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Abstract: The surface area of ambient aerosols can be considered as an index of toxicity because an
increased surface area may be able to act as a catalyst for specific reactions between particles and
cells, as well as a carrier for co-pollutants, such as gases and chemicals. The aerosol surface area
concentration was measured together with black carbon (BC) and other chemical species such as
organic compounds, sulfate, and nitrate in Fukuoka, Japan, and the effect of the chemical composition
of aerosols on their surface area was investigated. Aerosol surface area concentration was highly
correlated with BC concentration for the entire period. Day-of-week variation and diurnal variation
also showed the strong correlation between aerosol surface area and BC. This implies that even
though BC accounts for relatively small percentage (in this study, 3.5%) of PM2.5 mass, it should
receive considerable attention when aerosol surface area is considered as an index of adverse health
effects caused by exposure of the human body to aerosols. Sulfate aerosol does not usually affect
aerosol surface area in Fukuoka, but it may occasionally have a significant effect when the airmass
contains an excess amount of relatively smaller particles of sulfate derived from volcanic SO2.

Keywords: aerosol mass spectrometer (AMS); black carbon (BC); diffusion charging; nanoparticle
surface area monitor (NSAM); PM2.5; volcanic emission

1. Introduction

A large number of studies are currently being conducted, or are planned for the future, that
are directed toward understanding the effects of exposure to atmospheric aerosols on human health.
This is based on the worldwide acknowledgement that these aerosols are potentially hazardous to
humans [1–3]. In particular, ultrafine particles with diameters below 100 nm (nanoparticles) are
considered to have a much stronger toxicity than larger particles [4–6]. Experimental studies in rats
have shown that equivalent mass doses of ultrafine particles are more potent than large particles of
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similar chemical composition in causing pulmonary inflammation and lung tumors [6,7]. Numerous
researchers conducting particle exposure experiments on rats or mice have proposed that surface area
is a more appropriate indicator than mass for evaluating pulmonary inflammatory responses caused
by exposure to manufactured nanomaterials, such as TiO2, fullerenes, and carbon nanotubes [8–10].
The surface area of ambient aerosols can also be considered as an index of toxicity because an increased
surface area may be able to act as a catalyst for specific reactions between particles and cells, as well as
a carrier for co-pollutants, such as gases and chemicals [11,12].

The most common method used for measuring the specific surface area of particles (given surface
area values per unit mass), particularly in the field of material science, is the Brunauer–Emmett–Teller
(BET) method [13]. The relationship between the specific surface area of manufactured nanomaterials
and toxicity caused by exposure to these materials has been discussed on the basis of specific surface
area values measured using the BET method [8–10]. However, it is difficult to experimentally measure
the actual surface area of atmospheric aerosol particles due to limitation of aerosol sample amount
that can be collected by ordinary sampling methods [14–16].

Other surface area measurement methods that have a much higher time resolution than the
BET method are needed for practical and continuous measurement of ambient aerosol surface area.
Recently, a nanoparticle surface area monitor (NSAM) was developed for continuous particle surface
area concentration measurement, using the diffusion charging method [16–20]. The concept of NSAM
is that the particle surface area is proportional to the charge of particles that are forced to be charged
by certain types of chargers [19]. The NSAM has a mixing chamber where particles are mixed with
positive ions emitted by a corona discharge. Positively charged particles are collected by a conductive
filter, then the current is measured using an electrometer connected to a sensitive amplifier. Excess
ions are removed by an ion trap before they reach the conductive filter. The actual NSAM output is
the lung-deposited surface area (LDSA) concentration of particles. The NSAM can be reliably used to
supply information on the LDSA of ultrafine particles, especially for the size range of nanoparticles
between 20 nm and 400 nm [21,22].

The NSAM has also been applied to measure the ambient aerosol surface area concentration,
which can be converted from the LDSA [16,23–25]. According to these previous studies, aerosol surface
area concentration was closely correlated with the concentrations of black carbon (BC) and BC-like
particulate forms of polycyclic aromatic hydrocarbons (pPAHs). These findings are considered to be
realistic because BC (or BC-like) particles are usually submicron agglomerates consisting of primary
soot particles with diameters in the range of tens of nanometers [23,26]. However, how chemical
species other than BC contribute to the variation in ambient aerosol surface area concentration is
still open for further discussion. In this study, the aerosol surface area concentration was measured
together with BC and other chemical species such as organic compounds, sulfate, and nitrate, and the
effect of the chemical composition of aerosols on their surface area was investigated.

