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Abstract: Though land use regression (LUR) models have been widely utilized to simulate air
pollution distribution, unclear spatial scale effects of contributing characteristic variables usually
make results study-specific. In this study, LUR models for PM, 5 in Houston Metropolitan Area,
US were developed under scales of 100 m, 300 m, 500 m, 800 m, and 1000-5000 m with intervals of
500 m by employing the idea of statistically optimized analysis. Results show that the annual average
PMj; 5 concentration in Houston was significantly influenced by area ratios of open space urban and
medium intensity urban at a 100 m scale, as well as of high intensity urban at a 500 m scale, whose
correlation coefficients valued —0.64, 0.72, and 0.56, respectively. The fitting degree of LUR model at
the optimized spatial scale (adj. R? = 0.78) is obviously better than those at any other unified spatial
scales (adj. R? ranging from 0.19 to 0.65). Differences of PM, 5 concentrations produced by LUR
models with best-, moderate-, weakest fitting degree, as well as ordinary kriging were evident, while
the LUR model achieved the best cross-validation accuracy at the optimized spatial scale. Results
suggested that statistical based optimized spatial scales of characteristic variables might possibly
ensure the performance of LUR models in mapping PM, 5 distribution.
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1. Introduction

Fine particulate matter (PM;5) in air pollution has become a significant threat to global
human health. Due to its minuscule diameter (<2.5 microns) PM; 5 is inhaled and penetrates into
the circulatory, respiratory, and immune systems, triggering cancer, mutagenesis, and other skin
diseases [1-3]. PM, 5 refers to the solid or liquid fine particulate that is characterized by irregular
shapes, strong enrichment effects, and the absorption of abundant hazardous substances [4]. Various
measures have been attempted to reduce PM; 5 pollution, such as improvements of vehicle technology
and energy use efficiency, yet global PM; 5 pollution levels still remain at a harmful level due to
increasing fuel consumption and urbanization.

A team from US (United States) NASA (National Aeronautics and Space Administration)
utilizing the MODIS (MODerate Resolution Imaging Spectroradiometer) /MISR (Multiangle Imaging
SpectroRadiometer) based aerosol optical depth (AOD) data and the GEOS-Chem (Geostationary
Ocean Color Imager) chemical transmission model identified that most of the world experienced
annual average PM, 5 concentrations that exceeded the WHO defined safety limit (i.e., 10 pug-m~3) [5].
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Mean PM; 5 concentrations were greater than 50 pug-m~ and particularly high in North Africa and
East Asia [6]. The Global Burden of Disease Study 2010 reported that PM, 5 pollution caused 3.2 million
premature deaths and a loss of 76 million healthy life years annually around the world [7]. There
were several previous studies focused on the components and health effects (e.g. mortality, emergency
hospital admissions, emergency department visits) of PM, 5 related in Houston [8-10]. This situation
suggests that public health has suffered serious risks associated with PM; 5 pollution. Therefore, clearly
and correctly understanding the spatial-temporal characteristics of PM; 5 distribution is essential to
effectively evaluate and decrease human exposure risks.

To accurately simulate the spatial and temporal distribution of PM; 5 concentrations, several
methods, including spatial interpolation, air pollution dispersion modeling, MODIS remote-sensing
retrieval, land use regression (LUR), geographically weighted regression (GWR), timely structure
adaptive model (TSAM), and artificial neural network [11-17], have been proposed to estimate PM; 5
concentrations. LUR utilizes observed concentrations as well as characteristic variables at air quality
monitoring sites within a certain area, and can be used to predict the air pollution concentration of
spatial locations in the area [18]. This method has been considered an ideal proxy for PM; 5 estimation
because of the comprehensive element consideration, acceptable simulation accuracy, spatial resolution,
and wide applicability in simulating PM; 5 distribution ins situation where currently there is no clear
physical-chemical dispersion mechanism of PM; 5 [13,16].

