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Abstract: The middle and lower reaches of the Yangtze River basin (MLRYB) are prone to flooding
because their orientation is parallel to the East Asian summer monsoon rain belt. Since the East
Asian summer monsoon presents pronounced intraseasonal variability, the subseasonal prediction
of summer precipitation anomalies in the MLRYB region is an imperative demand nationwide.
Based on rotated empirical orthogonal function analysis, 48 stations over the MLRYB with coherent
intraseasonal (10–80-day) rainfall variability are identified. Power spectrum analysis of the MLRYB
rainfall index, defined as the 48-station-averaged intraseasonal rainfall anomaly, presents two
dominant modes with periods of 20–30 days and 40–60 days, respectively. Therefore, the intraseasonal
(10–80-day) rainfall variability is divided into 10–30-day and 30–80-day components, and their
predictability sources are detected separately. Spatial-temporal projection models (STPM) are then
conducted using these predictability sources. The forecast skill during the period 2003–2010 indicates
that the STPM is able to capture the 30–80-day rainfall anomalies 5–30 days in advance, but unable
to reproduce the 10–30-day rainfall anomalies over MLRYB. The year-to-year fluctuation in forecast
skill might be related to the tropical Pacific sea surface temperature anomalies. High forecasting skill
tends to appear after a strong El Niño or strong La Niña when the summer seasonal mean rainfall
over the MLRYB is enhanced, whereas low skill is apparent after neutral conditions or a weak La
Niña when the MLRYB summer seasonal mean rainfall is weakened. Given the feasibility of STPM,
the application of this technique is recommended in the real-time operational forecasting of MLRYB
rainfall anomalies during the summer flooding season.

Keywords: atmospheric intraseasonal oscillation; subseasonal prediction; summer rainfall anomalies;
middle and lower reaches of the Yangtze River basin

1. Introduction

Located in the transition region between the tropical and temperate zones, the middle and lower
reaches of the Yangtze River basin (MLRYB) are jointly influenced by the tropical and subtropical East
Asian summer monsoons [1,2], thus resulting in a complex picture of considerable rainfall variability
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over the region. Additionally, because the orientation of the Yangtze River is mostly parallel to
the subtropical monsoon (or Meiyu front) rain belt, this densely populated region, which includes
many megacities (e.g., Wuhan, Nanjing, Hangzhou, and Shanghai), is therefore more vulnerable
to floods [3], always suffering from water-logging in urban areas and crop failure in rural areas.
For example, the 1998 summer floods left 14 million people homeless; the 2010 summer floods
affected more than 230 million people, with 15.2 million people evacuated and thousands dead; on
23 May 2015, at least 57 people were killed in floods in six provinces; in summer 2016, 300 people were
killed and 700,000 acres of cropland were destroyed during floods, with damage estimates of around
$5.73 billion; and, in summer 2017, MLRYB floods led to around 15 million people being affected,
with 48 dying. Therefore, improving the subseasonal to seasonal (S2S) prediction skill with respect
to rainfall anomalies over the MLRYB is an important and ongoing priority for governments and
meteorological services departments.

Because of the pronounced global impacts of El Niño-Southern Oscillation (ENSO), the seasonal
prediction of MLRYB summer mean rainfall (or the East Asian summer monsoon) can achieve
encouraging prediction skill [4]. During the decay phase (succeeding summer) of a strong El Niño,
MLRYB summer rainfall tends to be enhanced, and vice versa [5,6]. On the contrary, due to the lack of
useful and persistent predictors, the subseasonal prediction skill is relatively low and with large room
to improve. Nonetheless, weather-related information at lead times on the subseasonal timescale is
important for risk avoidance and disaster mitigation.

