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Abstract: In order to monitor nighttime particular matter (PM) air quality in urban area, a
back propagation neural network (BP neural network) inversion model is established, using
low-light radiation data from the day/night band (DNB) of the Visible Infrared Imaging Radiometer
Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite. The study
focuses on the moonless and cloudless nights in Beijing during March–May 2015. A test is
carried out by selecting surface PM2.5 data from 12 PM2.5 automatic monitoring stations and the
corresponding night city light intensity from DNB. As indicated by the results, the linear correlation
coefficient (R) between the results and the corresponding measured surface PM2.5 concentration
is 0.91, and the root-mean-square error (RMSE) is 14.02 µg/m3 with the average of 59.39 µg/m3.
Furthermore, the BP neural network model shows better accuracy when air relative humility ranges
from 40% to 80% and surface PM2.5 concentration exceeds 40 µg/m3. The study provides a superiority
approach for monitoring PM2.5 air quality from space with visible light remote sensing data at night.

Keywords: low-light; nighttime PM2.5; VIIRS/DNB; BP neural network

1. Introduction

PM2.5 refers to atmospheric particulates with aerodynamic diameters less than 2.5 µm in ambient
air [1]. Although atmospheric particulates account for a small proportion of the particles in earth’s
atmosphere, they have an important impact on air quality, air visibility, atmosphere radiation balance,
atmospheric photochemical reactions, and clouds and precipitation [2]. In comparison with coarse
particulates in the atmosphere, due to a large surface area, PM2.5 can easily become carriers and
reactants of other poisonous and hazardous substances. With the properties of long-distance transport
and long-time retention in the atmosphere, PM2.5 can cause the damage to human health and ambient
air conditions. PM2.5 mass concentration has become an important basis for evaluating ambient air
quality. In 2012, a PM2.5 standard for ambient air was established in China; PM2.5 concentration limits
were formally included into the National Ambient Air Quality Standard. The Level-I standard average
annual and daily limits are specified at 15 µg/m3 and 35 µg/m3 respectively; the Level-II standard
average annual and daily limits are specified at 35 µg/m3 and 75 µg/m3, respectively.

At present, means for monitoring PM2.5 mainly includes the Tapered Element Oscillating
Microbalance (TEOM) method, β-ray method and light scattering method [3]. However, despite
high measuring accuracy and continuity in time of ground-based observations, it is still difficult to
implement large-range overall monitoring because of high instrument costs and a small coverage
area. Along with the development of remote sensing technology, satellite remote sensing data has
gradually been applied to the inversion of PM2.5. Existing inversion methods mainly depend on
Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) products [4–6],
but MODIS products are only limited to daytime application, thus limiting the timeliness of PM2.5
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monitoring, and cannot carry out monitoring at night. Due to the limitation of nighttime visible
sensor, there are few studies on nighttime PM2.5 monitoring until the appearance of Operational Linear
System (OLS) aboard the Defense Meteorological Satellite Program-Operational Linear System (DMSP)
and Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting
Partnership (S-NPP) satellite.

The S-NPP satellite, which launched in October 2011, is the first satellite of a new generation of
National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project
in the USA [7]. VIIRS inherits and develops a series of detection abilities of the Advanced Very High
Resolution Radiometer (AVHRR) and MODIS. Particularly, VIIRS DNB has improved and optimized
the low-light detection ability of the DMSP-OLS [8]. It can provide basic low-light sensitivities with
the ability to see details in imagery at night.

Nighttime monitoring of PM2.5 is of great significance in many aspects. First, as diurnal variation
of PM2.5 is characterized by significant periodicity, a more accurate diurnal variation of PM2.5 could
be acquired by combining nighttime monitoring results with daytime [9]. Second, factors leading
to changes in PM2.5 during dust-haze pollution have also obvious reaction at night such as relative
humidity, temperature, wind speed and the nocturnal thermal inversion layer [10]. At the same time,
motor vehicle exhaust, coal combustion, construction dust and secondary aerosols are also a main
source of nighttime PM2.5 [11]. The analysis of these factors will contribute to better understanding of
the formation and dissipation rules of PM2.5, and more rational formulation of control measures by
relevant departments.