Since its introduction in 1997, the LUR method has been widely applied in globally distributed air
pollution simulation studies of NO; (nitrogen dioxide), NO (nitric oxide), PMj( (inhalable particles),
and PM; 5, including in Britain, United States, Netherlands, Canada, and China [19-24]. In these
studies, the adjusted fitting degree (R?) of reported LUR models ranged from 0.17 to 0.73. One of
the most important factors that has contributed to the accuracy differences of the LUR models is
the different buffering radius ranging from 20 m-30 km used to measure value of characteristic
variable [25-28]. However, to the best of our knowledge, an effective method for determining the
reasonable spatial scale of a characteristic variable is still lacking due to the complex physical-chemical
mechanism of PM, 5 pollution.

However, fortunately, statistical experience analysis has been proven as the reasonable way to
preliminarily detect the relationship between two factors with possible association, while the true
interactive mechanism of these factors in the real world is not clear [29-31]. Therefore, this study
aims to explore the spatial scale dependence of associated characteristic variables on the observed
PM,; 5 concentrations at monitoring sites, and further evaluate whether the performance of the LUR
model with characteristic variables at optimized spatial scale can be enhanced without the integration
of a clear physical-chemical mechanism of PM; 5 pollution. The research results could provide a
theoretical basis for assessing the contribution of characteristic variables to PM, 5 concentrations at
surrounding spatial locations. More importantly, this study is going to discuss about the spatial scale
dependence of LUR modeling, and will greatly promote the reliability and stability of the LUR method
in urban/regional PM; 5 mapping in terms of spatial scale optimization.

2. Data and Method

2.1. Study Area and Data Collection

Houston, Texas, USA is a typical urban pollution area with stable geographic and meteorological
environment, high air pollution level, and comparatively intensive urban PM; 5 monitoring sites.
As the fourth largest metropolitan area in the US, Houston displays significant characteristics that
are relevant to urban air pollution. Flat and built on former swampland, the city has a subtropical
climate with 1224 mm of precipitation annually and an average temperature of 20.7 °C. It is well
known for its petroleum industry, high economic development, and 26% population growth from
2000-2010. In 2011, 17 PM3 5 monitoring sites, which including federal reference monitors (FRM)
and federal equivalent method (FEM) monitors which provide measurements on days when FRMs
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are not recording and at locations without FRMs, were installed across greater Houston. Due to
the local industrial production and traffic emission, the annual mean of observed particulate matter
concentration ranged from 9.87 pgom_g’ (minimum) to 14.24 pg'm_g’ (maximum), and the average
value was 11.66 pg-m~—3, while, there was only one station within the WHO PM, 5 concentration safety
limit (10 ug-m~3) in this region.

Land use (e.g., fraction of built, forest, water, and grass), road traffic, road (e.g., road length,
distance to the nearest road), coast (e.g., distance to the nearest coast), population distribution,
geographical location, and climate characteristics were considered to be the general factors associated
with PM; 5 emission and dispersion in previous LUR research findings [16,23,27,28,32-35]. Data
collected for LUR modeling in this study therefore contains annual average PM; 5 concentration [36],
land use/cover in 2011 [37], road network in 2011 [38], and census data in 2010 [39]. The basic

geographical data and PM; 5 monitoring sites distribution within the Houston area are shown in
Figure 1.
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Figure 1. Study area and PM; 5 monitoring site: (a) Study area; (b) PM; 5 monitoring site and land
use/ cover; (c) road network; (d) census data.
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2.2. Study Design

As shown in Figure 2, this study was divided into three parts including extraction of characteristic
variables, correlation analysis, and impact analysis of spatial scale on LUR modeling and mapping.
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Figure 2. Framework of study procedure. LUR, land use regression. (1) Variables extraction;
(2) Variables screen; (3) LUR model fitting and cross-validation.