Seasonal (usually led by longer than one month) climate prediction often involves the extraction
of predictability sources from persistent boundary forcing (such as, sea surface temperature (SST)
and soil moisture), whereas short-range (led by less than seven days) weather prediction can be
numerically derived from primitive equations and its predictability often depends on the initial
conditions. Because of the chaotic, or the nonlinearly complex nature of the atmosphere [7], subseasonal
(usually led by 10–30 days) weather forecasting has long been a forecast “gap” between short-range
weather forecasting and seasonal climate prediction in real-time operations. Fortunately, the observed
recurrent nature of the Madden Julian Oscillation (MJO), or the atmospheric intraseasonal oscillation
(ISO), sheds light on the issue of subseasonal prediction [8]. Partially due to poor understanding
with respect to the propagation and initiation mechanisms of the ISO, numerical models still have a
long way to go before they can perfectly reproduce the MJO [9,10], not to mention the ISO over high
latitudes, which features more complex temporal and spatial structures [11]. Statistical methods are a
more feasible way to achieve the subseasonal prediction of rainfall over subtropical land areas [12–16].

In recent years, based on temporally varying coupled predictor–predictand information,
several spatial-temporal projection models (STPMs) have been developed to carry out subseasonal
(extended-range) forecasting of different meteorological variables over different regions [17–22].
Based on different predictability sources, STPMs can skillfully forecast the tropical convection anomaly
patterns 20–30 days in advance [17], summer rainfall anomalies over China at a 20-day lead time [18],
Chinese surface air temperature and its extremes 20 days in advance [19,20], the subseasonal evolution
of zonal wind over the South China Sea (SCS) during the onset of the SCS monsoon [21], and the
occurrence of western North Pacific clustering tropical cyclogenesis at a 15-day lead time [22].

Zhu and Li [18] presented a preliminary evaluation of the subseasonal forecasting skill of summer
rainfall anomalies over the whole of Mainland China. However, given the exceptional importance of the
geographic position of the MLRYB, it is still necessary to refine the subseasonal prediction of MLRYB
summer rainfall anomalies and to examine the factors that possibly have an impact on the prediction
skill. The rainfall variability over different regions may have different origins. Considering the complex
spatial distribution of Chinese summer subseasonal rainfall, it is inappropriate to simply define a
box region to explore the predictability and prediction of rainfall over the MLRYB. The relationship
between the predictors and the areal-mean rainfall variability can be misleadingly constructed if
stations or areas with different rainfall variabilities are mixed. Therefore, how to define the MLRYB
region (or stations) with coherent intraseasonal rainfall variability is the first issue we need to address.
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Figure 1 shows the third rotated empirical orthogonal function (REOF, see Section 2 for
details) mode of subseasonal (10–80-day) rainfall over the whole of Mainland China. The red
dots are the 48 stations over the MLRYB at which REOF shows maximum loadings. The highly
correlated (correlation coefficients above 0.5) region of Chinese intraseasonal precipitation with the
48-station-averaged rainfall time series also overlaps the MLRYB region, which includes all these
48 maximum REOF loading stations. Therefore, these 48 stations are identified as representative of the
MLRYB region with coherent intraseasonal rainfall variability; and the 48-station-averaged rainfall
is referred to as to the MLRYB rainfall index. Details of the 48 stations, including their names and
coordinates, are listed in Table 1.
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Figure 1. Pattern of the third REOF (rotated empirical orthogonal function) mode for Chinese
intraseasonal (10–80-day) precipitation. Stations with maximum loadings (exceeding 0.4 mm day−1)
are marked as red circles, and shading indicates correlation between Chinese precipitation and the
principle component of the third REOF mode with the correlation coefficients above 0.5.

Table 1. Names and coordinates (latitude in ◦N and longitude in ◦E) of the selected 48 stations over
the middle and lower reaches of the Yangtze River basin.

Name Coordinate Name Coordinate Name Coordinate Name Coordinate

Fangxian 32.03; 110.77 Tianmen 30.67; 113.17 Suzhou 33.63; 116.98 Huoshan 31.40; 116.32
Laohekou 32.38; 111.67 Wuhan 30.62; 114.13 Xuyi 32.98; 118.52 Hefei 31.78; 117.30
Zaoyang 32.15; 112.75 Laifeng 29.52; 109.42 Sheyang 33.77; 120.2 Chaohu 31.62; 117.87
Xinyang 32.13; 114.05 Sangzhi 29.40; 110.17 Fuyang 32.87; 115.73 Changzhou 31.88; 119.98
Fengjie 31.02; 109.53 Shimen 29.58; 111.37 Gushi 32.17; 115.62 Liyang 31.43; 119.48
Badong 31.03; 110.37 Nanxian 29.37; 112.40 Shouxian 32.55; 116.78 Dongshan 31.07; 120.43

