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Abstract: The estimation of ambient particulate matter with diameter less than 10 µm (PM10) at high
spatial resolution is currently quite limited in China. In order to make the distribution of PM10 more
accessible to relevant departments and scientific research institutions, a semi-physical geographically
weighted regression (GWR) model was established in this study to estimate nationwide mass
concentrations of PM10 using easily available MODIS AOD and NCEP Reanalysis meteorological
parameters. The results demonstrated that applying physics-based corrections could remarkably
improve the quality of the dataset for better model performance with the adjusted R2 between PM10

and AOD increasing from 0.08 to 0.43, and the fitted results explained approximately 81% of the
variability in the corresponding PM10 mass concentrations. Annual average PM10 concentrations
estimated by the semi-physical GWR model indicated that many residential regions suffer from
severe particle pollution. Moreover, the deviation in estimation, which primarily results from the
frequent changes in elevation, the spatially heterogeneous distribution of monitoring sites, and the
limitations of AOD retrieval algorithm, was acceptable. Therefore, the semi-physical GWR model
provides us with an effective and efficient method to estimate PM10 at large scale. The results could
offer reasonable estimations of health impacts and provide guidance on emission control strategies
in China.

Keywords: national-scale PM10; aerosol optical depth; physics-based revision; geographically
weighted regression; reanalysis meteorological data

1. Introduction

Numerous studies have shown that airborne particulate matter from both natural sources and
anthropogenic emissions are associated with environmental degradation, climate change, and adverse
human health effects [1–3]. With the rapid development led by the economic boom, China currently
experiences severe PM10 (particles with aerodynamic diameter less than 10 µm) pollution, which
arouses widespread public concern [4,5]. Although the estimation of air quality from stationary
ground monitoring sites are supposed to be accurate, the consistency of their quality often declines
with increasing spatial distance [6]. Consequently, the accurate and spatially resolved assessment
of PM10 exposure is significant in effectively estimating air quality and conducting environmental
epidemiologic studies [7].
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As satellite remote sensing has been generally employed to make up for the limitation in spatial
coverage of ground measurements, a potentially effective method has been put forward to predict
PM10 concentrations using satellite-derived aerosol optical depth (AOD) [8–12]. Satellite-derived
AOD, which measures light extinction in one atmospheric column, is directly related to the quantity
of particles in this column and can be converted into mass concentration of particulate matter using
empirical methods [9,10]. Up until now, previous studies developed quantitative relationships between
satellite-derived AOD and ground-measured PM for different parts of the world, using empirical
models, such as linear regression [13–15] and several types of non-linear regression [13]. In the
past few years, related parameters, such as meteorological factors and geographical data, were
used in establishing more advanced models for improving the accuracy of PM estimation, such
as the alternating conditional expectation model (ACE) [16], generalized additive model [17], mixed
effects model [18,19], and artificial neural network model (ANN) [13,20]. As the correlation between
AOD and PM is presumed to change along with spatial context [6], the geographically weighted
regression model (GWR) based on a regional regression technique was adopted to constrain the
spatial nonstationarity and variability in large-scale regressions [21,22]. Furthermore, relative humidity
and vertical distribution of aerosol extinction coefficients have been taken into consideration when
estimating ground-level PM10 using satellite-derived AOD from the perspective of physics, which
significantly improve the correlation between PM10 and AOD [23]. The combination of physical
correction and the GWR model significantly increases the accuracy of fine particle concentration
estimation compared to two conventional statistical models [24]. Nevertheless, no national-scale study
on GWR modeling of PM10 and satellite-derived AOD using physical revision have been reported,
and whether the physical correction by vertical distribution and relative humidity effectively embed in
the GWR model at the national-scale remains to be examined.

In this study, we first adopted a physics-based correction method on dealing with nationwide
AOD and PM10 for validating the effectiveness of physical correction at a large-scale. Reanalysis
meteorological parameters were then introduced into the semi-physical GWR model to estimate
national-scale spatial distribution of PM10. In order to quantitatively evaluate the performance of
the semi-physical GWR model, the original GWR model was established under similar conditions
for comparing the fitted PM10 with ground measurements. Moreover, the seasonal modeling by
semi-physical GWR model was conducted to reveal the seasonal variation in accuracy of model
performance. Finally, the nationwide spatial distribution of the satellite-retrieved PM10 using the
semi-physical GWR model was demonstrated to evaluate pollution level and existed limitations.