2.2.1. Extraction of Characteristic Variables

As the rules mentioned above, characteristic variables utilized for LUR modeling in this study
included area ratio of land use, total road length, distance to nearest road, population density, housing
density, and distance to sea coast. All these factors, except distance to nearest road, had obvious
spatial scale effects. That is to say, the measured values would vary with the changes of the buffering
radius of PM; 5 monitoring sites. The buffering radiuses were set as 100 m, 300 m, 500 m, 800 m, and
1000-5000 m with intervals of 500 m, according to previous research findings [27,28]. For the area
ratio (%) of a specific land use type of PM; 5 monitoring site, it was implemented by measuring the
area of this land use type and then dividing it by the total area of all land use types within the certain
buffering radius of this site. In this process, the original land use types were reclassified into “forest”
(Forestq1), “open space urban” (O-urbanyz), “medium intensity urban” (M-urbanis), “high intensity
urban” (H-urbanis), and “barren land” (Barrens) based on the similarity of reducing or increasing
PM, 5 concentration diffusion. For characteristic variables of “total road length” (T-lengthy;) and
“distance to nearest road” (D-roady;), the measured values (unit: km) were computed for the length
based on all level roads including highway, major road, local road, minor road, and other road, within
certain buffering radius. Similarly, “population density” (P-densitys;, unit: person/km?) and “housing
density” (H-densitysp, unit: house/km?) were calculated by counting the number of populations and
houses, respectively, and then dividing them by the area of each buffering radius. Additionally, spatial
scale free variable of “distance to sea coast” (D-coasts;, unit: km) was also extracted to indirectly
represent the possible influences of other geographical and climate characteristic factors (e.g., wind
speed, temperature, and humidity).
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2.2.2. Correlation Analysis

Based on the clear characteristic variables of the model, the aforementioned step for LUR modeling
was used to extract the ‘measured values’ of these variables at different preset buffering radiuses.
However, these measured values usually varied with the spatial scales, as shown in Table 1, and
reported LUR models were plagued on account of a lack of reasonable methods to determine the
ideal spatial scales of these measured values [31,40,41]. Therefore, this study attempted to develop
a way to initially discern the measured values of characteristic variables at an ideal buffering radius
(i.e., optimized spatial scale) to improve the performance of LUR. This procedure was conducted by
conducting correlation analyses between all the measured values of characteristic variables at preset
various buffering radiuses. The annual mean PM; 5 concentrations were calculated based on the
observed measurements from the regulatory monitoring stations. As a result, the measured value of
each of the characteristic variables at a relatively ideal buffering radius with regards to the maximum
Pearson coefficient could be kept. In contrast, those measured values of variables at irrelevant buffering
radiuses would be screened out due to the statistically weaker values of “Pearson coefficient” [42].

2.2.3. Impact Analysis of Spatial Scale on LUR Modeling and Mapping

To validate the feasibility of statistically determining the ideal spatial scale of a characteristic
variable in LUR modeling using correlation analysis and its impact on the accuracy of LUR mapping,
this study developed all the LUR models both at the ideal buffering radius and relatively irrelevant
buffering radiuses. These LUR models were built using SAS analysis (SAS Institute, Cary, NC, USA)
and backward multi linear regression (MLR) with non-spatial variables (i.e., distance to sea coast,
distance to nearest road). The significant level of ¢ tests less than 0.05 and VIF (Variance Inflation
Factors) values less than 5, which were used to control the collinearity between modeling variables,
were used as the additional conditions for characteristic variables to determine whether they were
introduced into the LUR model or not. Differences of simulation results among LUR models were firstly
validated by comparing predicted annual average PM; 5 concentrations with observed concentrations
at monitoring sites using the N-1 cross validation strategy. Consequently, in order to demonstrate the
outperformance of the LUR model at the optimized spatial scale, annual average PM; 5 concentration
surfaces of Houston were produced by LUR models with best, moderate-, and weakest fitting degrees,
respectively, as well as ordinary kriging, which is a preferred geostatistical method in air pollution
modeling [14]. In this process, a Levene’s test [43] and an F test [44] were also employed to verify
the difference between the concentrations extracted from above surfaces with a regular grid size of
3km x 3 km.