The potential of using VIIRS DNB for PM2.5 air quality monitoring at night has been illustrated
by reaserchers [12]. The application of advanced statistical models improves the correlation coefficient
of ground-based measured PM2.5 concentration and the derived PM2.5 concentration [13]. However,
meteorological elements also impact the air quality at night. In the present work, we conducted a
study focused on moonless and cloudless nights in Bejing during March–May 2015. Based on VIIRS
DNB nighttime data, the BP neural network model is established to monitoring air quality. With the
consideration of meteorological elements and the use of spatially and temporally paired data, the
accuracy of the proposed BP neural network is improved.

We present data and methods in Section 2, results and discussion in Section 3, and conclusion
in Section 4.

2. Data and Methods

2.1. Site Description and Instrumentation

In this paper, 12 PM2.5 automatic monitoring sites in Beijing in the spring of 2015 (March–May)
are selected as ground-based observation points (as shown in Table 1). The 12 sites, as shown in
Figure 1, are located in Beijing (39.4◦–41.6◦N, 115.7◦–117.4◦E), north China with the typical north
temperate semi-humid continental monsoon climate. And this area is featured by a high-temperature
rainy summer, cold and dry winter, as well as short-duration spring and autumn. The fine particulate
matter PM2.5 in Beijing mainly comes from construction dust, industrial emissions, fire coal, biomass
burning, secondary aerosol and motor vehicle emission, and can represent the haze pollution in North
China. 12 ground monitoring sites selected in this paper are nationally controlled points. As an urban
background point, Dingling site in the suburb is located in a topographically open area, with less
impact from local circulation, and thus can represent the background situation of ambient air quality
of the whole city or even North China region. Three monitoring sites are located in the suburb such as
Changping site, Huairou site and Shunyi site. In addition, the remaining 8 monitoring sites located
in urban areas are arranged in a small park at an intersection or on a lawn, very close to regions
with high density of population, with less human disturbance and desirable air circulation conditions.
The monitoring data can reflect the situation of ambient air quality in Beijing effectively.
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Table 1. Summary information of the 12 Beijing PM2.5 sites.

No. Site District Location Longitude Latitude

A Dingling Changping Suburb 116.170 40.287
B Changping Changping Suburb 116.230 40.195
C Huairou Huairou Suburb 116.643 40.394
D Shunyi Shunyi Suburb 116.720 40.144
E Wanliu Haidian Urban 116.315 39.994
F OlympicCenter Chaoyang Urban 116.407 40.003
G Xigong Xicheng Urban 116.366 39.867
H Tiantan Dongcheng Urban 116.434 39.874
I Dongsi Dongcheng Urban 116.434 39.952
J Nongzhan Chaoyang Urban 116.473 39.971
K Gucheng Shijingshan Urban 116.223 39.928
L Guanyuan Xicheng Urban 116.361 39.942
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Figure 1. Image of VIIRS DNB radiances for Beijing under different PM2.5 concentration.  
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Figure 1. Image of VIIRS DNB radiances for Beijing under different PM2.5 concentration.

The above 12 PM2.5 automatic monitoring sites adopt the EPA-certified automatic monitor Tapered
Element Oscillation Microbalance TEOM1405 F (made by US Thermo) equipped with a Filter dynamics
measurement system (FDMS) with a sample cutting diameter of 2.5 µm and a temporal resolution of 1 h.
The sampling tube of the automatic monitor equipped with FDMS adopts 30 ◦C constant temperature
heating to dehumidify sampling airflow, so as to make the airflow arriving at the sampling filter dry
air. The sampling airflow rate is 1 m3/h, namely, 16.67 L/min. This automatic monitor can determine
the decrease in volatile and semi-volatile particulate matter, and gradually correct and compensate
determined results to the maximum extent [14].

2.2. Data

2.2.1. PM2.5 Mass Concentration Data

The hourly ground observation data of PM2.5 mass concentration per day during March–May 2015
can be obtained via the air quality publishing platform of Beijing municipal environmental monitoring
center [15].

