dryness/wetness grade according to the Standardized Precipitation 

Evapotranspiration (SPEI) values. 

SPEI Value SPEI Classes 

SPEI ≤ −2 Extremely dry 

−2 < SPEI ≤ −1.5 Severely dry 

−1.5 < SPEI ≤ −1 Moderately dry 

−1 < SPEI ≤ 1 Near normal 

1 < SPEI ≤ 1.5 Moderately wet 

1.5 < SPEI ≤ 2 Severely wet 

SPEI ≥ 2 Extremely wet 

2.3. Autoregressive Integrated Moving Average (ARIMA) Modelling Approach 

Stochastic or time series models (ARIMA) are an approach of time series forecasting. The models 

provide a systematic-empirical method for forecasting and analyzing the hydrologic time series data. 

Therefore, the Box-Jenkins approach for ARIMA model development allows an appropriate remedy for 

non-stationarity in the historical time series data. This property of the ARIMA model is due to the 

combination of the autoregressive (AR) and moving average (MA) parts. The AR and MA create the 

multiplicative ARIMA (p, d, q) (P, D, Q)S model, where (p, d, q) is the non-seasonal part and  

(P, D, Q)S is the seasonal part of the model. The non-seasonal part of the ARIMA model (AR) can be 

expressed as: 

∅ (𝐵) ∇𝑑  𝑍𝑡  =  θ (𝐵) 𝑎𝑡 (2) 

where ∅ (𝐵) and θ (𝐵) are polynomials for p and q order, respectively. 

Meanwhile, the seasonal part of the ARIMA model that defines the multiplicative seasonal of model 

can be written as: 

∅𝑝 (𝐵) Φ𝑃 (𝐵𝑠) ∇ 𝑑  ∇𝑠
𝐷 𝑍𝑡  =  θ𝑞 (𝐵) Θ𝑄 (𝐵𝑠) 𝑎𝑡 (3) 

where p, d and q are non-negative integers that refer to the order of the autoregressive, integrated and 

moving average parts of the model, respectively; and P, D, Q and S are the order of seasonal  

auto-regression, the number of seasonal differencing, the order of seasonal moving average and the 

length of the season, respectively. ∅𝑝,  Φ𝑃,  θ𝑞 , and Θ𝑄 are coefficients of the polynomials. 

2.4. Autoregressive Integrated Moving Average (ARIMA) Model Development 

Basically, the development and selection of the appropriate ARIMA model are achieved by an 

iterative procedure that consists of three steps [27,40,41]; these steps are as follows. 

2.4.1. Model Identification 

This step consists of identifying the possible ARIMA model that represents the behavior of the time 

series. The series behavior was investigated by the autocorrelation function (ACF) and partial 

autocorrelation function (PACF). The ACF and PACF were used to assist in determining the order of 

the model. The information provided by ACF and PACF is useful to suggest the type of models that can 

http://en.wikipedia.org/wiki/Autoregressive_model
http://en.wikipedia.org/wiki/Moving-average_model
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be built. The final model was then selected using the penalty function statistics through the Akaike 

information criterion (AIC) and Schwarz-Bayesian criterion (SBC). These criteria help to rank models 

(models having the lowest value of criterion being the best). The AIC and SBC take the mathematical 

form as shown below: 

𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔 (𝐿)  +  2 𝑘 (4) 

 𝑆𝐵𝐶 = −2 𝑙𝑜𝑔 (𝐿) + 𝑘 𝑙𝑛 (𝑛) (5) 

where k is number of parameters in the model, (p + q + P + Q); L is the likelihood function of the ARIMA 

model; and n is the number of observations. 

2.4.2. Parameter Estimation 

After identifying the appropriate model as an essential step, the estimation of model parameters was 

achieved. The model estimate values for the AR and MA parts were calculated using the procedure 

suggested by Box and Jenkins [40]. The AR and MA parameters were tested to make sure that they are 

statistically significant or not. The associated parameters, such as standard error of estimates and their 

related t-values, are also calculated.  