3. Results

3.1. Preliminary Identification of PM; 5 Related Characteristic Variables

Figure 3 demonstrates that the Pearson correlation coefficients between the characteristic variables
and annual average PM, 5 concentrations varied with the changes of buffering radiuses (i.e., spatial
scales). These correlation coefficients ranged from —0.64 to 0.72 for land use class (Figure 3a), from
0.10 to 0.46 for total road length (Figure 3b), and from —0.26 to 0.14 for population- and housing
density (Figure 3c). More importantly, the cross-scale comparison of correlation coefficients identified
unique spatial scale effects of different variables. For instance, the area ratios of forest (Forest1) and
open space urban (O-urbani,) were negatively correlated with annual average PM; 5 concentrations,
peaking at 100 m and 5000 m, respectively. The correlations of medium intensity urban (M-urbanis),
high intensity urban (H-urbany4), and barren land (Barren;s) with annual average PM, 5 concentrations
were most influenced by the scales of 100 m, 500 m, and 3 km. The total road length (T-length;;) was
positively correlated with annual average PM; 5 concentration, particularly at the 100 m scale, while
the correlation coefficients decreased rapidly as the buffering radius increased to 500 m. However, this
decreasing trend fluctuated after the buffering radius of 500 m and remained relatively stable at about
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0.20. The correlation coefficients of population- (P-densitys;) and housing density (H-densitys;) with
annual average PM; 5 concentrations varied greatly within 2000 m and decreased thereafter, while the
optimized scales for them were 100 m and 2 km, respectively.
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Figure 3. Correlation coefficients between characteristic variables and annual average PM;5
concentrations: (a) land use; (b) road traffic; (c) population and housing density.
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Table 1. Statistics of “measured values” (mean (min, max), Units: as listed in Section 2.1).

7 of 15

Variables

Measured Values

Variables

Measured Values

Variables

Measured Values

Variables

Measured Values

Forest11-5000
Forest11-4500
Forest11-4000
Forest11-3500
Forest11-3000
Forest11-2500
Forest11-2000
Forest11-1500
Forest11-1000
Forest11-800
Forest11-500
Forest11-300
Forest11-100
O-urbanq,-5000
O-urbanq»-4500
O-urbanq»-4000
O-urbanq»-3500
O-urbanq»-3000
O-urbanq»-2500
O-urbanq»-2000
O-urbanq,-1500
O-urbanq»-1000
O-urbany»-800
O-urbanq»-500
O-urbany-300
O-urbani»-100
D-roady,

31.95 (0.16, 73.18
30.25 (0.09, 70.08
28.41 (0.10, 66.52
26.30 (0.05, 63.76
23.86 (0.05, 62.41
21.46 (0.05, 56.23
17.98 (0.00, 44.52
12.96 (0.00, 35.46
9.95 (0.00, 30.46)
8.36 (0.00, 26.11)
5.80 (0.00, 18.82)
3.48 (0.00, 19.32)
0.75 (0.00, 10.45)

32.22 (11.06, 55.30)

33.04 (12.87, 55.22)

33.79 (12.48, 54.16)

34.78 (10.95, 52.14)

36.45 (10.60, 56.73)

)
)
)

RN NS INIANS NN N

38.16 (10.45, 64.74
40.16 (10.92, 71.96
43.62 (11.07, 75.23
46.22 (6.75, 79.01)
47.20 (6.50, 77.84)
51.72 (6.49, 77.28)
56.43 (8.4, 88.25)
62.56 (0.00, 100.00)
79.67 (0.18, 279.51)

M-urbany3-5000
M-urbanq3-4500
M-urban,3-4000
M-urbany3-3500
M—urban13-3000
M-urbany3-2500
M-urbanq3-2000
M-urbany3-1500
M-urbany3-1000
M-urban,3-800
M-urbany3-500
M-urbany3-300
M-urbany3-100
H-urbany4.5000
H-urban,4-4500
H-urban4-4000
H-urban,4-3500
H—urban14-3000
H-urbany4-2500
H-urban,4-2000
H-urban,4-1500
H-urban,4-1000
H-urban4-800
H-urban,4-500
H-urban,4-300
H-urban,4-100
D-coast gy

21.07 (5.37, 45.72
22.09 (5.36, 46.08
22.48 (5.59, 44.89
2247 (5.58, 42.55
22.71 (5.69, 39.13
22.93 (7.63, 41.70
23.65 (10.23, 43.70)
24.25 (10.1, 42.78)
24.57 (7.87, 44.43)
25.56 (7.23, 47.13)
25.17 (10.78, 50.59)
23.55 (9.13, 41.76)
21.79 (0.00, 48.78)
13.49 (3.05, 36.42)
14.12 (2.92, 38.63)
14.91 (2.51, 41.99)
16.07 (2.36, 45.92)
16.65 (2.34, 49.67)

