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Abstract: Roughness length is a critical parameter for estimation of wind conditions, and it is
therefore also relevant for the estimation of human thermal conditions in urban areas. The high
density of buildings in urban areas causes large changes in land coverage, thereby increasing surface
roughness. This influence atmospheric flow and also leads to a reduction in urban air ventilation,
thus increasing the risk of human thermal stress. In this study, a digital building model of Tainan city
was used to calculate roughness length using an approach based on Voronoi cells by applying the
microclimate model, SkyHelios. The model was also used to estimate the wind conditions, including
the wind speed and wind direction. For estimation of the thermal conditions, this study obtained
meteorological data for air temperature, relative humidity, globe temperature, wind speed, and wind
direction on two specific days (31 July 2015 and 21 January 2016). To quantify the thermal stress,
the physiologically equivalent temperature (PET) was used to represent the thermal conditions.
The wind conditions results obtained from the model indicate that even microscale conditions
with vortices and corner flow can be represented with high precision and resolution. The thermal
conditions results demonstrate that different created environments and microclimate conditions
affect the thermal environment. The difference in PET can be up to 3 ◦C. This study confirmed that
comparison of microclimate thermal conditions based on measurements and obtained from modeling
using SkyHelios are in sufficient agreement and can be used in urban planning in the future.

Keywords: roughness length; Voronoi diagram; SkyHelios; wind conditions; physiologically
equivalent temperature; Taiwan

1. Introduction

Roughness length is an important factor affecting wind conditions and thus the thermal
environment within an urban area [1–3]. Increase in wind speed (WS) and reduction in heat load are
increasing crucial issues that must be addressed [4,5].

WS at the pedestrian level, is strongly affected by obstacles and urban morphology. Roughness
length is a factor that can be used to quantify the strength of these effects. Previous research has
revealed that the greater the surface roughness length, the poorer the ventilation that can pass through
the boundary layer [6,7]. Different obstacles, including buildings, vegetation, and pavement material,
may cause variation in roughness length, and WS will be decreased directly above areas that have
a high roughness length [8,9]. A high thermal load owing to low wind permeability usually occurs
within urbanized areas and increases the heat load on humans [10,11].
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In previous studies, wind and thermal conditions were simulated using frontal area index
(FAI) [1,12] and computational fluid dynamics (CFD) models [13,14]. However, only considering
the FAI of a building is insufficient for considering the surface roughness length and then estimating
the urban microclimate, including wind and thermal conditions. In term of CFD approach, wind
and thermal conditions can be estimated within urban areas using ENVI-met [15,16] and Wind
Perfect [17–19], for example, based on an initial meteorological dataset. However, wind conditions are
difficult to determine owing to turbulence within the boundary layer.

In small-scale environments, such as in urban areas, WS and wind direction (WD) can be most
accurately determined by conducting a measurement campaign [20–22]. However, for data with high
spatial resolution, a lack of equipment does not allow for the required measurements. Therefore, it is
not easy to make wind measurements in urban areas.

To estimate a microclimate without conducting measurements, this study utilized the SkyHelios
model [10,23], which was developed for estimating the spatial distribution of wind conditions
(e.g., WS and WD) and thermal indicators such as physiologically equivalent temperature (PET) by
considering building features and meteorological information [10,24]. The SkyHelios model has been
widely used in previous studies in the field of human biometeorology [23,25,26], but the application of
the model still requires development and validation.

In this study, a measurement campaign was therefore conducted on 31 July 2015 and 21 January
2016. The data were used for calculating thermal and wind conditions including PET, WS, and WD
using the SkyHelios model. The results are intended to confirm that a combination of measurements
and building information calculated using the SkyHelios model can be used to estimate urban climate
and thermal stress.

Therefore, the aims of this study were as follows: (1) to estimate human thermal sensation based
on PET, as calculated without WS measurement; (2) to estimate WS for different WDs and various
roughness lengths for calculating PET in different seasons; (3) to analyze the relationship between the
WS estimated using the SkyHelios model and the PET obtained using a combination of measurement
and the RayMan model [19,27–29]; and (4) to visualize microclimate conditions by creating maps for
use by urban planners who do not have a meteorological background. The maps can be easily used to
identify hotspots within an urban area and to develop countermeasures for mitigation of heat stress.