2. Materials and Methods

2.1. Data Collection and Reprocessing

2.1.1. Ground-Level Hourly PM10 Measurements

Since 2013, a nationwide air quality monitoring network covering major cities in all provinces of
China has been providing hourly PM10 concentration data. As shown in Figure 1, the Chinese Ministry
of Environmental Protection (MEP) set up more than 1300 ground monitoring sites to cover residential
areas. Their data, measured using the beta-attenuation method or the tapered element oscillating
microbalance method (TEOM), are available on the China Environmental Monitoring Center (CEMC)
website [25,26].
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Figure 1. Spatial distribution of the 1344 PM10 monitoring sites (solid yellow triangles) used for sample 
collection in this study, which displays little coverage on plateau and desert areas. 

2.1.2. Satellite-Retrieved AOD 

Although many satellite sensors can provide AOD, the Moderate resolution Imaging 
Spectroradiometer (MODIS) has been proven to retrieve one of the most quality assured aerosol 
products [27,28]. The MODIS Collection 6 (C6) AOD products with 3 km spatial resolution at nadir 
were released last year, and have been proven to generally achieve the required accuracy validated 
by observations of sun photometers from the Aerosol Robotic Network (AERONET) in China [29–31]. 
In this study, the AOD products, with 3 km spatial resolutions, of both MODIS Terra and MODIS 
Aqua were downloaded from the NASA LAADS website [32] for the nationwide region (longitude 
range (73°40′E–135°2.5′E), latitude range (3°52′N–53°33′N)). 

2.1.3. Meteorological Parameters 

Meteorological data, including surface temperature, surface pressure, u-component and  
v-component of wind above ground, surface relative humidity (RH_Surface), and Planetary 
Boundary Layer Height (PBLH), were obtained from the National Centers for Environmental 
Prediction (NCEP) reanalysis, which is from the Climate Forecast System (CFS) model. The NCEP 
data set, which is available at its website [33], provides 6-hourly land surface, oceanic, and 
atmospheric analyzed forecasts and products with a spatial resolution of 1.0°. Precipitation data in 
this study was collected from averaged monthly precipitation grid dataset with 0.5° spatial 
resolution. This grid dataset, which is spatially interpolated by Thin Plate Spline (TPS) based on 2472 
ground meteorological stations in China, was released by the National Meteorological Information 
Center [34]. 

2.1.4. Data Integration 

Since Terra MODIS and Aqua MODIS cross the equator at approximately 10:30 a.m. and  
1:30 p.m. local time, respectively, this study used their average as the mean AOD value. Accordingly, 
daily PM10 values were processed by averaging PM10 observations measured from 10:00 a.m. to 2:00 

Figure 1. Spatial distribution of the 1344 PM10 monitoring sites (solid yellow triangles) used for sample
collection in this study, which displays little coverage on plateau and desert areas.

2.1.2. Satellite-Retrieved AOD

Although many satellite sensors can provide AOD, the Moderate resolution Imaging
Spectroradiometer (MODIS) has been proven to retrieve one of the most quality assured aerosol
products [27,28]. The MODIS Collection 6 (C6) AOD products with 3 km spatial resolution at nadir
were released last year, and have been proven to generally achieve the required accuracy validated by
observations of sun photometers from the Aerosol Robotic Network (AERONET) in China [29–31].
In this study, the AOD products, with 3 km spatial resolutions, of both MODIS Terra and MODIS Aqua
were downloaded from the NASA LAADS website [32] for the nationwide region (longitude range
(73˝401E–135˝2.51E), latitude range (3˝521N–53˝331N)).

2.1.3. Meteorological Parameters

Meteorological data, including surface temperature, surface pressure, u-component and
v-component of wind above ground, surface relative humidity (RH_Surface), and Planetary Boundary
Layer Height (PBLH), were obtained from the National Centers for Environmental Prediction (NCEP)
reanalysis, which is from the Climate Forecast System (CFS) model. The NCEP data set, which
is available at its website [33], provides 6-hourly land surface, oceanic, and atmospheric analyzed
forecasts and products with a spatial resolution of 1.0˝. Precipitation data in this study was collected
from averaged monthly precipitation grid dataset with 0.5˝ spatial resolution. This grid dataset, which
is spatially interpolated by Thin Plate Spline (TPS) based on 2472 ground meteorological stations in
China, was released by the National Meteorological Information Center [34].