)

)

)

)

PN NS B AN

17.09 (3.01, 55.39
17.85 (3.25, 59.95
18.77 (3.25, 68.21
18.95 (2.92, 77.30
18.64 (1.83, 79.98)
17.29 (1.09, 76.29)
16.55 (2.62, 72.68)
14.90 (0.00, 69.78)

55.39 (1.38, 125.15)

Barren15-5000
Barrenq5-4500
Barren5-4000
Barrenq5-3500
Barren5-3000
Barrenq5-2500
Barren5-2000
Barren5-1500
Barrenq5-1000
Barren5-800
Barrenq5-500
Barren5-300
Barren5-100
T-lengthy1-5000
T-lengthy;-4500
T-lengthy1-4000
T-lengthy1-3500
T-lengthy1-3000
T-lengthy1-2500
T-lengthy1-2000
T-lengthy1-1500
T-lengthy;-1000
T-lengthy1-800
T-lengthy1-500
T-lengthy1-300
T-lengthy1-100

0.64 (0.00, 3.48)
0.49 (0.00, 2.19)
0.40 (0.00, 2.25)
0.37 (0.00, 2.54)
0.33 (0.00, 2.34)
0.36 (0.00, 2.22)
0.36 (0.00, 2.07)
0.41 (0.00, 2.70)
0.31 (0.00, 3.26)
0.24 (0.00, 2.39)
0.02 (0.00, 0.31)
0.00 (0.00, 0.00)
0.00 (0.00, 0.00)
458.93 (202.46, 1104.14)
390.49 (174.75, 977.80)
306.33 (123.91, 765.44)
238.98 (80.52, 605.11)
188.69 (53.10, 489.08)
131.09 (30.94, 328.16)
88.05 (23.51, 214.96)
52.19 (18.15, 128.37)
23.27 (9.53, 60.66)
14.90 (5.76, 39.44)
5.65 (1.46, 15.22)
1.98 (0.22, 5.67)
0.21 (0.00, 0.68)

P-densitys1-5000
P-densitys1-4500
P-densitys1-4000
P-densitys1-3500
P—density31 -3000
P-densitys;-2500
P-densitys1-2000
P-densitys;-1500
P-densitys1-1000
P-density31-800
P-densitys1-500
P—density31-300
P-densityz;-100
H-densitys,-5000
H-densitysp-4500
H-density3,-4000
H-densitys3;-3500
H-densitys»-3000
H-densitys,-2500
H-densitys»-2000
H-densitys»-1500
H-densitys»-1000
H-densitys»-800
H-density3-500
H-densitys-300
H-densitys-100

574.35 (155.31, 1719.81)
568.81 (159.48, 1691.27)
543.95 (163.63, 1609.78)
554.16 (143.52, 1700.21)
706.87 (128.20, 2536.17)
552.94 (108.41, 1859.69)
686.97 (85.69, 2558.86)
609.19 (83.05, 1744.41
687.06 (94.90, 1652.37
635.68 (77.56, 1958.88
589.57 (24.73, 1359.31
555.93 (24.87, 1400.62
509.19 (24.67, 1389.24
201.90 (57.11, 669.74)
197.99 (56.30, 640.30)
187.03 (48.61, 592.81)
188.16 (40.68, 618.35)
240.04 (37.25,913.73)
181.78 (33.11, 645.51)
225.16 (28.27, 872.09)
183.94 (27.67, 565.37)
(
(

T = — T O —

211.81 (31.75, 560.28)
183.35 (24.03, 448.72)
186.44 (7.97, 450.35)
176.91 (8.02, 460.55)
169.69 (7.95, 456.81)
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3.2. Performance Validation of LUR Models under Different Spatial Scales