2. Methods

2.1. Study Area

Tainan (22◦59′ N, 120◦11′ E) is a highly developed tropical city with 1.88 million inhabitants.
It covers 2191.6 km2 (2014) of southern Taiwan. The mean annual temperature (Ta) is 24.6 ◦C. July is
the hottest month, during which the mean Ta is 30.4 ◦C and the wind is dominated by an orographic
wind effect from the west coast (270◦). January is the coldest month, during which the mean Ta is
17.6 ◦C. The annual mean relative humidity (RH) is 74.4%. The WD in January is mainly northerly (0◦)
(Taiwan Central Weather Bureau).

In this study, the Tainan train station district—the most densely built-up area of Tainan, covering
0.42 km2—was selected as the area of investigation for the comparison of calculated and measured WS
and thermal conditions (Figure 1).
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Figure 1. Location of the study area. The blue mark represents the province of Tainan city, the red 
frame shows the area of interest. 

2.2. Research Structure 

WS was used in the calculations to obtain PET through two methods (Figure 2), and the 
advantages and disadvantages of each method were compared. The first method was the power law 
profile method (PLM), which is based on measured WS data recorded by a meteorological station 
“HOBO”, located on the rooftop of a building near the study area. The WS was reduced by a power 
law profile to the pedestrian level. This method combines reduced WS and thermal condition data 
obtained from measurement to estimate PET by importing wind and thermal condition parameters 
into RayMan [24,27,28]. 

 
Figure 2. The structure of research. 

The second method is the roughness estimation method (REM), which utilizes WS estimated by 
roughness spatial data, including building height and shape information, from a digital building 
model. The SkyHelios model [23,26] estimates the local roughness length based on the building data. 
Therefore, this method can be considered for calculating spatial WS distribution for the whole area 
of interest. Thermal conditions measurement data are also used with the WS estimated from 
roughness length as input factors into the RayMan model [24,27,28] for obtaining the PET. 

The PET calculated using the two methods are different for the same measurement points within 
the study area. The PET distribution conditions are presented in Sections 3.2 and 3.3.  
  

Figure 1. Location of the study area. The blue mark represents the province of Tainan city, the red
frame shows the area of interest.

2.2. Research Structure

WS was used in the calculations to obtain PET through two methods (Figure 2), and the advantages
and disadvantages of each method were compared. The first method was the power law profile
method (PLM), which is based on measured WS data recorded by a meteorological station “HOBO”,
located on the rooftop of a building near the study area. The WS was reduced by a power law
profile to the pedestrian level. This method combines reduced WS and thermal condition data
obtained from measurement to estimate PET by importing wind and thermal condition parameters
into RayMan [24,27,28].
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Figure 2. The structure of research.

The second method is the roughness estimation method (REM), which utilizes WS estimated
by roughness spatial data, including building height and shape information, from a digital building
model. The SkyHelios model [23,26] estimates the local roughness length based on the building data.
Therefore, this method can be considered for calculating spatial WS distribution for the whole area of
interest. Thermal conditions measurement data are also used with the WS estimated from roughness
length as input factors into the RayMan model [24,27,28] for obtaining the PET.

The PET calculated using the two methods are different for the same measurement points within
the study area. The PET distribution conditions are presented in Sections 3.2 and 3.3.
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2.3. Local Roughness Estimation

The local roughness length and displacement height employed in the SkyHelios model can be
estimated using different approaches [30–32]. In this study, the approach reported by Bottema and
Mestayer (1998) was used. This approach requires a reference area for each obstacle. In SkyHelios,
a Voronoi diagram is computed containing cells for all the obstacles to serve as reference areas [9,10].

The major advantage of using Voronoi diagram compared with arbitrary reference areas such as
a regular grid or lot areas is that the dependence of Voronoi cells on the actual obstacles. This ensures
that roughness length and displacement height are determined based on the closest obstacle, as shown
in Figure 3.

Atmosphere 2017, 8, 247  4 of 14 

 

2.3. Local Roughness Estimation 

The local roughness length and displacement height employed in the SkyHelios model can be 
estimated using different approaches [30–32]. In this study, the approach reported by Bottema and 
Mestayer (1998) was used. This approach requires a reference area for each obstacle. In SkyHelios, a 
Voronoi diagram is computed containing cells for all the obstacles to serve as reference areas [9,10].  