2.2.2. VIIRS DNB Nighttime Light Data

VIIRS is provided with 22 earth observation channels, including 16 moderate resolution channels
(M1–M16) with the nadir spatial resolution of 0.742 km, 5 imaging resolution channels (I1–I5) with the
nadir spatial resolution of 0.375 km, and 1 day and night band (DNB) with a nearly constant resolution
of 0.742 km across the scan swath. As a low-light detection band, DNB has a broad spectral coverage
of 0.4–0.9 µm with a central wavelength of 0.7 µm and a radiation dynamic range up to 107 magnitude
(4 × 10−9–3 × 10−2), and can receive weak visible radiation from moonlight, starlight and airglow.
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Compared with DMSP-OLS, VIIRS-DNB has been improved in many aspects. In order to realize higher
radiation resolution, DNB implements detection by means of dynamic gain, namely, high gain for
low radiation scene, medium gain for medium radiation scene, low gain for high radiation scene; the
relative radiation gain is up to 119,000:477:1 (high: medium: low gain); the radiation range of each gain
mode exceeds 500:1. These three DNB gains (high, medium, low) digitized with 13, 13 and 14-bits [16].
These improvements made to DNB not only avoid the pixel saturation, but also enhance radiation
resolution, making DNB still able to detect meteorological and surface features under very weak night
illumination conditions, and obtain more clear and accurate nighttime light images.

VIIRS products include data products at different processing levels, i.e., Raw Data Record (RDR),
Sensor Data Record (SDR) and Environment Data Record (EDR) [17]. In terms of environmental
quantitative monitoring such as city lighting, fire, low stratus, fog, land and sea surface temperature,
VIIRS data has shown their tremendous potential. Three types of VIIRS data are used in this paper:
(a) VIIRS/DNB SDR data (SVDNB); (b) VIIRS/DNB geographical SDR data (GDNBO); (c) VIIRS/M15
SDR data (SVM15). SVDNB data product provides nighttime light radiation information; GDNBO
data product provides corresponding geographical information of longitude, latitude, moon phase
angle, moonlight illumination, azimuth and zenith angles of the moon, azimuth and zenith angles
for satellite observation; SVM15 data product is used to judge whether there is cloud in the night sky,
so as to screen out the cloudless night.

2.2.3. Meteorological Data

Meteorological data such as temperature, dew point temperature, relative humidity, wind speed
and atmospheric pressure are measured at Beijing Capital International Airport site. The moon rise
and fall time is obtained from CalSKY website [18].

2.3. Method

2.3.1. Theoretical Basic

At night, moonlight and articial light are two major visible light sources. Artificial light radiation
becomes the main light source collected by DNB in the moonless night. The spectra of artificial
lights can highly vary, depending on the bulb variety and the color temperature of the light bulb [19].
But the radiances from city lamps are primarily greater than 0.4 µm and less than 0.65 µm within the.
The city light radiation intensity indicates the variation of PM2.5 mass concentration well [12].

We assume that the upward visible radiation from the earth’s surface layer is Lambertian [12].
At night, the satellite crosses Beijing at 1:30 am (local time); as after midnight, the intensity and
distribution of city lighting are relatively stable. It can be assumed that the radiation intensity of city
lighting received by DNB is a constant intensity of I0 during our three-month study period. Thus,
I0 can be treated as a constant for each location within DNB pixel, but it is varying spatially.

With multiple scattering neglected, the nighttime light radiation intensity I reaching a satellite
conforms to Beer’s law as shown by the equation:

I = I0e−τ
/

µ (1)

wherein, τ refers to atmospheric optical thickness, and µ is the cosine of satellite viewing angle θ.
The Equation (2) is obtained by sorting out the Equation (1),

τ = µln (I0)− µln (I) (2)

wherein, for the pixel of the same location in any image, ln (I0) is a constant. Fine particulate matter
PM2.5 makes certain contribution to atmosphere optical thickness τ. Assuming the profile of aerosol
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extinction coefficient is stable in the nocturnal boundary layer, PM2.5 is mixed evenly within an effective
height. Therefore, τ can be expressed as follows:

τ = k× PM2.5∗ (3)

where k refers to a coefficient, which is related to mass extinction efficiency and aerosol mixing
height [12]. Therefore, the Equation (2) can be converted into the Equation (4):

PM2.5∗ = −Aln(I) + AB (4)

where A is µ
k , B represents ln (I0). Based on radiation transport theory, this equation establishes the

relationship between the surface PM2.5 mass concentration and the radiation value obtained by DNB.
Through multiple regression analysis and statistical analysis, a quantitative inversion model can be set
up after meteorological correction.