Table 2 illustrates the PM; 5 LUR models built both at ideal buffering radius (optimized spatial
scale) and less correlated (non-optimized spatial scale) buffering radiuses, assisted with variables
without spatial scale effects but had strong correlations. It can be observed that the LUR model based
on variables’ optimized spatial scale measured values obtained the best fitting result (adj. R? = 0.78).
This was followed by models based on variables” measured values at other less correlated scales of
4 km (adj. R? = 0.65), 4.5 km (adj. R? = 0.62), 5 km and 3.5 km (adj. R? = 0.61), 500 m (adj. R? = 0.51),
and 100 m (adj. R? = 0.48). Other LUR models had a comparatively lower fitting degree for adjusted
R? ranging from 0.19 to 0.39 at scales from 1 km to 3 km. Moreover, the LUR models in Table 2
also obviously indicated the fluctuations of the predictive variables. Under smaller spatial scales the
predictive variables favored medium- (M-urbany3) and high intensity urban ratios (H-urbani4), total
road length (T-lengthy), as well as distance to nearest road (D-roady;). The contributions of housing
density (P-densitys;), high intensity urban ratios (H-densitys;), and distance to sea coast (D-coasty;)
increased gradually with the increase in the spatial scales.

Table 2. Predictors and adjusted R2 of LUR models for PM; 5 concentration simulation.

Model ID Spatial Scale Model Predictors Model R?
1 Best scale M-urban,3-100, P-density31-100, Forest11-5000 0.78
2 100 m M-urbanq3-100 0.48
3 300 m T-lengthy1-300, H-urbany4-300, D-roady; 0.45
4 500 m T-lenegthy1-500, H-urbany4-500, D-roady, 0.51
5 800 m T-lengthy1-800, H-urban,4-800 0.39
6 1000 m H-urban14-1000 0.21
7 1500 m D-coastyy, O-urbany-1500, P-densitys1-1500 0.19
8 2000 m H-density3»-2000, O-urbany2-2000, Forest;1-2000 0.30
9 2500 m H-density3,-2500, H-urbany4-2500 0.38
10 3000 m H-densitys,-3000, H-urbany4-3000 0.34
11 3500 m H-densitys;-3500, D-coastyy, H-urban4-3500 0.61
12 4000 m H-density3,-4000, D-coasty,, H-urban4-4000 0.65
13 4500 m H-densitys,-4500, D-coastyy, H-urban4-4500 0.62
14 5000 m H-densitysp-5000, D-coastyy, H-urban4-5000 0.61

To avoid the col-linearity in the MLR process, residual analyses of the six LUR models with
relative higher fitting degrees were also conducted in this study. The results in Figure 4 show that all
standardized residuals were stochastically distributed, roughly falling at the horizontal zonal area
(Irl < 2) without any potential trend. Additionally, the comparison of mean error rate (MER) and
root mean squared error (RMSE) for LUR models of PM; 5 simulation concentration in Table 3 further
confirmed the reliability of LUR models, with MER under 20%. The model that was established by
variables at the optimized spatial scale (Model 1) had the smallest MER of 11.84% and the RMSE value
of 1.43.
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Figure 4. Standardized residual error map of LUR models: (a) Model 1; (b) Model 12; (c) Model 13;
(d) Model 14; (e) Model 11; (f) Model 4.

Table 3. Comparison of mean error rate (MER) and root mean squared error (RMSE) for LUR models

of PM, 5 concentration simulation.

Model ID MER (%) 1 RMSE (ug-m~3)
1 11.84 1.43
2 17.22 2.65
3 16.73 2.45
4 16.78 1.97
5 19.93 3.13
6 28.26 4.16
7 28.37 435
8 27.32 3.87
9 19.30 3.26
10 26.32 3.69
11 14.37 1.72
12 15.03 1.80
13 15.58 1.87
14 13.21 1.58