The major advantage of using Voronoi diagram compared with arbitrary reference areas such 
as a regular grid or lot areas is that the dependence of Voronoi cells on the actual obstacles. This 
ensures that roughness length and displacement height are determined based on the closest obstacle, 
as shown in Figure 3. 

 
Figure 3. The digital building model for the area of interest including the Tainan train station. 

2.4. Estimation of Wind Conditions 

WS and WD were estimated using a recent version of the SkyHelios model [33]. This model 
includes a diagnostic wind model based on the approach reported by Röckle [34]. Different wind 
field modifications are calculated for each obstacle, which form an initial wind field (Figure 4). The 
initial wind field initially contains strong divergence, and this divergence must be reduced 
numerically. The wind model implemented in SkyHelios uses the structure and basics reported by 
Röckle [34], but considers several modified parameterizations [35–38]. It is designed to be applicable 
to complex environments (e.g., city centers and complex urban structures). 

Figure 3. The digital building model for the area of interest including the Tainan train station.

2.4. Estimation of Wind Conditions

WS and WD were estimated using a recent version of the SkyHelios model [33]. This model
includes a diagnostic wind model based on the approach reported by Röckle [34]. Different wind field
modifications are calculated for each obstacle, which form an initial wind field (Figure 4). The initial
wind field initially contains strong divergence, and this divergence must be reduced numerically.
The wind model implemented in SkyHelios uses the structure and basics reported by Röckle [34],
but considers several modified parameterizations [35–38]. It is designed to be applicable to complex
environments (e.g., city centers and complex urban structures).
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2.5. Meteorological Data Measurement Survey

In this study, 16 measurement locations were selected for conductance of thermal environment
surveys on 31 July 2015 and 21 January 2016 at 12:00 p.m. The locations were selected based on their
different land use types, including commercial areas, residential areas, schools, hospitals, and open
spaces (Figure 5a). Each location was equipped with a “Center314” data-logger that recorded Ta, globe
temperature (Tg), and RH (Figure 5b). The precisions of the instruments were ±0.5 ◦C for the air
thermometer, ±2% for the RH meter, and ±0.2 ◦C for the globe temperature meter.

WS and global radiation data were obtained from meteorological station HOBO, which was
located on the roof (approximately 25 m above ground level) of a university building near the study
area. The precision of the instruments was ±3% for the WS meter and ±10 W/m2 for the solar
radiation quantity meter. Data were recorded every 5 s. The thermal environment map could therefore
be generated for several points in time.
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2.6. Estimation of Thermal Conditions

PET combines the effect of Ta, RH, WS, and different radiant fluxes on the thermal perception of
a human being [24,39]. The index is used for evaluating thermal comfort in complex built-up urban
environments [28]. PET can be estimated using measurement data by using a climate model [11,40].
Two methods were employed for obtaining PET: using measurements only and through modeling
using SkyHelios.

The PLM uses the measured Ta, RH, and Tg to calculate the PET [27,28,41]. However, owing to
a lack of WS sensors, this study employed WS information reduced by the power law profile. All the
data were then used together with the RayMan model for the calculation of the PET.

The REM employs modeling based on two types of information. First is a digital building model,
which can be applied to determine the local roughness length which use for estimating the wind
condition in the SkyHelios model. Second is the initial meteorological data covering a single day,
consisting of the parameters Ta, RH, solar irradiation, and WS obtained from the HOBO meteorological
station, and loaded as a meteorological data input file in the RayMan model, which then estimated
PET in high spatial resolution.

3. Results

The results of this study consist of (1) the WS and WD calculated using the SkyHelios model
for summer and wintertime; (2) figures showing the thermal conditions, as determined based on the
PLM and REM methods for the summertime; and (3) evaluation of the relationship between the PETs
calculated using the PLM and REM.

Climate data gathered from the HOBO meteorological station was used to represent typical
meteorological conditions for the selected area. Therefore, the wind field was estimated for a WD of
270◦ and a WS of 4 m/s using SkyHelios, representing typical summer conditions on 31 July 2015 at
12 p.m. A second set of data was selected to fit the winter conditions on 21 January 2016, when the
WD was 0◦ and WS was 5 m/s.