Zhongxiang 31.17; 112.57 Jiayu 29.98; 113.92 Bengbu 32.92; 117.38 Yingshan 30.73; 115.67
Macheng 31.18; 115.02 Yueyang 29.38; 113.08 Chuzhou 32.30; 118.30 Huangshi 30.23; 115.03

Enshi 30.28; 109.47 Youyang 28.83; 108.77 Nanjing 32.00; 118.80 Anqing 30.53; 117.05
Wufeng 30.20; 110.67 Jishou 28.32; 109.73 Dongtai 32.87; 120.32 Ningguo 30.62; 118.98
Yichang 30.70; 111.40 Yuanling 28.47; 110.40 Nantong 31.98; 120.88 Huangshan 30.13; 118.15
Jingzhou 30.35; 112.15 Yuanjiang 28.85; 112.37 Liuan 31.75; 116.50 Tunxi 29.72; 118.28

After identifying the stations representative of MLRYB intraseasonal rainfall, the data, analysis
methods and STPM employed in this study are described in Section 2. Section 3 examines the
predictability sources of MLRYB summer rainfall anomalies. In Section 4, the forecast skill of the STPM
for MLRYB summer rainfall anomalies is presented, and the factors possibly having impacts on the
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year-to-year variation of the forecast skill are also investigated. Concluding remarks are provided in
Section 5.

2. Data, Method and Model

The daily precipitation datasets are from 553 gauge stations over Mainland China from the
China Meteorological Administration. The circulation variables are derived from the National Centers
for Environmental Prediction/Department of Energy Reanalysis II [23]. The outgoing longwave
radiation (OLR) data are obtained from the National Oceanic and Atmospheric Administration
polar-orbiting satellites [24]. The original data with 2.5◦ × 2.5◦ horizontal resolution are downgraded to
a 5◦ × 5◦ resolution. This is because the useful predictability sources are mainly from the atmospheric
ISO or MJO, which are the large-scale system; therefore, the synoptic small-scale perturbations
should be filtered out. Meanwhile, downgrading the resolution can also save computational cost.
After downgrading the resolution, a 5-day mean is applied to all datasets to form pentad data. Note that
29 February in a leap year is omitted; therefore, there are always 73 pentads per year. All datasets
cover the period from 1979 to 2010.

Rotated empirical orthogonal function (REOF) analysis [25] can be used to identify a region with
coherent temporal variability; therefore, as shown in Section 1, REOF is employed in this study to
single out the gauge stations over the MLRYB that have coherent intraseasonal variation.

To extract the intraseasonal rainfall anomalies, a “nonconventional filtering” method [17] is
employed to extract the ISO signal. This method resolves the “tapering” problem in the traditional
band-pass filtering method, and therefore facilitates real-time forecasting operations. Because ISO
has a pronounced three-dimensional structure, the OLR and zonal wind at 850-hPa and 200-hPa
are selected as potential predictors. Meanwhile, because precipitation formation requires favorable
moisture condition [26], 700-hPa relative humidity is used as a potential predictor. Besides, 500-hPa
geopotential height and 850-hPa vorticity are also added as potential predictors. Additionally, because
of the recurrent nature of ISO, the MLRYB rainfall anomaly itself is used as a potential predictor.

An empirical STPM is employed to carry out the subseasonal prediction of MLRYB rainfall
anomalies. The STPM is based on the extended singularity value decomposition (ESVD)
technique [17]. Useful predictor–predictand coupled modes are retained during the training period via
a cross-validation procedure. Six pentad previous predictors and six pentad succeeding predictands
are concatenated in the ESVD to conduct the 5–30-day (5, 10, 15, 20, 25 and 30 days, respectively)
lead-time forecasts simultaneously. For example, at the forecast time of early pentad 31, the predictors
at pentads 25–30 are concatenated to forecast the predictand at pentads 31–35. In the present study,
the forecast time starts at early pentad 31 and ends at early pentad 55. The training period runs from
1979 to 2002 (600 forecast points, 25 pentads for each year), and independent forecasting is carried out
from 2003 to 2010 (200 forecast points, 25 pentads for each year). To construct an ensemble forecast,
the arithmetic mean is applied to the outputs of seven STPMs with different predictors. To make a
comparison with the state-of-the-art dynamic model, the forecast outputs from the NCEP climate
forecast system version 2 (CFS2) are also evaluated [27]. The CFS2 make the predictions initiated
every 10 days on 1st, 11th, and 21st of each calendar month, and it has 4 ensemble members for each
forecast. The hindcast data during the period of 2003–2010 is derived from the Intraseasonal Variability
Hindcast Experiment (ISVHE) [28].