1 MER = | Observed concentration — Simulated concentration | /Observed concentration x 100%.

3.3. PM; 5 Concentration Surfaces Mapped by LUR Models and Ordinary Kriging

As an implementation of LUR modeling, mapping performance is particularly important for
correctly understanding the PM; 5 pollution pattern of an area, as illustrated by Figure 5 in this
study. Figure 5 shows that there was clearly different annual average PM; 5 concentration surfaces for
Houston produced by the LUR models with best- (i.e., Model 1), moderate- (i.e., Model 2), weakest
(i.e., Model 7) adjusted R?, as well as ordinary kriging. These differences mean the relative large biases
of mapping results of Model 2, Model 7, and ordinary kriging based on the performance validation
results of LUR models in Section 3.2. Specifically, for models 1 and 2 the higher annual mean PM; 5
concentrations (i.e., >10 pg-m~2) were distributed in urban Harris County and the surrounding area,
except that these high level PM; 5 polluted areas in Model 2 were greater than those in Model 1.
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However, on the other hand, the results of Model 7 disclosed that almost the entire annual average
PM; 5 concentrations in the Houston area were less than 9 ug~m*3, which were inconsistent with the
observed PM; 5 concentration values from the regulatory monitoring sites. In addition, results from
Levene’s test and F test with p values less than 0.05 in this study echoed these significant differences
demonstrated in Figure 5, which indirectly confirms the reliability of the LUR model built at the
optimized spatial scale.
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Figure 5. PM, 5 concentration surfaces of Houston based on LUR models and ordinary kriging.

4. Discussion

Using LUR-based PMj; 5 concentration simulation in Houston, US as a case study, this study
explored for the first time the influences of spatial scales of characteristic variables on LUR modeling
by employing the idea of statistically optimized analysis. We found that the accuracy of LUR models
changed significantly with different spatial scales. The model based on the optimized spatial scale
achieved a much higher “fitting degree” (adj. R? = 0.78) than at any other scales (adj. R? range from
0.19 to 0.65), which performed better than previous similar study [45]. However, further improvements
are needed to broaden the applicability of these research results.

4.1. Results Analysis

Our results demonstrated that land use and road traffic were more related with annual average
PM,; 5 concentration than population distribution and distance to sea coast. Medium-, high intensity-,
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and open space urban had the strongest land use correlations; for road traffic, total road length within
the 100 m buffer and distance to nearest road were the main correlations. The reason may lie in
the fact that PM, 5 in Houston predominately comes from industrial production and transportation
emissions [46,47]. Places with greater urbanization and intensive road traffic generally experienced
more serious PM; 5 pollution, resulting in the stronger correlations between medium-, high intensity
urban and PM; 5 concentrations. However, the impact of population and distance to sea coast was
much weaker. PM; 5 from transport emissions diffused slowly and accumulated near roads because
of low-lying terrain and building obstructions which increased the correlations between total road
lengths, distance to nearest road, and annual average PM, 5 concentrations. This exemplifies why road
traffic is the major factor affecting urban PM, 5 pollution worldwide.

Variations of correlation coefficients between the characteristic variables and annual average PM; 5
concentration under different spatial scales identified how the spatial scale setting can significantly
influence correlations. At different spatial scales the correlation coefficients changed in both direction
and value. Optimized spatial scales differed from different variables, including 5 km for forest, 100 m
for open space urban and medium intensity urban, 500 m for high intensity urban, 3 km for barren
land, 100 m for total road length, and 2 km for housing density. The variability reflects how diverse
geographical factors have different influencing radiuses for PM; 5 pollution. For example, road traffic
is an important emission source of PM; 5 and sites closer to road will be exposed to more serious
PM, 5 pollution levels that cause a stronger correlation at smaller spatial scales. Similarly, open
space urban, medium-, and high intensity urban land use space would have less impact on PM; 5,
leading to a smaller influencing radius. However, since only a large amount of forests can significantly
reduce PM; 5 pollution dispersion, they may influence PM; 5 pollution at a larger spatial scale (i.e.,
the optimized spatial scale of forest area ratio in this study was 5 km).

Comparatively, the LUR model in our study based on variables at the optimized spatial scales
achieved an impressive R? (0.78), mean error rate (11.84%), and RMSE (1.43). These results were not
only better than those based on variables at other spatial scales in this study (i.e., at the non-optimized
spatial scale, the fitting degree ranged between 0.19 and 0.65; maximum mean error rate and RMSE
reached to 28.37% and 4.35, respectively), but they also significantly outperform some previous
reported adjusted R? of PM, 5 LUR models for New York, El Paso, and California. The values of
adjusted R? for those studies were 0.64, 0.49, and 0.65, respectively [26,48,49]. In addition, the annual
average PMj; 5 concentration maps, which were separately produced by the LUR models with the best-,
moderate-, weakest adjusted R?, showed that the LUR model with weakest fitting degree could not
simulate the distribution of PM, 5 concentrations well, while models with moderate and best fitting
degree both showed better simulation results than ordinary kriging with wider concentration scope.
This result actually again confirms the significance of the identification of the optimized spatial scale in
LUR modeling, which means the PM; 5 distribution disclosed by LUR Model 1 with the best adjusted
R? was more similar with the true scenario.