2. Experiments

2.1. Monitoring Period and Site

Monitoring for this study spanned the period from 11 March to 29 April 2015. The monitoring site
was the fourth floor of a building of the Fukuoka Institute for Atmospheric Environment and Health
(33.55˝N, 130.36˝E) at Fukuoka University, Japan [27,28]. Fukuoka University is in a residential area,
located at a distance of 5 km from the downtown area, and the site is several hundred meters away
from a city highway. Fukuoka city has a population of approximately 1.5 million and is one of the
largest cities in northern Kyushu, Japan, which faces the Asian continent. Aerosols in Fukuoka are
transported from the Asian continent, as well as local area; therefore, this site is suitable to find the
differences in the aerosol surface area as well as their chemical compositions along with aerosol sources.
Previous studies have shown that variation in PM2.5 concentration around this site was significantly
affected by long-range transport of aerosols from the Asian continent [27,29].
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2.2. Aerosol Surface Area

A nanoparticle surface area monitor (NSAM, Model 3550, TSI Inc., MN, USA) was used to measure
surface area concentration using the diffusion charging method. The flow rate of the NSAM was
2.5 L/min, and time resolution was set to 10 min in this study. The NSAM had a cyclone with a
50% cut-off of 1 µm at the inlet; thus, the surface area concentration of PM1.0 is actually measured
by the NSAM. Aerosol surface area was converted from the LDSA (the actual NSAM reading). The
procedure of the conversion from LDSA to aerosol surface area has been described elsewhere [16],
and is briefly summarized in the following. The NSAM calibration constant is determined by passing
the monodispersed aerosol simultaneously through the scanning mobility particle sizer (SMPS) and
the NSAM. Specifically, the total surface area of the 80-nm NaCl particles determined by the SMPS
is multiplied by the lung deposition efficiency of 80-nm particles determined by the lung deposition
curve for a reference worker reported by the ICRP [30]. In this study, we measured the tracheobronchial
deposited surface area values using the NSAM, and then converted them into aerosol surface area by
dividing by the ICRP deposition efficiency of 80-nm particles.

2.3. Aerosol Chemical Composition, Number and Mass Concentration, and Sulfur Dioxide Concentration

An aethalometer (AE-16U, Magee Scientific Corp., CA, USA) was used for measuring the BC
mass concentration in PM2.5 [29]. A Sharp-Cut Cyclone SCC1.829 (BGI Inc., NJ, USA) was used
as PM2.5 inlet. The BC concentration is estimated on the basis of the absorption rate of incident
light caused by BC. Generally, the BC concentration measured using an aethalometer will show
reasonable agreement with elemental carbon measured using the thermal-optical method [31,32]. The
wavelength of the incident light used in the aethalometer was 880 nm. The flow rate of the aethalometer
was 5.0 L/min, and the time resolution was set to 15 min in this study.

The chemical composition of the aerosols (PM1.0) was measured and analyzed using a
quadrupole-type aerosol mass spectrometer (Q-AMS, Aerodyne Research, Inc., MA, USA) [28]. A
detailed description of the Q-AMS can be found elsewhere [33–39]. A brief introduction is as follows.
Ambient aerosol particles are introduced through an aerodynamic lens to form a particle beam that
eventually reaches the vaporizer where the temperature is set to 873 K (600 ˝C). Non-refractory species
of aerosols are vaporized at the vaporizer. The vaporized molecules are ionized by electron impact
ionization at 70 eV, and then the ions are analyzed by the quadrupole mass spectrometer. The sulfate,
nitrate, ammonium, and chloride content are calculated from the fragment signals of the mass spectra.
Organic compounds (organics) are calculated by subtracting the known inorganic and gaseous species
(e.g., sulfate, nitrate, nitrogen, oxygen, and argon) from the total mass. The particle mass was calibrated
using ammonium nitrate (NH4NO3) particles [33]. The ionization efficiency (IE), and the relative
ionization efficiency (RIE), were determined for NH4NO3 particles with a diameter of 350 nm using
standard procedures [33–39]. The IE used here was 4.77 ˆ 10´7, and the RIE for NH4

+ was 6.7. The
collection efficiency (CE) for all the measured species was 0.5, which is a standard value for the
AMS [38]. The size distributions for each chemical component (chemically-resolved size-distribution)
were measured by Q-AMS using the flight time of the particle. The conversion factor from flight
time of the particle to the vacuum aerodynamic diameter was calibrated using the known size of
polystyrene latex and NH4NO3 particles [33–36,38]. The AMS data were analyzed using the standard
AMS analysis software [38,40]. The flow rate of sampling line was 3 L/min, and time resolution was
set to 10 min in this study.