3. Predictability Sources and Projection Domains

Figure 2 shows the power spectra of the MLRYB rainfall index during the training period
of 1979–2002. It clearly indicates that the MLRYB rainfall has two significant peaks, with one
peak at around 40–60 days and the other at around 20–30 days. This result is consistent with a
previous study [29] which indicated that the MLRYB intraseasonal rainfall anomalies have two distinct
modes, i.e., the MJO mode and the quasi-biweekly oscillation mode. Given that the two ISO modes
may have different origins, the predictability sources of each mode should be detected separately.
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Therefore, the 10–80-day MLRYB rainfall is first divided into 10–30-day and 30–80-day components,
and then predictability sources of these two components are separately examined. Following the same
method, the 10–30-day and 30–80-day intraseasonal MLRYB rainfall can be easily extracted by the
“nonconventional” filtering.Atmosphere 2017, 8, x FOR PEER REVIEW  5 of 14 
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Figure 2. Power spectrum analysis for the 10–80-day MLRYB (The middle and lower reaches of the
Yangtze River basin) rainfall index, with the Markov red noise spectrum (grey line), and a priori 95%
confidence bound (red dashed line).

Scrutinizing the correlation map of previous meteorological fields is a useful way to detect
the predictability sources. In the present study, the correlation map of 30-day, 20-day, 10-day,
5-day and 0-day lead predictor fields (i.e., OLR, 850-hPa and 200-hPa zonal wind, 850-hPa relative
vorticity, 700-hPa relative humidity, and 500-hPa geopotential height) with the MLRYB rainfall index
are examined.

Firstly, we focus on the 30–80-day component of the MLRYB rainfall index. Figure 3 shows the
correlation maps between the previous (30–0-day lead) different meteorological variable fields and the
30–80-day component of the MLRYB rainfall index. Generally, two branches of predictability sources
are detected over different variables. For all the variables, predictability sources over the western
North Pacific at the 30-day lead time are detected, with the signal then propagating northwestwards
(see the red dashed line with arrows) during the succeeding 30 days, and arriving in the MLRYB at
0-day lead. For 200-hPa zonal wind (U200) and 500-hPa geopotential height (H500), another branch
of predictability sources is detected over northwestern China at a 30-day lead time, after which it
propagates southeastwards (see the red dashed line with arrows) in the next 30 days and affects MLRYB
rainfall anomalies at day 0. From 30-day to 0-day lead, enhanced convection (OLR), 850-hPa vorticity
(CURL), 700-hPa relative humidity (RHUM) all gradually moves northwestwards to the very region of
MLRYB. Meanwhile, the anomalies 850-hPa westerly (U850) and 200-hPa easterly (U200) gradually
propagated to the southeast of the MLRYB region, forming a configuration of lower-level cyclonic
shear and upper-level anti-cyclonic shear. In addition, the 500-hPa geopotential height (H500) anomaly
is established to the southeast of the MLRYB region, favoring the formation of moist southwesterly
over MLRYB. To sum up, the propagation of the predictability sources of six variables all tends to
enhance rainfall over MLRYB.
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Figure 3. The 30–0-day lead (top to bottom: 30-, 20-, 10-, 5- and 0-day lead) correlation of six potential
predictors (top-left to bottom-right: OLR, 850-hPa and 200-hPa zonal wind, 850-hPa relative vorticity,
700-hPa relative humidity, and 500-hPa geopotential height) fields with the 30–80-day MLRYB rainfall
index. Shading indicates correlation coefficients. The dashed red line with arrows denotes the
propagation of centers of predictability sources. The black contour denotes the MLRYB.