2.4.3. Diagnostic Checking 

Diagnosing the ARIMA model is a crucial part and the last step of the model development. It refers 

to the model adequacy that checks the model assumptions certainly. This model adequacy assures that 

the time series satisfies the model assumptions and that the forecast is reliable. Several diagnostic 

statistics and plots of residuals are investigated to see if the residuals are correlated white noise or not. 

The conducted residuals analysis of each SPEI fitted model is summarized as follows: ACF and PACF 

of residuals, histograms of residuals and residual distribution around the mean. The performance of the 

predictions resulting from the ARIMA (p, d, q) (P, D, Q)S models was evaluated by the following 

measures for goodness-of-fit: 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸)  =  
1

𝑁
 ∑  | (𝑋𝑚)𝑖  −  (𝑋𝑠)𝑖|

𝑁

𝑖=1

 
(6) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸)  =  √
1

𝑁
 ∑  [(𝑋𝑚)𝑖  −  (𝑋𝑠)𝑖]2

𝑁

𝑖=1

 
(7) 

where N is the number of forecasting events, Xm the observed SPEI and Xs the predicted SPEI. 

In this study, all of the SPEI forecasting ARMIA models have been developed using the forecasting 

feature incorporated in the IBM SPSS 20 software [42]. Since the seasonal models require a periodicity, 

the seasonal cycle was set as an integer equal to 12. 
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3. Results and Discussion 

3.1. Climate Descriptive Analysis 

A descriptive analysis of climatic parameters was conducted as an attempt to understand the behavior 

of drought over the study area better. Table 2 represents annual means of the most drought-relevant 

parameters. Based on statistical reasoning, there are no significant differences in mean annual 

temperatures between the studied meteorological stations; where the highest temperature value  

was recorded in Ar Rass City (26.44 °C·year−1). Meanwhile, the lowest value was recorded in Hail City  

(21.83 °C·year−1). Concurrently, the monthly maximum mean temperature occurred in June, July and 

August; whereas the lowest monthly mean temperature was recorded in December, January and 

February. Generally, Al-Qassim is warmer than Hail; this slight rise in monthly mean temperature may 

be due to the variation in altitudes in both regions. 

Along with the temperature, the monthly mean precipitation is varied over the year. Generally, very 

low precipitation rates are in most months of the year, except June, July, August and September having 

without no precipitation. Both regions presently have a high difference between the monthly mean 

precipitation and PET (water deficit), as presented in Table 2. The water deficit for Buraydah, Ar Rass, 

Ash Shinan, Hail and Al Ghazalah were 165.37, 169.12, 146.46, 131.74 and 162.4 mm year−1, 

respectively. This deficit in water supply needs to be compensated by other water resources and/or 

following good water management and rationalization methods. Similar trends of PET appear in many 

places in the world, such as China [43]. 

Overall, the analysis of drought-relevant climatic parameters for both regions is proving notable 

decreasing levels in precipitation. This precipitation associates with a significant increase in temperature. 

Therefore, this situation will drive an acute increment in the frequency and magnitude of drought 

episodes [44,45]. In fact, the primary reason for concern about turning to drought conditions is that they 

have a direct negative impact on the actual water resources. 

Table 2. Coordinates and altitude of the weather stations used in this study with  

drought-relevant climatic parameters.  

No. Station 
Altitude 

(a.m.s.l) 
Time Series Latitude Longitude Tm, °C·year−1 Pm, mm·year−1 PET, mm year−1 

1 Buraydah 616 19502011 26ᵒ21′51.89″ 43ᵒ58′18.93″ 24.28 19.92 185.29 

2 Ar Rass 692 19502011 25ᵒ51′46.39″ 43ᵒ29′11.91″ 26.44 15.21 184.33 

3 Ash Shinan 914 19502011 27ᵒ09′27.79″ 42ᵒ26′22.48″ 22.96 18.25 161.71 

4 Hail 1005 19502011 27ᵒ26′20.44″ 41ᵒ41′28.59″ 21.83 20.36 152.10 

5 Al Ghazalah 1083 19502011 26ᵒ47′14.72″ 41ᵒ18′53.97″ 25.87 13.15 175.55 

Tm = mean annual temperature; Pm = mean annual precipitation; PET = potential evapotranspiration. 