The number concentrations and size distributions of aerosol particles were monitored using an
optical particle counter (OPC, TD100; Sigma Tech., Yokohama, Japan) with measurable size ranges
of optical equivalent diameter >0.3, >0.5, >1.0, >2.0, >3.0, and >5.0 µm. The OPC was installed
on the rooftop of the same building that the other instruments were installed, and operated in
ambient conditions without using a heating drier. Size discriminator of the OPC was calibrated
using polystyrene latex spheres with a refractive index of 1.59–0i. The OPC data were corrected for
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coincidence loss. The flow rate of the OPC was 1.0 L/min, and the time resolution was set to 1 min in
this study.

PM2.5 mass and sulfur dioxide concentration data were obtained from websites operated by local
governmental offices [41,42].

Time resolutions varied among these instruments or obtained data. The 1-h average values were
used for further analyses in this study. All times were expressed in the local time (JST, UTC + 9 h).

2.4. Airmass Backward Trajectory Analysis

Airmass backward trajectories were calculated for each day during the measurement campaign
using the NOAA HYSPLIT model [43,44]. The trajectories were calculated based on the following
conditions: start latitude and longitude: 33.55˝N, 130.36˝E; start altitude: 1500 m above sea level;
calculation time: 72 h (three days). The trajectories were allocated to a 45˝ sector if the trajectory
positions for every six hours were within the sector at least 50% of the time (36 h) and if the
trajectory positions were within the other sectors less than 33% of the time (24 h). We considered
the north-northeast (NNE), ENE, and ESE sectors as “Japan”, SSE and SSW sectors as “Sea”, and the
remaining (WSW, WNW and NNW) sectors as “Asian Continent” (Figure 1).
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Figure 1. Map of East Asia showing each sector classified by airmass backward trajectories from the
monitoring site (Fukuoka University, Japan).

3. Results and Discussion

3.1. Aerosol Surface Area is Generally Controlled by Black Carbon

The mean values of each variable measured in this study are shown in Table 1. The surface area
concentration and other parameters measured in this study were similar to those reported in previous
studies [16,24,25,27].

Table 1. Mean value and standard deviation of each variable measured in this study in Fukuoka, Japan
(March to April, 2015, 1 h average value).

Mean SD n

Surface Area µm2/cm3 128 67 1035
PM2.5 mass µg/m3 17.6 11.4 1220

BC ng/m3 621 392 1150
Organics µg/m3 4.02 2.30 879

NH4
+ µg/m3 1.52 0.97 879

SO4
2´ µg/m3 3.43 2.85 879

NO3
´ µg/m3 1.30 1.60 879

Cl´ µg/m3 0.12 0.11 879
Particle Number (>0.3 µm) #/cm3 375 318 919
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A correlation matrix of the variables measured in this study is shown in Table 2. The variables
that showed relatively higher correlation with aerosol surface area were BC (r = 0.74), organics
(r = 0.67), ammonium (r = 0.57), and PM2.5 mass (r = 0.57). Both BC and organics showed relatively
high correlation with the aerosol surface area. A comparison of the slopes of the regression lines
indicated that a unit concentration of BC contributed to aerosol surface area five times more than an
organics unit. Therefore, BC is considered to have a much higher contribution to aerosol surface area
than organics.

Table 2. Correlation matrix of the variables measured in this study.

Surface Area PM2.5 mass BC Organics NH4
+ SO4

2´ NO3
´ Cl´ Particle Number

Surface Area 1.00 0.57 0.74 0.67 0.57 0.41 0.46 0.22 0.43
PM2.5 mass - 1.00 0.68 0.56 0.76 0.70 0.32 0.29 0.85

BC - - 1.00 0.63 0.52 0.32 0.48 0.31 0.64
Organics - - - 1.00 0.52 0.35 0.49 0.40 0.42