4.2. Limitations

In Houston, PM; 5 primarily originates from industrial and vehicle emissions, occasional biomass
burning, and floating dust. Though this study emphasized several factors (land use, road traffic,
population distribution, distance to sea coast, and other geographical features) during LUR modeling
and achieved a surrounding annual average PM; 5 concentration simulation, further improvements on
the coverage of geographical factors are still required. For example, variables such as real industrial
emissions and urban morphologies of microenvironments (e.g., urban ecological landscape index,
street canyon, vegetation index, etc.) can be incorporated into PM; 5 LUR modeling [26,50,51]. These
variables may provide additional representative descriptions of PM; 5 pollution. Additionally, a recent
study shows PM; 5 emissions from unscheduled maintenance, startup, or shutdown activities continue
to increase in recent years [52]. LUR models have limited ability to capture such emission events from
industries in Houston.
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Based on previous research findings, this study took multiple spatial scales of variables into
account. While analyses proved the feasibility of deriving an optimized spatial scale in a statistical
manner under the currently unclear physical-chemical dispersion mechanism of PM; 5, isometric
discrete spatial scales might fail to continuously identify the spatial scale dependence of characteristic
variables because it is a relatively crude scheme. Additionally, the spatial scale range from 100 m to
5 km, though it covered the influence radiuses of most variables, may not be able to fully reflect the
relationship between some variables with a scope for very small or very large influence (e.g., road
traffic, PM; 5 pollution source, distance to chimney, forest, etc.) on PM; 5 pollution [53]. Therefore,
future spatial scale dependence analyses could expand or narrow the spatial scale range of the current
study and consider differences in variables’ physical and chemical dispersion mechanisms of PM; 5
pollution with more abundant data.

This study applied MLR to establish the PM;5 LUR model. Although MLR is the most
popular LUR regression model with reliable simulation effect [54], it assumes that variables make
the same spatial contributions to PM; 5 pollution in any location in the modeling area. However,
under real situations, geographical factors have different levels of spatial heterogeneity (except for
spatial correlation). Therefore, future LUR model applications can consider adding spatial weights
(e.g., establish a geographical weighted model) into existing models to enhance the simulation accuracy
of LUR. Meanwhile, the semi-parametric regression model, which takes linear and non-parametric
variables into consideration at the same time, might also be a promising way to improve the accuracy
of LUR [55].

In addition, the training sample size might be another important factor influencing the accuracy
of LUR models. Although the number of monitoring sites used as training samples in the previously
reported PMj 5 LUR models ranged from 13 to more than 100 and the surrounding simulation results
also had been achieved under few monitoring data [20,53], the results in this study have to be
cautiously explained due to the limited monitoring sites employed. Further validation work in regards
to considerations surrounding area through the use of many more sampling sites will greatly promote
the exploration of the relationship between monitoring sites and the LUR model’s accuracy, which is a
critical problem having not been fully considered in LUR modeling field so far.

5. Conclusions

This study represents the first time that a systematic exploration of the influence of spatial scales
of characteristic variables on LUR-based PM, 5 concentration estimation modeling was carried out in
a statistical manner. It used LUR-based PM; 5 concentration estimation modeling in Houston, US as
an example to illustrate how the challenge of the spatial scale clarity can be investigated. Results
indicate that statistical based identification of optimized spatial scales of characteristic variables is
necessary to ensure the performance of LUR models in mapping PMj, 5 distribution without current
clearly understood physical-chemical dispersion mechanisms. LUR models at optimized spatial scales
were observed to perform better than unified spatial scales. More importantly, this study provides
a scientific basis for the spatial scale selection of characteristic variables in future LUR based air
pollution mapping.
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