3.1. Wind Condition Mapping Based on Modeling

Summer and winter wind conditions were selected to demonstrate the effect of the seasonal wind
system in the study area. In Tainan, incident wind is typically from 270◦ in summer. The results
for WD in summer show that the WD was between 180◦ and 210◦ on the open area including main
road, in the plaza, and at the railway. On the leeward side of obstacles, the WD changed to 30–60◦ or
300–330◦ because the wake effect modifies the incident WD (Figure 6a). In the winter, the wind was
mostly from approximately 0◦. However, a WD of 270–330◦ could be found on the leeward side of
buildings. On the main road, which runs east to west, the WD was approximately 180–210◦ (Figure 6b).
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The WS was approximately 0.3–0.4 m/s in open areas on the typical summer day, as opposed to
the initial WS input of 2 m/s. This was greater at the corners of buildings, where the WS was up to
0.5 m/s owing to corner flow. However, the WS was decreased to 0.1–0.2 m/s on the leeward side of
buildings because of the wake effect (Figure 6c). In winter, the initial input WS had increased to 5 m/s.
The WS in the open area was 0.6–0.7 m/s and that at the front of buildings was 1 m/s (Figure 6d).

The spatial distribution of WS in Tainan indicates a relationship between the numerous compact
high-rise buildings and the microclimate. The microscale conditions with vortices and corner flow
require high model precision and resolution. Therefore, the model can be used to detect potential
ventilation paths and can help urban planners to improve their designs for better wind permeability.
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3.2. Thermal Environment Conditions Determined Using the PLM

The thermal conditions estimated using the PLM based on the measured Ta, RH, and TG, as well
as the WS measured by the HOBO meteorological station. The WS will reduced by approximately 50%
according to the power law profile, as shown in Figure 7 by the blue bar.

The results indicate that the PET distribution is strongly related to the presence of a built-up
environment: high-rise buildings create long shadows, owing to which the human body is not exposed
to direct solar irradiation. Therefore, the PET is lower at locations (e.g., 5, 6, 7, 14, and 15) where
obstacles obscure the sun. However, for locations in open spaces or close to low-rise buildings (such as
locations 2, 9, and 13), the human body is exposed to direct solar irradiation and long wave reflections
by the pavement, thus increasing the thermal load.
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The results indicate a strong spatial variation in PET ranging from 36.4 to 58.0 ◦C. However,
because this method applies the same WS of 2 m/s at all locations, the results cannot consider local
modifications of WS caused by the built-up environment.

3.3. Thermal Environment Conditions Determined Using the REM

The results for the thermal conditions calculated using the REM at 12 pm show extreme heat
(Figure 7), especially in places with no shade and lower WS. Because the SkyHelios model can estimate
the WS by considering the built environment and roughness length, the effect of buildings can be
determined on the estimation of the PET.

Areas such as locations 4 and 5, which are located within a shaded area, show relatively low
thermal stress. However, in some open spaces, such as locations 10 and 15, solar radiation causes high
thermal stress. Compared with the results obtained using the PLM, the REM results show a wider
range of PETs because the WS was determined more accurately in the estimation process.
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3.4. Correlation between Modeling and Measurements

The correlation coefficient between the PET calculated using the PLM and REM is high (Figure 8),
reaching 0.967. This indicates that the SkyHelios model accurately estimates the human thermal
bioclimate in urban areas without requiring local wind measurements. However, because the WS
modeled by SkyHelios was lower than the WS estimated by the power law profile, as shown in Figure 7,
the PET calculated using the REM is higher at each location compared with that calculated using
the PLM.

In addition, the results demonstrate that the higher the thermal stress, the larger the gap between
the PET results obtained using the two methods is. WS thus critically affects human thermal sensation.
During periods of high thermal stress, a high WS immediately reduces the heat load from the human
body. In the case of lower thermal stress, the effect of WS on PET is weaker (compared with locations 5,
7, and 14 in Figure 7).
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4. Discussion

4.1. WS Difference Obtained Using the Two Methods

This study employs two methods to obtain the WS for PET calculations using the RayMan
model [26,27]. The first method is based on the power law profile [42,43], which was applied for the
reduction of WS recorded by a rooftop meteorological station.

This method quickly yielded an approximation of ground-level WS without conducting any
measurements. However, the surface roughness length was spatially inhomogeneous, and many
different obstacles were present (e.g., air flow might have been blocked by compact high-rise buildings),
causing strong spatial WS variability in urban areas [44]. If WS is determined by applying a vertical
profile to rooftop measurements, the impact of the complex built-up environment cannot be considered.
The WS at the surface level therefore suffers from large uncertainties. Because WS is a crucial input
parameter to PET, the PET calculated using this approach is unreliable [45].