Now, we turn to the predictability sources of the 10–30-day component of the MLRYB rainfall
index. Figure 4 shows the correlation maps between previous (30–0-day lead) variables and the
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10–30 day component of the MLRYB rainfall index. Different from Figure 3, the predictability sources
of the 10–30 day component of the MLRYB are hard to find at 20-day or longer lead times. At the
10-day lead time, predictability sources of OLR, U850, CURL and RHUM (U200 and H500) appear over
the western North Pacific (northwestern China), and then propagate northwestwards (southeastwards)
to affect the MLRYB rainfall at the 0-day lead time.
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Based on these detected projection sources, the domain (5◦–50◦ N, 100◦–160◦ E) is determined as
the projection domain in the STPM. Note that the projection domain should contain the most parts of
the highly correlated region over the 30–0-day lead correlation maps. The selection of the domain is
somewhat subjective; it cannot be too large in case noise signals are included, nor can it be too small in
case useful predictability sources are missed. A slight change in projection domain cannot significantly
influence the forecasting skills based on our sensitivity experiments (figure not shown). Based on the
prediction domain, the STPMs for two different ISO modes (i.e., 30–80 day and 10–30 day components)
are conducted separately, and their forecast skills are assessed in the following Section 4.

4. Results

4.1. Prediction Skill

The temporal correlation coefficient (TCC) is used to assess the forecasting performance of the
STPM. The intraseasonal variability has reduced degrees of freedom compared to raw data with the
same sample size. To estimate the significance of the correlation coefficient, the effective sample size
(Ne) is introduced [30]. Its formula is:

Ne = N/τ

where τ =
[
1 + 2 ∑N

i=1 Cxx(i)Cyy(i)
] (1)

where Cxx and Cyy are the autocorrelations of the forecasted and observed predictand with different
time interval i; and N is the original sample size (200 forecast points). In the present study, Ne is 30 for
the 30–80-day component and 60 for the 10–30-day component. Thus, considering an effective sample
size, a TCC exceeding 0.35 and 0.25 can be considered as demonstrating significant skill (passing the
95% confidence level) during the independent forecast period (200 forecast points) for the 30–80 day
and 10–30 day ISO mode, respectively.

Figure 5 shows the scatter plot for the 5–30-day lead forecasted and observed 30–80-day and
10–30-day components of the MLRYB rainfall index. For the 30–80-day component, the STPM can
reproduce the MLRYB rainfall index well at all (5–30-day) lead times. The TCC varies from 0.47 to 0.36.
However, for the 10–30-day component, it is hard for STPM to capture the variability of the MLRYB
rainfall index. Given that the STPM has quite low skill for the 10–30-day component of MLRYB rainfall,
we only focus on the predictable part of the MLRYB rainfall variability, i.e., the 30–80-day component
of MLRYB rainfall.
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Figure 5. (a–f) Scatter plot for the observed (x-axis, unit: mm day−1) and 5–30-day lead forecasted
(y-axis, unit: mm day−1) 30–80-day MLRYB rainfall index for the period 2003–2010. Green lines are the
regression best fit lines, the correlation coefficients between forecasted and observed rainfall anomalies
are shown in the bottom-right of each panel. (g–l) as in (a–f) but for the 10–30-day MLRYB rainfall
index, the regression best fit lines in these panels are not shown.
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Figure 6a shows the distribution of the TCC between 5–30-day lead forecasted and observed
30–80-day rainfall anomalies over the MLRYB for the independent forecast period of 2003–2010.
For comparison, the distribution of TCC skill based on hindcast data from the dynamical
model–CFS2–is also presented in Figure 6b. It can be seen that, from a lead time of 5–10 days,
the STPM can generally reproduce the 30–80-day variability of rainfall anomalies over the MLRYB.
At 15–20-day lead times, the STPM cannot capture the rainfall anomalies over northeastern Hunan
and northwestern Hubei but show encouraging skills elsewhere. Only at 25–30-day lead times, the
forecast skill over the Yangtze River delta (southern Jiangsu and northern Zhejiang) starts to decay.
Even at a 30-day lead time, 36 out of 48 stations still show useful forecasting skill. Nonetheless, the
STPM can reproduce the 30–80-day rainfall variation over most of the MLRYB well. On the contrary,
the CFS2 shows little skills for all time leads (Figure 6b), suggesting the poor performance of dynamic
model on subseasonal forecasting the rainfall anomalies over MLRYB.
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Figure 6. Distribution of TCCs between 5–30-day lead (from top to bottom) forecasted and observed
30–80-day rainfall anomalies over the MLRYB for the period 2003–2010, in which the red dashed
contour is the threshold of the 95% confidence level based on the Student’s t-test: (a) STPM, where
purple dots denote the 48 stations over the MLRYB, the TCC values on the gauge stations are gridded
to a 0.5 × 0.5 latitude–longitude grid using Cressman interpolation schema [31]; and (b) CFS2, where
the grids are also interpolated into 0.5 × 0.5 latitude–longitude. The blue dashed line is the Yangtze
River. Note that the color bars in (a) and (b) are different.
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4.2. Factors Affecting the Year-to-Year Variation of Prediction Skill