2.1.4. Data Integration

Since Terra MODIS and Aqua MODIS cross the equator at approximately 10:30 a.m. and 1:30 p.m.
local time, respectively, this study used their average as the mean AOD value. Accordingly, daily
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PM10 values were processed by averaging PM10 observations measured from 10:00 a.m. to 2:00 p.m.
local time. In addition, resampling based on the Kriging method was employed in dealing with the
reanalysis meteorological parameters to ensure the consistency in space, because the three data sources
have different spatial resolution. An AOD value was selected from the nearest 3 ˆ 3 pixels search
window, and meteorological parameters were picked from the nearest pixel in the grid, corresponding
to the latitude and longitude coordinates of every ground air-quality monitoring station.

2.2. Methodology

2.2.1. Physics-Based Correction

Since the PM10 is measured by the ground air-quality monitoring stations, it is the ambient mass
concentration of particulate matter that has been collected. Instead of measuring the optical parameters
relating to ambient atmosphere, the satellite-retrieved AOD characterize the optical depth of the entire
atmospheric column, which apparently change the incidence relation between satellite-retrieved AOD
and ground-level PM10. Therefore, a vertical correction equation has been adopted to revise the
original satellite-retrieved AOD for better correlation with PM10 [10]:

Revised AOD “
AOD
PBLH

(1)

The TEOM method, which measures dry PM10 after the particles have been heated up to 50 ˝C,
has been applied in national air-quality monitoring stations, which obviously neglects the effect of
evaporation. The revised PM10 can be obtained using a correction equation for relative humidity (RH)
as follows [35]:

Revised PM10 “ PM10 ˆ

ˆ

1 ´
RH
100

˙´1
(2)

2.2.2. Model Structure and Validation

As the correlation between AOD and PM10 is presumed to change along with spatial context, this
study established a GWR model that practically distinguishes spatial nonstationarity and variation
at a regional-scale, so as to estimate ground-level PM10 at the national-scale. The GWR model can
calculate estimated coefficients of a continuous surface by weighing the contribution of dispersed
parameters at each local observation, and can generate a local goodness of fit (R2) to evaluate the
fitting accuracy for each local observation. In addition, an adaptive bandwidth was adopted to deal
with the uneven distribution of ground monitoring sites. The structure of the GWR model equation is
expressed as follows:

Revised_PM10,i “ β0,i ` β1,iRevised_AODi ` β2,iPreci ` β3,iSTi ` β4,iPSi ` β5,iWSi (3)

where Revised_PM10,i (µg/m3) is the seasonal average ground-level mass concentration of PM10

corrected by seasonal average RH_Surface at a location i; β0,i represents the intercept at a location i;
β1,i–β5,i denotes location-specific slopes; Revised_AODi (no unit) is the average value from MODIS
AOD products corrected by average PBLH (km) at a location i; precipitation (Preci, mm), temperature
surface (STi, K), atmospheric pressure (PSi, Pa), and wind speed surface (WSi, m/s) are meteorological
parameters at location i. There are two reasons why seasonal averaged datasets have been chosen. First,
since the six-hour averaged meteorological parameters such as precipitation, temperature, and PBLH,
does have hysteresis effects instead of simultaneous effects on the variance of the mass concentrations
of PM, the modeling will be less precise when it utilizes hourly datasets or daily datasets; Secondly,
as the meteorological parameters which was collected from the NCEP are officially announced to be
combined by forecast data and observational data, their accuracy is distinctly below those collected by



Atmosphere 2016, 7, 88 5 of 13

ground-level meteorological stations. Therefore, averaged datasets have been adopted to smooth the
bias of meteorological parameters for better model performance.

Moreover, to examine the effectiveness of a physics-based correction in the GWR model at the
national-scale, a conventional GWR model was employed to establish a comparison experiment under
similar conditions. This GWR model that has been proven to achieve better estimation of ground-level
particle mass concentration, and its structure can be expressed as follows:

PM10,i “ β0,i ` β1,i AODi ` β2,iPreci ` β3,iSTi ` β4,iPSi ` β5,iWSi ` β6,iPBLHi ` β7,iRHi (4)

where PM10,i (µg/m3) and AODi (no unit) are the seasonal average values without correction at a
location i; and PBLHi and RHi are meteorological parameters at location i.