2.3.2. Models

The cloudy night sky can be removed by use of nighttime VIIRS/M15 band (10.26–11.26 µm)
infrared cloud images. By combining ground meteorological information as well as the rising & setting
time of moon, the moonless and cloudless night is selected as the sample. Finally, 17 clear nights are
screened out from March to May 2015.

(1) Data Preprocessing

Due to a great impact on physical and optical properties of fine particulate matter in the
atmosphere by a large amount of water vapor existing in ambient air, the relative humidity factor
f (RH) needs to be introduced to correct the humidity of the determined PM2.5 mass concentration,
so as to enhance its correlativity with radiation intensity of nighttime artificial lights. On the basis of
existing experience [20], the PM2.5 mass concentration after humidity correction is obtained from the
following equation:

PM2.5
∗ = PM2.5 × f (RH) = PM2.5 ×

1
1− RH/100

(5)

wherein, PM2.5
∗ refers to the PM2.5 mass concentration after humidity correction; RH means relative

humidity in percentage.
In the selected 17 days as samples, 12 PM2.5 automatic monitoring sites carry out continuous

monitoring of PM2.5 mass concentration each day. Total 198 samples are obtained (missing data
excluded). Each sample has 6 input parameters. In this way, network input is a 6-dimensional vector.
Due to different dimensions and magnitudes of these data, in order to eliminate dimensions and unify
magnitudes, and speed up network computing, a normalized way should be used to input data before
network creation. The specific normalization equation is as follows:

xnorm = 0.5×
(

x− xmean

xmax − xmin

)
+ 0.5 (6)

wherein, x and xnorm refer to values before and after the normalization of input variables respectively; ,
xmax and are the mean, maximum and minimum values of input variables respectively. In order to
ensure that the established model has excellent generalization ability, the number of training sample
should be enough large. Therefore, by using random approach, 70% of input data is served as training
samples, 15% as test samples and 15% as verification samples.

(2) Model

As VIIRS/DNB radiation data is surface data, in order to precisely match the point data of PM2.5

automatic monitoring sites on the point scale, mean of DNB radiance data of 5 × 5 pixels (approx.
3.7 km × 3.7 km) around PM2.5 automatic monitoring sites could be selected to correspond to surface
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measured PM2.5. Thus, spatially and temporally paired DNB radiance data, temperature, dew point
temperature, relative humidity, atmospheric pressure and wind speed parameters are used as inputs
to the model, and surface measured PM2.5* as model output.

A. Multiple Regression Model

Equation (5) establishes the link between PM2.5 concentration and the intensity of lights collected
by the VIIRS DNB. The multiple regression based on meteorological elements and the Equation (5),
which is based on the radiative transfer theory, can provide a way of PM2.5 monitoring.

Leave-one-out cross validation is applied to create the multiple regression model. For each sample,
we have 7 sets of known variables (of PM2.5*, DNB radiance data, temperature, dew point temperature,
relative humidity, atmospheric pressure and wind speed), the regression analysis can be conducted
198 times. Each time, only 197 sets of variables are used in the regression leaving 1 set of variables out
for evaluating the result of regression. For each sample, PM2.5* is the dependent variable in regression.

B. BP Neural Network Model

In comparison with the general multiple statistical regression, neural network has very superior
multivariable nonlinear fitting ability [21]. BP neural network (error back propagation neural network)
is most commonly used among neural networks. Its main characteristics are as follows: forward
propagation of signals and back propagation of errors. BP neural network has one input layer, one or
several hidden layers and one output layer. As theoretically proved, 3-layer network system structure
with one hidden layer can approximate any nonlinear problem.

The topological structure of the proposed BP neural network consisted of six neurons in the input
layer, one hidden layer with thirteen neurons and one output neuron in the output layer. Thus, the
structure of BP neural network can be set as 6-13-1 (as shown in Figure 2). IW1,1 is the weight matrix
between neurons in input layer and in hidden layer. b1 is the threshold matrix of neurons in hidden
layer. LW2,1 is the weight matrix between neurons in hidden layer and in output layer and b2 is the
threshold matrix of neurons in output layer.
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After simulation results of BP neural network model are obtained via the aforementioned steps,
the Equation (6) is utilized for reverse determination of the variable x; then PM2.5 mass concentration
is obtained by reverse normalization of output results.