As indicated in Figure 5a–f, the STPM can reproduce the 30–80-day MLRYB rainfall index quite
well for the independent period of 2003–2010. Questions are raised: Does the STPM show high
skill in some years but low skill in others? If it does, what causes the year-to-year fluctuation in the
forecasting skill of the 30–80-day MLRYB index? To answer these questions, the year-to-year 5–30-day
lead forecasting skill during 2003–2010 is plotted in Figure 7a. It indicates that the TCC skill has
pronounced year-to-year variation, with the best skill in 2003, 2008 and 2010, and poor skill in 2004,
2006 and 2009. Comparing the forecasting skill (color bars) with the 30–80-day variance (red bar),
one may speculate that, when the 30–80-day variance is large, the forecasting skill tends to be higher.
When the 30–80-day variance is small, the forecasting skill is lower, with one exception in 2008.
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Figure 7. Year-to-year: (a) TCCs (left hand y-axis) between the 5–30-day lead forecasted and observed
30–80-day MLRYB rainfall index, along with the variance (right hand y-axis, unit: mm2 day−2) of the
30–80-day MLRYB rainfall index; and (b) Niño3.4 Index and Oceanic Niño Index (ONI) (unit: ◦C), grey
dashed lines denote positive or negative 0.5 ◦C.

The intensity (variance) of ISO has been suggested to be related to tropical SSTs [32]; therefore,
the year-to-year Niño3.4 index and Oceanic Niño Index (ONI) in boreal winter (December, January
and February) are plotted in Figure 7b to check their relationship with ISO intensity. The results
show that the high TCC skill of summer MLRYB rainfall anomalies in 2003 and 2010 follows the two
strong El Niño events. In the decay phase of strong El Niño, the Indian Ocean tends to manifest as a
basin-wide SST warming (Figure 8a). The SST anomaly (SSTA) pattern can induce suppressed rainfall
over the tropical western Pacific and enhanced rainfall over the northern Indian Ocean. The rainfall
condensation heating (cooling) over the Indian Ocean (Pacific Ocean) could excite a Matsuno–Gill-type
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Kelvin (Rossby) wave response [33,34], forming an anticyclonic circulation anomaly at lower levels
over the East Asia–western North Pacific sector. The anomalous southeasterly over the southwest
periphery of the anticyclonic circulation anomalies meets the anomalous northerlies from northeastern
China at central China, leading to enhanced rainfall over the MLRYB (Figure 8b). This enhanced
seasonal mean rainfall over the MLRYB provides a favorable environment for the strong ISO of MLRYB
rainfall. The large intensity of the intraseasonal variability of MLRYB rainfall further leads to the high
forecasting skill.

Atmosphere 2017, 8, x FOR PEER REVIEW  11 of 14 

 

southeasterly over the southwest periphery of the anticyclonic circulation anomalies meets the 

anomalous northerlies from northeastern China at central China, leading to enhanced rainfall over 

the MLRYB (Figure 8b). This enhanced seasonal mean rainfall over the MLRYB provides a favorable 

environment for the strong ISO of MLRYB rainfall. The large intensity of the intraseasonal 

variability of MLRYB rainfall further leads to the high forecasting skill.  