3.2. Drought Frequency Variations 

The SPEI time series plots at different time scales covering the period 1950–2011 for Al-Qassim and 

Hail regions are depicted in Figure 2. These figures show that the whole study area is going toward more 

droughts. For a deeper investigation of drought variation frequency, the time series of the study period 

is divided into two main sub-periods (i.e., 1950–1979 and 1981–2011) for both regions. The drought 

http://www.thefreedictionary.com/concurrently
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frequencies are calculated and then plotted in Figure 3. Generally, the frequency curve of the first  

sub-period was almost above the curve of the second period; therefore, an increasing drought frequency 

was occurring during both sub-periods in all areas. In the first sub-period (1950–1979), a moderately dry 

condition was relatively low in comparison with the second sub-period (1981–2011). The drought 

frequency was 0.58%, 1.39%, 2.21%, 2.67 and 0.80% in Buraydah, Ar Rass, Ash Shinan, Hail and 

Ghazalah, respectively. Meanwhile, there is a significant increase in the drought frequencies (moderately 

dry condition) during the second sub-period. These frequencies are 19.90%, 17.52%, 20.38%, 15.73% 

and 17.21% in Buraydah, Ar Rass, Ash Shinan, Hail and Ghazalah, respectively. Based on this analysis, 

the drought episodes become more frequent in all study areas.  

Figure 4 depicts the SPEI at different time scales for Buraydah and Hail cities during the study period. 

As is evident from this figure, the drought episodes are fluctuating in both cities. In the first five decades, 

the overall drought trend is approaching the natural limits of near normal and moderately wet scales with 

intermittent anomalous values in some years. These anomalous values are attributed to rainfall scarcity; 

whereas, in the last decade, the onset of drought conditions with severely and extremely dry began to 

emerge. Both cities represent a similar time evolution, with minimal distinguished differences between 

them. This circumstance is a result of climate change impact [8] and appears in other places in the world, 

e.g., Egypt [22], Turkey [46], Portugal [47] and China [24]. 

 

 

 

Figure 2. Cont. 

 



Atmosphere 2015, 6 418 

 

 

 

 

Figure 2. Standardized Precipitation Evapotranspiration Index (SPEI) series at different time 

scales for Al-Qassim and Hail regions during 1950–2011. 

  

  

 

Figure 3. Drought cumulative percent of the Standardized Precipitation Evapotranspiration 

Index (SPEI) series over a 24-month time scale for different locations within the central area 

of Saudi Arabia. 
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(a) 

 
(b) 

Figure 4. Temporal evolution for the data series of Standardized Precipitation Evapotranspiration 

Index (SPEI) at time scales from one to 24 months for the period 1950–2010 in (a) Buraydah and 

(b) Hail cities. 

3.3. Autoregressive Integrated Moving Average (ARIMA) Model Development 

Although it is difficult to forecast drought, relatively reliable drought forecasting remains a vital tool 

for water resource managers. Thus, in this study, a number of ARIMA models were developed using the 

SPEI data series at different time scales. The datasets from 1950 to 1989 were used for model 

development at 3-, 6-, 12- and 24-SPEI time scale. The ARIMA model development is described briefly 

for Al Ghazalah City as an instance.  

3.3.1. Model Identification 

Looking at the sample ACF and PACF plots of the time series in Figure 5, there are non-seasonal and 

seasonal pattern in the time series. The ACF is damping out in a sine-wave behavior with some 

significant spikes along the time series. There is a significant spike at Lag 1 in the PACF, which refers 

to AR (1) as the non-seasonal part of the ARIMA model. The final model selection was based on the 

lowest values of the penalty function statistics (AIC and SBC). The identified best models for all cities 

at different SPEI time scales according to minimum AIC and SBC are shown in Table 3. 
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Table 3. Autoregressive integrated moving average (ARIMA) models of Standardized 

Precipitation Evapotranspiration Index for various study areas with forecasting fit measures 

and penalty function statistics for each estimated model of observed and predicted data. 