(3) Model evaluation

Mean bias (MB), normalized mean bias (NMB), normalized mean error (NME) and root mean
square error (RMSE) are used as evaluation indexes of model inversion results [22]. MB and RMSE
reflect the magnitude of bias and error between the inversion value and measured value; NMB and
NME reflect the magnitude of relative bias and error between the inversion value and measured
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value; if NMB and NME values are less than 50%, the inversion results of model are good. MB,
NMB, NME and RMSE are calculated according to the following equations: MB = 1

|N| ∑
n∈N

(ym − yo),

NMB =
∑

n∈N
(ym−yo)

∑
n∈N

yo
, NME =

∑
n∈N
|ym−yo |

∑
n∈N

yo
, RMSE =

√
1
|N| ∑

n∈N
(ym − yo)

2. In the equation, yo is the

observations and ym is the result of the inversion model.
To sum up, the inversion of PM2.5 mass concentration based on VIIRS/DNB low-light is made

by establishing a statistical model between the intensity of nighttime light radiance obtained from
VIIRS/DNB and surface measured PM2.5 concentration. The specific methods are as follows: (1) NPP
satellite and PM2.5 auto monitor carry out observation in a synchronized way, and PM2.5 auto monitor
is utilized to acquire the monitoring values of PM2.5 mass concentration at various sites at the time of
the satellite crossing; (2) The atmosphere optical thickness (τ) is obtained by the atmospheric radiation
transfer theory and light radiance values obtained from VIIRS/DNB; (3) Multiple regression analysis
and statistical analysis are conducted on spatially and temporally paired aerosol optical depth and
the monitoring values of PM2.5; (4) Through the correction of temperature, dew point temperature,
relative humidity, wind speed and atmospheric pressure parameters, the quantitative inversion model
of PM2.5 mass concentration by DNB is obtained. The inversion flowchart is shown in Figure 3.
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3. Results and Discussion

3.1. Analysis of Meteorological Element

Main factors affecting atmospheric diffusion ability comprise: (1) meteorological dynamics;
(2) meteorological thermodynamics. Meteorological dynamics refers to wind and turbulence having
a major impact on the diffusion and dilution of pollutants in the atmosphere. Meteorological
thermodynamics is involved with temperature stratification and stability [23]. Temperature
stratification represents the distribution of temperature with height, and has an impact on the airflow in
vertical direction. For example, due to the night thermal inversion layer in spring, vertical convection
movement of air is blocked, making atmospheric particulates formed at night difficult to diffuse.

Figure 4 shows the Time sequence diagram of ground-based observed meteorological elements
and PM2.5 measured by TEOM when the satellite crosses Beijing in the spring (March–May) of
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2015. In the figure, vertical coordinates on the left represent the distribution of all meteorological
elements (red line); vertical coordinates on the right represent the PM2.5 concentration monitoring
value (blue line). It can be seen that relative humidity is basically consistent with PM2.5 monitoring
value in the variation trend, and positive correlation relationship exists between them. When relative
humidity is less than 30%, air is generally dry and clean, and PM2.5 concentration level is fairly low
(below 25 µg/m3). The variation of wind speed is contrary to that of PM2.5. Negative correlation
relationship exists between them. At higher wind speed (above 5 m/s), particulate pollutants in the
atmosphere can be diffused, making PM2.5 mass concentration below 30 µg/m3, and even at 5 µg/m3,
hence air quality is fair. At lower wind speed (1–2 m/s), the diffusion of pollutants in the atmosphere
is restricted, making PM2.5 mass concentration maintained at above 50 µg/m3, and even at 312 µg/m3,
and air quality is also bad. Ammonium nitrate (NH4NO3) in PM2.5 has very strong volatility. Along
with temperature rise, NH4NO3 is mainly present in the form of HNO3 and NH3. Moreover, along
with a gradual increase of rainfall in spring, the mean level of PM2.5 mass concentration is reduced to
some extent, and events of heavy pollution are relatively decreased, which is related to active airflow
exchange after temperature increase as well as stopped heating in Beijing during April and May.
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concentration monitoring value; (c) Time sequence diagram of temperature and PM2.5 concentration
monitoring value.