 

Figure 8. Composite sea surface temperature (SST) (shading, °C), SLP (contours, hPa), 850-hPa wind 

(vectors, m s−1) and precipitation (shading, mm d−1) anomalies during the summer(s) after (a,b) 

strong El Niños (2003 and 2010), (c,d) weak La Niñas (2006 and 2009), and (e,f) strong La Niña (2008). 

The blue contour denotes the region of the MLRYB; “AC” indicates the center of anticyclonic 

anomalies. 

On the contrary, for summers after a weak La Niña (2006 and 2009), because SSTAs are 

uniformly positive over the entire tropics, with warmer SSTAs over the eastern Pacific (Figure 8c), 

there is no significant seasonal mean rainfall response over the Maritime Continent. Eastern China is 

dominated by northerly anomalies, and negative rainfall anomalies appear over the MLRYB (Figure 

8d). This negative seasonal mean rainfall anomaly could lead to weakened intraseasonal rainfall 

variability over the MLRYB and thus a low predictability skill (Figure 7a).  

Interestingly, for the summer after a strong La Niña in 2008 (Figure 8e,f), warm SSTAs 

dominate the basin-wide Indian Ocean, whereas cold SSTAs control the central North Pacific. This 

SSTA pattern could cause strong easterlies blowing from the central Pacific to the tropical Indian 

Ocean, and leads to a pronounced negative rainfall anomalies over the western and central Pacific 

(east of the Philippines) via anomalous zonal circulation [35,36]. The rainfall condensation cooling 

excites a Rossby wave response to the northwest in terms of anticyclonic anomalies. On the 

northwestern flank of the anticyclonic anomalies are westerly wind anomalies, leading to enhanced 

rainfall over the MRLYB. The intraseasonal perturbation can be easily excited by the enhanced 

rainfall mean state, thus leading to a high forecasting skill in 2008 (Figure 7a).  

Figure 8. Composite sea surface temperature (SST) (shading, ◦C), SLP (contours, hPa), 850-hPa wind
(vectors, m s−1) and precipitation (shading, mm d−1) anomalies during the summer(s) after (a,b) strong
El Niños (2003 and 2010), (c,d) weak La Niñas (2006 and 2009), and (e,f) strong La Niña (2008). The blue
contour denotes the region of the MLRYB; “AC” indicates the center of anticyclonic anomalies.

On the contrary, for summers after a weak La Niña (2006 and 2009), because SSTAs are uniformly
positive over the entire tropics, with warmer SSTAs over the eastern Pacific (Figure 8c), there is no
significant seasonal mean rainfall response over the Maritime Continent. Eastern China is dominated by
northerly anomalies, and negative rainfall anomalies appear over the MLRYB (Figure 8d). This negative
seasonal mean rainfall anomaly could lead to weakened intraseasonal rainfall variability over the
MLRYB and thus a low predictability skill (Figure 7a).

Interestingly, for the summer after a strong La Niña in 2008 (Figure 8e,f), warm SSTAs dominate
the basin-wide Indian Ocean, whereas cold SSTAs control the central North Pacific. This SSTA pattern
could cause strong easterlies blowing from the central Pacific to the tropical Indian Ocean, and leads to
a pronounced negative rainfall anomalies over the western and central Pacific (east of the Philippines)
via anomalous zonal circulation [35,36]. The rainfall condensation cooling excites a Rossby wave
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response to the northwest in terms of anticyclonic anomalies. On the northwestern flank of the
anticyclonic anomalies are westerly wind anomalies, leading to enhanced rainfall over the MRLYB.
The intraseasonal perturbation can be easily excited by the enhanced rainfall mean state, thus leading
to a high forecasting skill in 2008 (Figure 7a).