R2 = coefficient of determination; RMSE = root mean square error; MAE = mean absolute error; AIC = Akaike 

information criterion; SBC = Schwarz-Bayesian criterion. 

 

 

Figure 5. Autocorrelation function (ACF) and partial autocorrelation function (PACF) based 

on a periodicity of 12 months for model selection at different Standardized Precipitation 

Evapotranspiration Index (SPEI) time series. 

  

Area SPEI Time Series ARIMA Model 
Fit Measures Penalty Function Statistics 

R2 RMSE MAE AIC SBC 

Buraydah 

3 (1, 0, 2) (0, 0, 0) 0.670 0.698 0.542 239.254 253.091 

6 (0, 0, 5) (1, 0, 1) 0.831 0.498 0.373 467.596 499.880 

12 (0, 1, 2) (0, 0, 1) 0.944 0.281 0.189 826.347 840.180 

24 (1, 1, 0) (2, 0, 1) 0.972 0.192 0.128 1076.379 1094.821 

Ar Rass 

3 (0, 0, 3) (0, 0, 0) 0.647 0.730 0.566 210.688 224.525 

6 (1, 0, 6) (0, 0, 0) 0.812 0.533 0.377 423.325 455.609 

12 (0, 1, 1) (0, 0, 1) 0.931 0.318 0.204 743.279 752.500 

24 (1, 1, 0) (2, 0, 1) 0.966 0.218 0.138 993.164 1011.607 

Ash Shinan 

3 (1, 0, 3) (0, 0, 0) 0.659 0.706 0.531 235.168 253.616 

6 (0, 0, 5) (0, 0, 0) 0.830 0.494 0.363 468.527 491.588 

12 (0, 1, 1) (0, 0, 1) 0.942 0.282 0.190 821.192 830.413 

24 (1, 1, 0) (2, 0, 1) 0.970 0.93 0.129 1071.550 1089.993 

Hail 

3 (1, 0, 3) (0, 0, 0) 0.656 0.708 0.534 232.990 251.438 

6 (0, 0, 5) (0, 0, 0) 0.830 0.492 0.363 470.854 493.915 

12 (0, 1, 1) (0, 0, 1) 0.942 0.281 0.190 824.935 834.157 

24 (1, 1, 0) (2, 0, 1) 0.970 0.194 0.130 1067.399 1,085.842 

Al Ghazalah 

3 (1, 0, 3) (0, 0, 0) 0.677 0.677 0.511 261.893 280.342 

6 (1, 0, 5) (0, 0, 0) 0.845 0.464 0.337 511.111 538.783 

12 (0, 1, 2) (0, 0, 1) 0.948 0.263 0.179 868.984 882.816 

24 (1, 1, 0) (2, 0, 1) 0.974 0.180 0.121 1117.324 1135.766 
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3.3.2. Model Parameter Estimate 

Table 4 presents model parameters at different lags, standard error, t-value and the associated 

significance value at a significance level < 0.05 for Al Ghazalah city. It can be observed that the standard 

error of most model parameters is very small compared to the parameter values. This is with the 

exception of the model parameter values of the SPEI at three-month time scale. Additionally, all of the 

ARIMA model parameters are significant at significance level < 0.05. Thus, these parameters should be 

combined in the model. The same conclusion was found in the other models.  

Table 4. Statistical analysis of autoregressive integrated moving average (ARIMA) model 

parameters, including the autoregressive (AR) and moving average (MA) orders with 

associated significance values at significance level < 0.05 for Al Ghazalah City. 

SPEI Time Series Parameter Lag Estimate Value Standard Error t-value Sig. 