Based on the above analysis, it can be preliminarily seen that dust-haze is generally accompanied
by appropriate relative humidity (60%–85%), calm wind or small wind (1 m/s–2 m/s). The time of
satellite crossing is at about 2:00 a.m.; radiation temperature drop makes humidity obviously increased;
thus, the relative humidity collected at this time is maintained at a high level. It is clear that each
meteorological element has a certain impact on PM2.5 mass concentration, so it should be taken into
consideration during the establishment of the quantitative model.

3.2. Model Verification

198 sample sets are utilized to build the multiple regression model and BP neural network
model respectively. According to leave-one-out cross validation, the inversion value of PM2.5 mass
concentration is obtained, and compared with the actual monitoring value of PM2.5 and analyzed for
the evaluation of these models. As seen from Table 2, MB, NMB, NME and RMSE of inversion results
of BP neural network model are 0.17 µg/m3, 0.29%, 16% and 14.02 µg/m3 respectively, which are all
superior to inversion results of the multiple regression model (10.71 µg/m3, 18%, 62%, 46.03 µg/m3).
It illustrates that inversion results of the BP neural network model are more accurate.

Table 2. Model evaluation.

MB NMB NME RMSE

Multiple regression model 10.71 18% 62% 46.03
BP neural network model 0.17 0.29% 16% 14.02

Inversion results of the BP neural network model are further compared with actual results.
Figure 5 shows the comparison of PM2.5 mass concentration inverted by the BP neural network model
and ground monitoring value. In Figure 5a, the dash line represents a datum line with a slope of 1,
and the solid line is the fitting curve of the predicted PM2.5 and measured PM2.5. The magnitude of
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slope value of the fitting curve represents the closeness of the predicted value and measured value
of PM2.5 mass concentration; the bigger the slope value is, the closer the predicted result is to the
measured value. It can be seen that the comparison of PM2.5 mass concentration (X) predicted by the
BP neural network model with the measured value (Y) shows quite high linear correlation with the
correlation coefficient R of 0.91, and the linear fitting equation Y = 0.9952X + 0.1096. As seen from
the sample sequence comparison of Figure 5b, the overall bias in the inversion results is close to zero
(Mean ± Standard Deviation of X : 59.399± 30.175 and Y : 59.222± 33.141), and they basically keep
the consistent variation trend. Such results indicate that the PM2.5 mass concentration predicted by the
BP neural network model has certain credibility and accuracy.
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3.3. Relative Humidity Impact Analysis

Figure 6 shows comparison results of inversion values and TEOM1405F monitoring values of
PM2.5 mass concentration under different relative humidity (RH) conditions, with linear fitting and
correlation analysis made. As indicated by the results, when the relative humidity in the range of
40% to 80%, the correlation coefficient between PM2.5 mass concentration predicted by the model and
measured by TEOM1405F is above 0.8; but when the relative humidity is less than 40% or greater
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than 80%, the predicted PM2.5 has a slightly larger difference with measured PM2.5. Cause analysis:
when the relative humidity is less than 40%, the air is generally dry and clean, and the concentration
level of PM2.5 is low, causing unobvious attenuation of visible light by rare particulates, making the
variation of visible light radiation obtained through DNB also unobvious, and reducing the sensitivity
of the BP neural network model, as a result, reducing the correlation of inversion results. When the
relative humidity is more than 80%, due to reinforced attenuation of visible light by water vapor,
the attenuation of visible light by particulates is weakened, resulting in a bigger error of inversion
results and thus a larger difference with monitoring results. However, due to insufficient monitoring
data under different relative humidity conditions, the study on the impact of relative humidity on
inversion results still needs more observation data for analysis.
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3.4. Influence of PM2.5 Concentration on the Application Scope of BP Neural Network Model

Based on the BP neural network approach, PM2.5 mass concentration values inverted by DNB
at night have good consistency with measured values, but this model is somewhat limited during
inversion. This paper carries out comparative analysis of PM2.5 mass concentration values inverted
by the BP neural network model (predicted values) and PM2.5 mass concentration monitored by
TEOM1405F (measured values). Deviation rate is defined as