To validate the performance of the model, the estimated mass concentrations of PM10 were fitted
against the measured values. A 10-fold cross validation method [36] was employed to completely
examine over-fitting of the dataset. This study divided the dataset into 10 subsets and the model was
fitted using nine subsets, with one subset left for prediction in each round of the cross validation. This
process was repeated 10 times until every subset was validated. Furthermore, Pearson coefficient,
correlation coefficient, slope and intercept of the fitted equation were also calculated to evaluate the
quality of estimation.

3. Results and Discussion

3.1. Descriptive Statistics

The histograms and descriptive statistics of all variables in the model dataset are demonstrated
in Figure 2. Overall, the ground-level PM10 mass concentrations range from 7.67 to 238 µg/m3,
and have an annual average value of 83.24 µg/m3 with a standard deviation (Std. Dev.) of 29.51.
The annual mean AOD in 2015 was 0.63 with a standard deviation of 0.24. Different from other
meteorological variables, which were approximately unimodal or log-normally distributed, the annual
average precipitation and surface RH showed a bimodal distribution across entire China, revealing a
slight trend of polarization.
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There was an indeterminate correlation between original PM10 and original AOD with the 
determination coefficient (R2) of regression less than 0.1, where the slope of the linear-fit and the 
major axis of confidence ellipse were both negative. However, the revised AOD was potentially 
beneficial for estimating PM10, with the adjusted R2 increasing to 0.428 and presenting a positive 
correlation, indicating that the surface RH correction on PM10 and vertical correction on AOD could 
distinctly improve the quality of the dataset for better model performance. It also should be noted 
that the points beyond 2σ occurring outside of the confidence ellipse were mostly points with higher 
values, which proves that in particular the correction by RH or PBLH probably introduced greater 
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3.2. Physics-Based Revision and Validation

A general linear regression between original PM10 and original AOD is illustrated in Figure 3a,
in contrast to the regression between revised PM10 by RH and revised AOD by PBLH shown in
Figure 3b. There was an indeterminate correlation between original PM10 and original AOD with the
determination coefficient (R2) of regression less than 0.1, where the slope of the linear-fit and the major
axis of confidence ellipse were both negative. However, the revised AOD was potentially beneficial
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for estimating PM10, with the adjusted R2 increasing to 0.428 and presenting a positive correlation,
indicating that the surface RH correction on PM10 and vertical correction on AOD could distinctly
improve the quality of the dataset for better model performance. It also should be noted that the
points beyond 2σ occurring outside of the confidence ellipse were mostly points with higher values,
which proves that in particular the correction by RH or PBLH probably introduced greater deviation.
Nevertheless, the relatively low determination coefficients of the regression models, with AOD acting
as an only predictor variable, indicates that the AOD–PM10 relationship could also be influenced by
other factors, such as meteorological parameters and spatial nonstationarity and variability.
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3.3. Model Result Validation and Comparison

As described above, there were 1344 matched data groups available for GWR model fitting.
Figure 4 shows the scatter plots of the 10-fold cross validation for the GWR model established according
to Equation (4). The overall R2 of the regression in Figure 4a between the fitted and measured PM10

mass concentration was 0.67, with Pearson’s coefficient of 0.82. In addition, the slope and the intercept
of fitted line is 0.66 with 0.01 standard error and 28.10 with 1.13 standard error, respectively. When the
intercept was set to zero in Figure 4b, the adjusted R2 decreased to 0.51, but the fitted slope increased
to 0.96 with standard error declining to 0.005. Ideally, all of the model points should settle on the fitted
line with the slope equaling one and intercept equaling zero. Therefore, it can be concluded that most
of the results in the original GWR model were adjacent to the true line, except for a small number
of dispersed points with higher values of measured PM10. These points of higher value might be
geographically surrounded by points of general value, which forces the GWR model to underestimate
their weight and accuracy.