NH4
+ - - - - 1.00 0.85 0.55 0.51 0.76

SO4
2´ - - - - - 1.00 0.15 0.24 0.60

NO3
´ - - - - - - 1.00 0.61 0.47

Cl´ - - - - - - - 1.00 0.49
Particle Number - - - - - - - - 1.00

Correlation plots of each variable against the aerosol surface area concentration are shown in
Figure 2. Sulfate was a major component of PM2.5, and its major source at Fukuoka was considered
to be long-range transport from the Asian Continent [27]. The results showed that the correlation
between sulfate and aerosol surface area was weak (r = 0.41). The sum of sulfate, nitrate and ammonium
accounted for approximately 35% of PM2.5 mass, but none of these variables appeared to contribute
significantly to aerosol surface area. On the other hand, BC contributed significantly to aerosol surface
area while only accounting for 3.5% of PM2.5 mass. This higher contribution of BC to aerosol surface
area has been reported in previous studies [16,45]. We conclude that aerosol surface area in Fukuoka
was mainly controlled by BC.
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Figure 2. Correlation plots of each variable against the aerosol surface area concentration measured in
Fukuoka, Japan, from March to October, 2015. (a) PM2.5 mass; (b) particle number (>0.3 µm); (c) black
carbon; (d) organics; (e) sulfate; and (f) nitrate.
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Day-of-week variation and diurnal variation of each variable were analyzed to investigate the
relationship between aerosol surface area and human activity (Figure 3). The concentrations of aerosol
surface area and BC on Sundays were significantly lower than on the other days of the week (t-test,
p < 0.01). This is reasonable since automotive commutes are considered to decrease on Sundays. The
aerosol surface area and BC also seemed to be lower on Wednesdays. However, as far as we know,
there are currently no specific social activities that could be considered to contribute to these lower
surface area and BC values (such as “car free day”) on Wednesdays in Fukuoka.
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Figure 3. Day-of-week variation of (a) surface area and BC; (b) organics, sulfate, and nitrate;
and (c) PM2.5 mass, particle number (>0.3 µm), and diurnal variation of (d) surface area and BC;
(e) organics, sulfate, and nitrate; and (f) PM2.5 mass and particle number (>0.3 µm), measured in
this study.

An examination of the diurnal variations exhibited clear daily morning peak in aerosol surface
area and BC concentrations. In the morning (8:00–10:00), these concentrations were significantly higher
than those measured at other times (t-test, p < 0.01). These morning peaks were related to concentrated
automotive traffics near the monitoring site [23,24,45]. However, another report did not find this kind
of traffic-related peak in aerosol surface area and BC [16]. The relationship between aerosol surface
area (and BC) and automotive traffic may thus be variable and is probably affected by the distance
between the monitoring site and nearby roads.

The other variables measured in this study did not exhibit morning peaks. Their restriction to BC
among the chemical components of aerosol is supported by a previous study that showed that the
elemental carbon in Fukuoka City was considered to originate mainly from locally emitted urban air
pollutants rather than from long-range transport [27]. Organics showed no clear day-of-week/diurnal
trends while correlation between aerosol surface area and organics was relatively high (see Table 2 and
Figure 2). BC consistently showed the highest correlation with aerosol surface area, and was, thus,
the major contributor to aerosol surface area in Fukuoka. This implies that even though BC accounts
for relatively small percentage of PM2.5 mass, it should receive considerable attention when aerosol
surface area is considered as an index of adverse health effects caused by exposure of the human body
to aerosols.

3.2. Case Study: Aerosol Surface Area is Occasionally Controlled by Sulfate

As mentioned above, aerosol surface area was strongly correlated with BC in Fukuoka. However,
in some cases aerosol surface area was occasionally high while BC was low (see Figure 2). This
high-surface area-low-BC type anomaly was not observed in Yokohama [16]. This section investigates
the reasons for the occurrence of this anomaly.
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A detailed investigation of the plots in the high-surface area-low-BC type anomaly zone in Figure 2
revealed that anomalies occurred on several specific days, in particular, 28 March and 2 April. It is
likely that something unusual happened on these days; for example, changes in the trajectories of the
airmass that reached Fukuoka city. Airmass backward trajectories starting from the monitoring site
were obtained from March to April, 2015. In this period, approximately 75% of the airmass originated
from the Asian continent (Figure 4a). A typical result for the trajectory is shown in Figure 4b. The
trajectories on 28 March and 2 April are also shown in Figure 4c,d. Obviously, the trajectories on 28
March and 2 April were not “typical”. The airmass on these two days originated from the southern
Kyushu area. Detailed records of variations in the variables measured in this study for the period
including these two days are shown in Figure 5. Two distinct peaks of aerosol surface area were clearly
observed on these dates. Sulfate showed clear peaks corresponding to these surface area peaks whereas
BC did not. Sulfate concentrations can increase with nitrate and organics when a considerable quantity
of air pollutants are transferred from the Asian continent to the Fukuoka area by long-range transport
processes [27]. However, in the case of 28 March and 2 April, only the sulfate concentration increased
while the concentrations of other components such as nitrate and organics did not show clear peaks at
the same time. Therefore, reasons other than long-range transport from the Asian continent should be
considered for these high-surface area-high-sulfate episodes.
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Figure 4. Results of airmass backward trajectory analysis started at Fukuoka from March to April,
2015. The sector classification is shown in Figure 1. (a) Overall data for the sector analysis; (b) a typical
trajectory result for the analysis period; (c) trajectory results for 28 March 2015; and (d) trajectory results
for 2 April 2015.
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Figure 5. Hourly variation of variables obtained in this study in Fukuoka from 27 March to 2 April
2015. (a) Aerosol surface area; (b) black carbon; (c) organics, sulfate, and nitrate; and (d) equivalent
ratio of ammonium to sulfate.