3 

AR 1 0.612 0.105 5.84 0.000 

MA 1 −0.383 0.117 −3.27 0.001 

 2 −0.361 0.104 −3.46 0.001 

 3 0.227 0.094 2.43 0.016 

6 

AR 1 0.410 0.054 7.54 0.000 

MA 1 −0.738 0.048 −15.49 0.000 

 2 −0.647 0.054 −12.01 0.000 

 3 −0.522 0.052 −9.99 0.000 

 4 −0.481 0.043 −11.30 0.000 

 5 −0.545 0.033 −16.74 0.000 

12 

MA 1 −0.223 0.037 −6.08 0.000 

 2 −0.088 0.037 −2.41 0.016 

MA, Seasonal 1 0.717 0.027 26.35 0.000 

24 

AR 1 0.249 0.036 6.98 0.000 

AR, Seasonal 1 −0.357 0.048 −7.47 0.000 

 2 −0.496 0.034 −14.54 0.000 

MA, Seasonal 1 −0.526 0.052 −10.14 0.000 

Sig. = significance value. 

3.3.3. Diagnostic Checking of Residuals  

After the estimation of model parameters, diagnostic checking was performed to verify the adequacy 

of the model. The ACF and PACF of the residuals at different time scales are shown in Figures 6 and 7. 

All of the ACF and PACF values are within the confidence of 0.01 bands for all lags. Therefore, there 

is no significant correlation between residuals. Figure 8 depicts the histograms of residuals for the SPEI 

at different time scales, which are normally distributed. This indicates that the fitted model is adequate 

for the SPEI time series data and residuals to white noise. Figure 9 shows the scatterplots of the residuals 

against predicted values of SPEI at different time scales. In this case, the scatterplots show no obvious 

patterns, and all of the residuals are distributed randomly around zero. Consequently, forecasts of these 

models are good and adequate. 

Table 3 presents the highest accuracy forecasting models related to each considered SPEI time scale 

with accuracy fit measures (R2, RMSE, and MAE). Generally, drought forecasting with ARIMA models 

in Al-Qassim and Hail has shown considerable results, with R2 ranging between 0.656 and 0.974. 

However, in most cases, the R2 of all ARIMA models increases to greater than 0.8, which matches with 

the lower values of RMSE and MAE. This is with the exception of ARIMA models at the three-month 
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time scales, which demonstrate the lowest R2 values. Therefore, it can be summarized that the ARIMA 

models with longer time scales are manifesting a forecasting ability and fitting accurately with the 

drought prediction in the future. Very similar results appear around the world and apply to the SPI, which 

is the basis of the SPEI, i.e., China [48] and India [29]. 

It is noted that the SPEI time series for all cities has almost the same trend for similar time series 

(Figure 2). Additionally, the signals of the 12-SPEI and 24-SPEI time series are similar; similarly for the 

signals of the 3-SPEI and 6-SPE time series. Therefore, the order d equal to one appears for the time 

series based on 12 and 24 months, while this do not appear in the corresponding 3- and 6-month scales. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Autocorrelation function (ACF) of residuals of Al Ghazalah City as a best-fitted 

model for data series of standardized precipitation evapotranspiration index (SPEI) at 

different time scales during the period of 1950–2010; (a) 3-SPEI, (b) 6-SPEI, (c) 12-SPEI 

and (d) 24-SPEI.  

  
(a) (b) 

Figure 7. Cont. 
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(c) (d) 

Figure 7. Partial autocorrelation function (PACF) of residuals of Al Ghazalah City as a  

best-fitted model for data series of standardized precipitation evapotranspiration index 

(SPEI) at different time scales during the period of 1950–2010: (a) 3-SPEI, (b) 6-SPEI, (c) 

12-SPEI and (d) 24-SPEI. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Histogram of residuals of Al Ghazalah City as a best-fitted model for data series 

of standardized precipitation evapotranspiration index SPEI at different time scales during 

the period of 1950–2010: (a) 3-SPEI, (b) 6-SPEI, (c) 12-SPEI and (d) 24-SPEI. 
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(a) (b) 

  
(c) (d) 

Figure 9. Residuals vs. predicted values of Al Ghazalah City as a best-fitted model for data  

series of standardized precipitation evapotranspiration index (SPEI) at different time scales 

during the period of 1950–2010: (a) 3-SPEI, (b) 6-SPEI, (c) 12-SPEI and (d) 24-SPEI. 