In this study, WS was therefore also estimated using the SkyHelios model with a digital building
model and meteorological data. The WS calculated using the model is lower because SkyHelios
considers the roughness length based on the building model and reduces the initial WS, more closely
reflecting the actual conditions [10]. WS values obtained from the calculation using SkyHelios are
therefore considered to be accurate and suitable for the assessment of thermal microclimate within
urban areas.

4.2. Main Findings and Comparison with Previous Studies

Previously, roughness length was mostly estimated based on land use classification or land cover
type [46,47], obstacle density [48,49], as well as a combination of FAI and building floor area [32,50,51].
However, these approaches only provide approximate results and cannot assess roughness length
within complex environments. Therefore, in this study, the method proposed by Ketterer et al., 2006
was employed to calculate the roughness length based on obstacle distribution considering both
buildings and vegetation using SkyHelios [10].

Studies have applied various approaches to obtain the distribution of WS on different scales.
Examples of common approaches include models based on weather forecasting models [52–54] and
measurement campaigns [1,55].

However, these weather forecasting models are only designed for mesoscale conditions, such as
the presence of a sea breeze and mountain flow. Their spatial resolution is insufficient to describe the
wind conditions within complex built-up urban environments. Because the WS and WD in urban
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areas are mostly influenced by street orientation and building distribution, models such as SkyHelios,
which provide data in high spatial resolution (e.g., 1 m2), should be used in estimating urban wind
conditions on the microscale.

The results of this study reveal that the WS obtained using the REM is lower than that obtained
using the PLM, because the REM considers the different roughness lengths caused by various types of
obstacles and different built environments, whereas the PLM only considers height above the ground.

4.3. Differences in Roughness Length during Different Seasons

The SkyHelios model can estimate the roughness length depending on building height, FAI,
and WD. FAI is calculated based on WD, and the most frequent WD changes with the seasons.
Therefore, roughness length also changes with the seasons in Tainan. The roughness lengths for
summer and winter, which are dependent on WD, are shown by the red and orange frames in Figure 9.

The prevailing WD in Tainan is westerly in the summer and northerly in the winter. Within the
study area, two specific areas were selected for comparison during different seasons. Because the red
frame (railroad) is located in the north–south direction and the incident wind is from 0◦, the railway
forms a ventilation path with a low roughness length of 0.0029 m in the winter. In the orange frame
area (commercial area), however, the FAI of the buildings is increased and thus the roughness length is
increased to 0.6 m (red frame in Figure 9a).

In the summertime, the incident wind is from 270◦ and causes a high roughness length of
approximately 0.03 m in the red frame because of the presence of many buildings crossing the WD.
Buildings oriented in the east–west direction, for example, that are located west of the railroad (orange
frame in Figure 9b) cause a relatively low roughness length of 0.36 m.
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5. Conclusions

In this study, three main questions were addressed: the benefits of considering roughness length
during the estimation of microclimate conditions, the advantage of modeling, and the most important
input factors for PET estimation.

First, meteorological information, such as WS and radiation flux, is best determined by modeling
in urban areas because a survey requires considerable time and effort. The estimation of wind
conditions in this study considered the roughness length, allowing for higher precision compared with
the application of a power law function.

Second, the REM considers roughness length and can thus obtain more accurate results than other
methods because roughness length has a strong effect on microclimate, especially on wind conditions.
The WS obtained using the REM is more representative of the actual conditions compared with that
obtained using the PLM. Therefore, the REM is more reliable and should be used for providing accurate
meteorological information.

Radiation fluxes and WS are the two most crucial factors for the formation and intensity of
thermal comfort and heat stress conditions in cities and should be the main focus in the development
of climate change adaptation measures due to the PET difference can be up to 3 ◦C. Therefore,
these two factors should be considered in urban planning and building design in future studies on
urban microscale environments.

Finally, the SkyHelios model estimates radiation and wind conditions with high spatial and
temporal resolution. Areas with high thermal stress can be identified easily and are mostly the areas
with less shade and low WS. The results of this study can help urban planners who do not have
a meteorological background to identify hotspots and implement appropriate countermeasures to
fight the emerging issue of thermal stress in urban areas.
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