Similar results are demonstrated in Figure 5, which shows the scatter plots of 10-fold cross
validation for the physics-based GWR model established according to Equation (3). This physics-based
GWR model corrected PM10 using surface RH and column AOD using PBLH instead of directly
considering these two meteorological parameters as independent variables in the original GWR model.
The overall R2 of regression in Figure 5a between the fitted and measured PM10 mass concentration is
0.81, with a Pearson’s coefficient of 0.90, which is significantly higher than other methods. In addition,
the slope and intercept of the fitted line is 0.79 with 0.01 standard error and 17.16 with 0.90 standard
error, respectively. These results prove that the physics-based GWR model performed better than the
conventional GWR model at the national-scale.
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Figure 4. Scatter plot of cross validation for the original GWR model, using conventional linear
regression (a); and linear regression with intercept fixed at zero (b).

Figure 5. Scatter plot of cross validation for the physics-based GWR model, with conventional linear
regression (a); and linear regression with intercept fixed at zero (b).

The fitted results in this study were able to explain 80.6% of the variability in the corresponding
PM10 mass concentrations, which offered improvement to a certain extent on model accuracy from
approximately 0.7 to 0.8 compared to previous studies using the GWR model under similar parameter
conditions [25,37]. Apart from the improvement on result accuracy, there still exist other ways to
further improve the modeling performance. For instance, the meteorological parameters in this study
were reanalysis data, which possesses characteristics of coarse spatial resolution and relatively inferior
accuracy. The accuracy of model would increase if ground level meteorological station datasets
had been adopted. Nevertheless, reanalysis products are available to the public so that relevant
departments or scientific research institutions could conveniently, and without restriction, employ
these data in estimating nationwide PM10 using this physics-based GWR model.

To further reveal the seasonal variation in accuracy of regression model performance, the data
have been divided into four subsets corresponding to four seasons defined by astronomy and climate
method conjunctively. Namely, spring includes the months of March, April, and May; summer refers
to June, July, and August; autumn consists of September, October, and November; winter includes
December, January, and February. As shown in Figure 6, when the intercept was manually set to zero
as plot points should settle on the fitted line with intercept equaling zero, the AOD-derived PM10 still
obtained great correlations with measured values, with their adjusted R2 ranging from 0.75 to 0.80.
The performances of GWR model in summer and winter were slightly weaker than performances in
spring and autumn, however the mass concentrations of PM10 possessed difference to a certain extent
throughout four seasons. In other words, the seasonal variation of PM10 mass concentrations did not
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have great impact on the GWR model, indicating the robustness of model performance. Thus, the
different performance of GWR model could be resulted by meteorological conditions, and relatively
extreme meteorological parameters such as temperature, precipitation and relative humidity, which
usually appear in summer and winter, would introduce slight errors into modeling.

Figure 6. Comparisons of seasonal mean AOD-derived PM10 and ground-measured PM10

mass concentrations.

3.4. Annual Estimation of PM10 Mass Concentrations

The ground measured annual average PM10 mass concentrations in 2015 under the same
coordinate frame are shown in Figure 7. As a comparison, the AOD-derived annual average PM10 in
China are illustrated in Figure 8, which were predicted from MODIS AOD products and meteorological
reanalysis data with spatial resolution of 0.03 degree by the physics-based GWR model.

The annual average ground-level mass concentrations of PM10 from 1 January to 31 December
2015, which is demonstrated in Figure 7, displays a heterogeneous spatial distribution among dispersed
regions, while the annual average fitted PM10 from MODIS AOD products exhibits a more continuous
coverage spanning the whole China. The highest values of PM10 appeared in Xinjiang Autonomous
Region, followed by the Beijing-Tianjin Metropolitan Region (including Beijing, Tianjin, and Hebei)
and Central China (including Henan, Hubei, and Hunan). Since the Tarim Basin is mainly covered by
the Taklimakan Desert, where dust aerosol is primarily formed from primal generation and entrained
effect across eastern Asia [38], the southern part of Xinjiang Autonomous Region is a heavily polluted
area with annual average PM10 over 200 µg/m3. The annual average PM10 mass concentrations are
generally higher than 160 µg/m3 in the Beijing-Tianjin Region, while the annual average PM10 mass
concentrations in Central China are generally greater than 140 µg/m3. These regions with high levels
of urbanization and industry, combined with the intense human activity by large populations in these
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areas, can be clearly identified from the prediction PM10 map. The cleanest regions are in Hainan,
Tibet, Yunnan and Heilongjiang, where the annual average PM10 loadings are generally lower than
50 µg/m3.
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4. Discussion

As stated above, the semi-physical GWR model has achieved relatively satisfied accuracy in
results. However, the accessible averaged datasets of this experiment also have their limitations, which
directly eliminate the intrinsic physicochemical interaction mechanism. For instance, the hysteresis
effects of precipitation may influence the mass concentrations of atmospheric particles in the next
few days rather than that day, and wind could not only blow away or dilute atmospheric particles
but also bring in exogenous pollutants. Therefore, based on the limitations of datasets, this study
consider that adopting the averaged meteorological parameters in regression represents one specific
climate condition at the according region which is similar with the idea of geographically weighted
regression model.