Note that, despite being under the influence of distinct tropical central and eastern Pacific SSTAs
(strong El Niños in 2003 and 2010 but strong La Niña in 2008), the MLRYB presents enhanced rainfall
in both cases. For summers after a strong El Niño (2003 and 2010), the Indian Ocean induces easterly
anomalies farther northwards, thus, the western North Pacific anticyclonic anomalies also appear
farther to the north. The enhanced MLRYB is attributable to the southeasterly anomalies over the
southwest flank of the anticyclonic anomalies. For the summer after a strong La Niña in 2008, the
Indian Ocean warming and cold SSTA over the central Pacific suppresses the rainfall over the tropical
western and central Pacific. The suppressed rainfall anomalies induce a Rossby wave anticyclonic
anomaly response over the east of the Philippines. The westerly anomalies over the northwest flank of
the anticyclonic anomalies lead to enhanced MLRYB rainfall, thus a higher rainfall forecast skill in
the region.

Therefore, the indication is that when the summer seasonal mean MLRYB rainfall is enhanced,
the subseasonal forecasting of intraseasonal MLRYB rainfall anomalies tends to be more skillful.

5. Conclusions and Discussion

In the present paper, based on REOF analysis, 48 stations over the MLRYB with coherent
intraseasonal (10–80-day) rainfall variability are identified. The MLRYB intraseasonal rainfall index,
defined as the 48-stations-averaged rainfall anomaly, can represent the intraseasonal rainfall variability
well over the MLRYB.

Power spectrum analysis of the MLRYB rainfall index presents two independent periods of
20–30 days and 40–60 days with significant power, and thus the intraseasonal (10–80-day) variability
of MLRYB rainfall is divided into 10–30-day and 30–80-day components. Their predictability sources
from six meteorological variables are examined separately. Two branches of the predictability sources
of 30–80-day MLRYB rainfall are detected. One is coming from the tropical western Pacific and the
other from northwestern China. For all the variables, predictability sources over the western North
Pacific at the 30-day lead time are detected, with the signal then propagating northwestwards during
the succeeding 30 days, and arriving in the MLRYB at 0-day lead. For 200-hPa zonal wind and 500-hPa
geopotential height, another branch of predictability sources is detected over northwestern China at
a 30-day lead time, after then it propagates southeastwards in the next 30 days and affects MLRYB
rainfall anomalies at Day 0. Significant predictability sources for 10–30-day MLRYB rainfall can only
be found within a 10-day lead. Based on these predictability sources, the projection domain of the
STPM is determined.

The STPM is run based on the projection domain. The independent-forecast skill during the
period 2003–2010 shows that the STPM captures the 30–80-day component of MRLYB rainfall 5–30 days
in advance, but fails to reproduce the 10–30-day component. The TCC distribution indicates that the
STPM can generally reproduce the 30–80-day rainfall anomalies over the MLRYB. Even at a 30-day
lead time, the STPM can reproduce well the 30–80-day rainfall anomalies at 36 out of 48 stations over
the MRLYB. The STPM shows superior forecast skill than the dynamics model of CFS2.

Performance of STPM is better in some years than in others. This is related to corresponding
fluctuations of the intensity of ISO variability and ENSO condition. High forecasting skill tends to
appear when the 30–80-day rainfall intensity is large, while low skill is apparent when the intensity is
small, with an exception in 2008. Further analysis suggests that the summer mean rainfall over the
MLRYB may contribute to the forecasting skill of the intraseasonal MLRYB rainfall. During summers
after strong El Niños (2003 and 2010) and a strong La Niña (2008), the MLRYB seasonal mean rainfall is
enhanced through large-scale air–sea interactions. The enhanced rainfall mean state is sensitive to the
intraseasonal perturbation, thus leading to the high forecasting skill. During summers after a weak La
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Niña (2006 and 2009) and neutral conditions (2004), the MLRYB seasonal mean rainfall is suppressed,
leading to a small variance of intraseasonal variability and low forecasting skill. These pieces of
evidence suggest that the seasonal mean MLRYB rainfall may modulate the intraseasonal MRLYB
variability and its forecast skill. Therefore, efforts should be devoted to constructing a forecast
framework from both perspectives of seasonal prediction and intraseasonal (extended-range) forecast,
and ultimately establishing an advanced S2S forecast system.

The intention of our future work is to apply the STPM to real-time operational subseasonal
prediction of MLRYB rainfall anomalies during the summer flooding season.
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