Many active volcanoes exist around the Kyushu region, especially in southern Kyushu. Volcanic
activity can introduce SO2 into the air, and volcanic SO2 can be converted into sulfate [46]. It would,
thus, be possible that excess sulfate converted from volcanic SO2 had a significant effect on the increase
in sulfate in Fukuoka on these two days. Figure 6 shows the daily mean values of SO2 concentrations
at Kuchinoerabu Island (30.55˝N, 130.22˝E, approximately 350 km south of Fukuoka city, near an
active volcano) and Fukuoka city from March to April, 2015. Volcanic SO2 was ejected several times
during this period, and considerable SO2 ejection occurred on 27–28 March. The SO2 concentration
in Fukuoka also showed a peak on 28 March. Consequently, the excess input of sulfate derived from
volcanic emission can be considered a major reason for the increased aerosol surface area in Fukuoka
on 28 March and 2 April, while concentration of BC, which was a major contributor to aerosol surface
area on an ordinary day, was low on these two days.
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Figure 6. The daily mean values of SO2 concentrations at Kuchinoerabu Island (near an active volcano),
Kagoshima (triangle, left axis), and Fukuoka city (circle, right axis) from March to April 2015.

The particle size of sulfuric acid mist newly formed from volcanic SO2 is in the single-nanometer
range [47]. Newly-formed sulfuric acid mist is considered to have a much higher surface area per given
mass than ammonium sulfate aerosol, whose particle size is normally in the submicron (hundreds of
nanometers) range [37]. The chemically-resolved size distributions for sulfate in aerosols are shown in
Figure 7. The averaged size distributions of sulfate from 30 March to 1 April was similar to a typical
pattern of those on a day when aerosol particles were affected by long-range transport [28,37]. The
sulfate size distributions on 28 March and 2 April showed a peak in a much smaller particle size
range, and were clearly different from the typical one showing long-range transport. This means that
relatively smaller sulfate particles increased on these days, which showed clear peaks of aerosol surface
area. The variations in the equivalent ratio of ammonium to sulfate were calculated to investigate
the chemical form of sulfate aerosol in Fukuoka during this period (Figure 5d). The average value
of the equivalent ratio was nearly 1, showing that in general, sulfate was completely neutralized by
ammonia. The ratio dropped on 28 March and 2 April, and finally reached 0.5. This indicates that
even though volcanic SO2 emission may have initially introduced sulfuric acid mist into the air, which
was neutralized by ammonia to form NH4HSO4 during the 350-km transportation to Fukuoka city.
However, the particle size of the additionally introduced sulfate was much smaller than that of sulfate
which was normally observed at Fukuoka city.
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Figure 7. The chemically-resolved size distributions for sulfate in aerosols at Fukuoka measured by
Q-AMS on 28 March, 15:50–18:10 (dotted line), from 30 March, 22:50 to 1 April, 13:50 (dashed line), and
on 2 April, 17:30–20:10 (solid line).

Consequently, sulfate aerosol does not usually affect aerosol surface area in Fukuoka, but it may
occasionally have a significant effect when the airmass contains an excess amount of relatively smaller
particles of sulfate derived from volcanic SO2.
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4. Conclusions

The aerosol surface area concentration was measured together with black carbon (BC) and other
chemical species, such as organic compounds, sulfate, and, nitrate in Fukuoka, Japan, and the effect
of the chemical composition of aerosols on their surface area was investigated. Aerosol surface area
concentration was highly correlated with BC concentration for the entire period. Day-of-week variation
and diurnal variation also showed the strong correlation between aerosol surface area and BC. This
implies that even though BC accounts for relatively small percentage (in this study, 3.5%) of PM2.5

mass, it should receive considerable attention when aerosol surface area is considered as an index
of adverse health effects caused by exposure of the human body to aerosols. Sulfate aerosol does
not usually affect aerosol surface area in Fukuoka, but it may occasionally have a significant effect
when the airmass contains an excess amount of relatively smaller particles of sulfate derived from
volcanic SO2.
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