3.3.4. Model Forecasting 

Obviously, forecasting plays an important role in decision making. It can help to foresee the future 

uncertainty based on the behavior of the past and current observations. The forecasting through the 

ARIMA models provides a good basis for hydrologic phenomena. For drought forecasting, one city from 

each region has been selected and then used to forecast drought. The testing data series of the SPEI at 

different time scales is from 1990 to 2011. The predicted and observed SPEI were plotted for evaluating 

the extent of agreement between both data series; Buraydah and Hail cities represent Al-Qassim and 

Hail regions, respectively. The comparison of both observed and predicted data (Figures 10 and 11) 

illustrates the high accuracy of forecasted values. Undoubtedly, by increasing the number of SPEI time 

series, the ability of the model to forecast the future will be enhanced. The reason for the enhancement 

is that the increasing number of SPEI time series refines the SPEI’s output values, which decreases 

abrupt shifts of the SPEI curve.  

By comparing the AR and MA coefficients, it is found that the ARIMA models of the 24-month time 

scale for Buraydah and Ar Rass are quite similar. Meanwhile, the ARIMA models of three-month time 

scale are similar in Ash Shinan, Hail and Al Ghazalah. The same remarks were realized with ARIMA 

models of the 24-month time scale. Table 5 presents the similar parameter estimates between the 

developed ARIMA models for both regions. From the results in Table 3, the values of p, d, q, P, D and 

Q obtained from the models fitted for the five cities are quite similar at the same time scales. Therefore, 
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the ARIMA model (1, 1, 0) (2, 0, 1) at 24-SPEI could be generalized for the entire Al-Qassim region. 

Additionally, the ARIMA model (1, 0, 3) (0, 0, 0) at 3-SPEI and the ARIMA model (1, 1, 1) (2, 0, 1) at  

24-SPEI could be applied to the whole Hail region. This is because they are located near each other.  

Table 5. Similar parameter estimate values at the same Standardized Precipitation 

Evapotranspiration Index (SPEI) time scale including the autoregressive (AR) and moving 

average (MA) orders with associated significance values at significance level < 0.05 for  

both regions. 

Region City SPEI Time Series Parameter Lag Estimate Value SE t-value Sig. 