Deviation rate =
predicted values−measured values

measured values
(7)

Figure 7 is the comparison diagram of PM2.5 mass concentration values inverted by the BP neural
network model and TEOM1405F monitoring values. In the figure, the red represents ±0.5 times of
deviation. Clearly, when PM2.5 mass concentration is less than 40 µg/m3, inversion results have a
bigger difference from the values measured by the automatic monitor, and the maximum deviation
rate is up to 8. However, when PM2.5 mass concentration is more than 40 µg/m3, the deviation rate
is basically controlled between two red lines, i.e., within ±0.5 times. Therefore, when PM2.5 mass
concentration in the atmosphere is less than 40 µg/m3, it is not recommended to use this method for
PM2.5 detection.
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Figure 7. Deviation rate of predicted PM2.5.

Issues to be optimized in the future work: (i) Human activities mainly occur in the early half of the
night, while NPP satellite crosses Beijing in the later half of the night. Therefore, ground artificial light
source as background light source is stable, and it can be assumed that background light intensity is
unvarying. However, within a 3-month time scale, it is unavoidable for background light source to vary.
The further work is to get rid of effects brought by the variation of background light source through
making background base images; (ii) According to infrared images of VIIRS/M15, it is very difficult to
distinguish low clouds, thin clouds and heavy fog. In the moonless night, the weakening of light by
low clouds, thin clouds and heavy fog is close to the weakening of light by aerosol particles, and their
presence will affect inversion accuracy. The judgment of low clouds, thin clouds and heavy fog needs
to depend on more NPP/VIIRS cloud detection production; (iii) With regard to the mixed-layer height
of aerosol, because it is impossible to carry out real-time onsite measurement, this paper assumes that
the profile of aerosol extinction coefficients of nighttime boundary layer is stable, and the mixed-layer
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height of aerosol is processed as a constant. In the future work, this processing method for the
mixed-layer height of aerosol will be improved once observation data of this element is obtained.

4. Conclusions

In this study, based on the radiative transfer theory, we establishes the inversion model of
nighttime PM2.5 concentration by using VIIRS/DNB low-light data. The main conclusions can be
summarized as follows:

The study focused on the moonless and cloudless nights in Beijing during March–May 2015.
The ground-based observation shows that, during the 3-month period, the dust-haze is generally
accompanied by appropriate relative humidity (60%–85%), calm wind or small wind (1 m/s–2 m/s).
Spatially and temporally paired elements such as DNB data, temperature, dew point temperature,
relative humidity, atmospheric pressure and wind speed are considered to establish the multiple
regression inversion model and BP neural network inversion model respectively. The MB, NMB, NME
and RMSE of the BP neural network model are 0.17 µg/m3, 0.29%, 16%, 14.02 µg/m3 respectively,
while them of the multiple regression model respectively are 10.71 µg/m3, 18%, 62%, 46.03 µg/m3,
which shows the BP neural network model are superior to the multiple regression model. And the
linear correlation coefficient (R) between inversion results of the BP neural network model and the
corresponding measured PM2.5 is 0.91, and the RMSE is 14.02 µg/m3 with the average of 59.39 µg/m3.
The analysis of BP neural network model sensitivity suggests that the model is more accurate when
the relative humidity is 40%–80% and ground PM2.5 mass concentration exceeds 40 µg/m3.

The main innovation of this study is presented as follows. The meteorological elements is firstly
introduced to the inversion model to improve the accuracy. And spatially and temporally paired
data of ground-based and satellite observation are used to create the inversion model to ensure the
facticity of the model. In addition, we use the mean of DNB radiance data of 5 × 5 pixels (approx.
3.7 km × 3.7 km) around ground-based PM2.5 automatic monitoring sites to correspond the PM2.5

mass concentration in order to make the areal data of DNB match the point data of PM2.5 well.
The establishment of the BP neural network model for PM2.5 mass concentration provides a

feasibility reference for further large-scale monitoring of the spatial distribution of PM2.5 concentration
and improvement of assessment methods for nighttime air quality in the city.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/7/10/136/s1,
Figure S1: Structure of BP Neural Network.
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