In general, the semi-physical GWR model proved to perform effectively when estimating spatial
distribution of PM10 mass concentrations in China. Nevertheless, it should not be ignored that the
AOD-derived PM10 concentrations still exist some phenomena of deviated-estimation in several
regions. For instance, a figuratively marginal effect was detected on the fringe of PM10 prediction
map, especially in southwestern China (Figure 8). Besides, the AOD-derived PM10 was over-fitted
in Xinjiang, Qinghai, and Sichuan, with the estimated concentrations of PM10 in the central Xinjiang
Province up to 250 µg/m3, while the western part of Sichuan Province and northwest part of Qinghai
Province both gained estimated concentrations down to 10 µg/m3. There are several possible reasons
to explain deviations in model estimation. First, the frequent changes of elevation in a relatively small
region might seem irresolvable in adaptive bandwidth searching of the GWR model, which would
introduce errors in estimation, because different elevation would possess distinct climatic conditions
apparently affecting model’s independent variables such as atmospheric pressure, temperature,
and PBLH. Second, the spatially heterogeneous distribution of PM10 monitoring sites, which are
concentrated in urban regions, but are quite sparse in rural areas, such as Qinghai and western
Sichuan, may lead to a certain unbalance in the GWR model. However, this potential estimation error
would be alleviated by the expansion of the environmental monitoring network in China [39]. Finally,
although the MODIS AOD products have been proved to equipped satisfactory quality over China,
their retrieval algorithm, which ideally adopts the near-infrared at 2.1 µm over dark surface, could lead
to PM10 estimation deviations in some regions such as Taklimakan Deserts, since the accuracy of AOD
retrievals change along with the variation of surface reflectance in different regions [40]. Moreover,
since the sampling errors resulted from satellites proved to influence the long-term averaged PM10

derived from the satellite-derived AOD [41], the satellite-coverage may be restrained by its sampling
limitation according to retrieval algorithm, especially reflecting on aerosol loadings, clouds, and
surface reflectance conditions.

5. Conclusions

A semi-physical GWR model was applied to estimate nationwide mass concentration of PM10

using MODIS AOD with 3 km spatial resolution and NCEP Reanalysis meteorological parameters. The
results from the physics-based revision indicated that the surface RH correction on PM10 and vertical
correction on AOD could remarkably improve the quality of dataset for better model performance,
where the adjusted R2 increased from 0.08 to 0.43. Moreover, the semi-physical GWR model could
explain approximately 81% of the variability in the corresponding PM10 mass concentrations, and
the comparison between the semi-physical GWR model and conventional GWR model showed that
estimation accuracy can be improved under similar parameter conditions. The accuracy could further
improve if meteorological data from ground meteorological stations had been adopted. In addition,
the semi-physical GWR model was applied respectively in four seasons to reveal the seasonal variation
in accuracy of model performance. Furthermore, the spatial distribution of annual average PM10 mass
concentrations for the semi-physical GWR model indicated that the marginal effect on the fringe of
southwestern China and the over-fitting phenomenon arose in modeling in Xinjiang, Qinghai, and
Sichuan. This could be primarily influenced by the frequent changes of elevation in a small region,
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the spatially heterogeneous distribution of PM10 monitoring sites, and satellite sampling limitation
according to AOD retrieval algorithm.

In summary, the semi-physical GWR model discussed in this study provides an effective
and efficient method to estimate ground-level PM10 at national-scale using readily available
satellite-derived AOD products and NCEP reanalysis meteorological data. In order to achieve even
better results, further research on the modeling mechanism and model uncertainties are currently in
progress. The results from mapping national-scale PM10 mass concentrations could offer reasonable
estimations of health impacts, and provide valuable guidance on emission control strategies and policy
making in China.
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