Al-Qassim 

Buraydah 

24 AR 1 0.204 0.036 5.64 0.000 

-- AR, Seasonal 1 −0.186 0.051 −3.63 0.000 

-- -- 2 −0.536 0.032 −16.77 0.000 

-- MA, Seasonal 1 −0.319 0.061 −5.27 0.000 

Ar Rass 

24 AR 1 0.172 0.036 4.73 0.000 

-- AR, Seasonal 1 −0.247 0.050 −4.90 0.000 

-- -- 2 −0.525 0.033 −16.14 0.000 

-- MA, Seasonal 1 −0.386 0.058 −6.62 0.000 

Hail 

Ash Shinan 

3 AR 1 0.609 0.116 5.24 0.000 

-- MA 1 −0.373 0.128 −2.91 0.004 

-- -- 2 −0.328 0.115 −2.85 0.004 

-- -- 3 0.239 0.100 2.38 0.017 

24 AR 1 0.223 0.036 6.21 0.000 

-- AR, Seasonal 1 −0.304 0.050 −6.08 0.000 

-- -- 2 −0.495 0.034 −14.60 0.000 

-- MA, Seasonal 1 −0.474 0.055 −8.57 0.000 

Hail 

3 AR 1 0.636 0.113 5.61 0.000 

-- MA 1 −0.343 0.126 −2.73 0.007 

-- -- 2 −0.286 0.114 −2.51 0.012 

-- -- 3 0.260 0.098 2.66 0.008 

24 AR 1 0.232 0.036 6.47 0.000 

-- AR, Seasonal 1 −0.358 0.049 −7.28 0.000 

-- -- 2 −0.473 0.035 −13.63 0.000 

-- MA, Seasonal 1 −0.537 0.053 −10.22 0.000 

Al Ghazalah 

3 AR 1 0.612 0.105 5.84 0.000 

-- MA 1 −0.383 0.117 −3.27 0.001 

-- -- 2 −0.361 0.104 −3.46 0.001 

-- -- 3 0.227 0.094 2.43 0.016 

24 AR 1 0.249 0.036 6.98 0.000 

-- AR, Seasonal 1 −0.357 0.048 −7.47 0.000 

-- -- 2 −0.496 0.034 −14.54 0.000 

-- MA, Seasonal 1 −0.526 0.052 −10.14 0.000 

Sig. = significance value. 
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Figure 10. Observed and predicted standardized precipitation evapotranspiration index 

(SPEI) series over different time scales based on mean precipitation during 1990 to 2011 for 

Buraydah City. 

  

  

Figure 11. Observed and predicted standardized precipitation evapotranspiration index 

(SPEI) series over different time scales based on mean precipitation during 1990 to 2011 for 

Hail City. 
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4. Conclusions  

In this work, the SPEI is presented as a powerful multi-scalar drought index to investigate drought 

event variations in Al-Qassim and Hail regions. The objective of this study has been divided into two 

parts. The first part of the objective is the assessment of climatic parameters and drought frequency based 

on SPEI. According to this assessment, both regions are suffering from the presence of water deficit 

condition up to 169.12 mm·year−1 in Ar Rass City as a result of high temperatures that are associated 

with low precipitation rates. Therefore, the risk of drought occurrence increases due to the water deficit, 

which eventually will create tremendous threats to water resources. At the same time, the SPEI variation 

is going towards an abnormal trend of drought (severely and extremely dry) since the last decade. 

Anyway, these results should sound alarm bells in hyper-arid regions. 

It is worth noting that one of the most problematic issues facing hydrologists is forecasting drought 

events. Hence, the second part of the objective was developing and testing the ARMIA models for 

drought forecasting using SPEI with 3-, 6-, 12-, 24-month time scales. Based on the AIC and SBC values, 

the best ARIMA models were identified. The reliability of forecasted future values is a core point for 

forecasters. This is because the drought mitigation policies will be implemented based on the forecasted 

values. Thus, after the estimation of the parameters of selected models, a series of diagnostic checking 

tests were performed. Among the possible ARIMA models, the ARIMA model (1, 1, 0) (2, 0, 1) at  

24-SPEI could be chosen as a general model for the Al-Qassim region. Meanwhile, the ARIMA model  

(1, 0, 3) (0, 0, 0) at 3-SPEI and the ARIMA model (1, 1, 1) (2, 0, 1) at 24-SPEI could be generalized for 

the Hail region. These results may be due to the cities being located near each other. It is also noted that 

the results obtained from the ARIMA models for the studied cities showed that the ARIMA model at  

the 24-SPEI time scale is the best forecasting model, which matches the high coefficient of determination 

R2 (more than 0.9) and lower values of RMSE and MAE. Meanwhile, the ARIMA model at the 3-SPEI 

time scale is the worst model for drought prediction for all cities. Since these ARIMA models show their 

powerful ability in drought forecasting, they can play a very important role as useful tools for water resource 

managers and planners to take precautions considering drought for other hyper-arid regions in advance. 

Obviously, the linkage between the climate change represented in droughts and available water 

resources is necessary. Thus, in hyper-arid regions, confronting the actual/future drought conditions with 

withdrawal/recharge periods of groundwater is one of the most important investigations and should be 

considered as a priority in future research. 
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