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Abstract: This study proposes an alternative method to estimate the potential predictability without
assuming the perfect model. A theoretical consideration relates a maximum possible value of the
initial-value error to the covariance between analysis and bias-corrected ensemble-mean forecast.
To test the method, the prediction limit of the Madden–Julian Oscillation (MJO) was evaluated, based
on three pairs of reanalysis and forecast datasets provided by the European Centre for Medium-Range
Weather Forecasting, the Japan Meteorological Agency and the National Centers for Environmental
Prediction, participating in the subseasonal-to-seasonal prediction project. The results showed that
the predictability was higher when MJO amplitude exceeded unity, consistent with the conventional
method in which the error is evaluated as the ensemble-forecast spread. Moreover, the multimodel
analysis was also conducted because the proposed method is readily applicable to the multimodel
average of ensemble-mean forecasts. The phase dependency of the MJO’s potential predictability is
also discussed.

Keywords: Madden–Julian Oscillation; potential predictability; subseasonal to seasonal prediction;
multimodel ensemble forecasting

1. Introduction

The Madden–Julian Oscillation (MJO) is dominant intraseasonal variability in the tropics [1,2].
Typically, the convective center of an MJO event is formed over the Indian Ocean, propagates eastward
at an average speed of ~5 m s−1 and dissipates in the region between Maritime Continent and the
central Pacific. Because of its regular behavior, the MJO is expected to be potentially predictable for
3 weeks or longer [3]. Most operational general circulation models (GCMs) have succeeded to forecast
the planetary-scale phenomena related to the MJO for 2–3 weeks [4,5], although they are not capable
of an accurate simulation of finer-scale aspects of MJOs such as precipitation distribution [6].

Dynamical MJO forecast has been evaluated as two aspects: prediction skill and potential
predictability. The prediction skill on the MJO phase space, meaning model accuracy against the
insufficient representation of the MJO, has been gradually increased. Rashid et al. [7] found that the
MJO could be predicted for 21 days in an Australian GCM measured with a bivariate correlation
coefficient (e.g., [8]). A new-generation cloud-resolving model also successfully predicted several
MJO events [9]. The monthly forecasts operated by the European Centre for Medium-Range Weather
Forecasts (ECMWF) furthermore improved the skill to nearly a month for any initial MJO phases [10].
On the other hand, the potential predictability, representing the intrinsic uncertainty due to the chaotic
nature of the atmosphere, was usually estimated from a single-model ensemble forecast by calculating
spread among members involved with a small initial perturbation. However, because most of the
GCMs could not sustain the convective activity of MJO, the ensemble members tended to dump into
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the origin of MJO phase space. Waliser et al. [3] focused on this dumping problem and estimated the
intrinsic limit of predictability as the forecast lead time at which spread multiplied by

√
2 attains the

MJO amplitude. Their estimate was about 25–30 days for 200 hPa velocity potential. Neena et al. [5],
applying the same method to each of eight GCMs, estimated that the potential predictability is
20–30 days in the MJO phase space. They also found the dependence of predictability on the initial
phase of the MJO. In spite of a similar metric in an ensemble forecast analysis, Kim et al. [11] suggested
that the potential predictability was insensitive to the initial MJO phase.

We now caution that all the above studies on the potential predictability implicitly assumed that a
forecast model perfectly represented the MJO time-series in their estimates. However, the perfect-model
assumption is not always reasonable for the MJO prediction, because most GCMs still underestimate
the MJO amplitude and then distort the climatological probability distribution in the MJO phase
space [6,10,12,13]. If we developed an alternative approach to evaluate the potential predictability
without the perfect-model assumption, we could extricate ourselves from model dependence in
the estimation. The theoretical consideration by Kumar and Hoerling [14] may help us relate the
magnitude of the initial-value error to the statistics of analysis and imperfect-model forecast data. If one
removed the model bias averaged over the forecasts [15], the potential predictability would be related
to the manner in how the forecasts are covariated with the analyses, as will be discussed later [16–18].
Recently, the sub-seasonal to seasonal (S2S) prediction project has been launched and posed the MJO
forecast as one of the most important targets [19–21]. We can access a set of hindcasts with operational
GCMs, each of which has different resolution and physical parameterizations. A model estimate of
potential predictability has not been established yet, because the perfect-model assumption obstructs
a reasonable compilation of results. Hence a new approach without the perfect-model assumption
would be applicable to multimodel ensemble analysis.

The purpose of this study is to propose an alternative method to estimate the potential
predictability without assuming the perfect model, which is completely different from a conventional
method to evaluate the spread of initial perturbations in an ensemble forecast. The point of this paper
is the strategy to cope with an averaged time-series over the ensemble members, posing the analysis
time-series as its counterpart. A set of analyses and forecasts projected onto the MJO phase space
starting from various dates are then prepared. In order to achieve this purpose, we first formulate the
estimation method of potential predictability based on a set of analyses and forecasts. The method
newly developed in this paper is capable of being applied to multimodel ensemble analysis. The rest of
the paper is organized as follows. Section 2 gives the description on analysis and forecast data that we
used here. The MJO phase space is also defined. Section 3 develops an alternative method to estimate
potential predictability. Section 4 compares the new method with a conventional method, and then the
new method is applied to multimodel ensemble analysis. Concluding remarks are given in Section 5.

2. Data

2.1. Verification and Phase Space

The verification in this paper is an average of ERA-Interim of ECMWF [22], JRA55 of the Japan
Meteorological Agency (JMA; [23]), and the Climate Forecast System (CFS) reanalysis version 2 from
the National Centers for Environmental Prediction (NCEP; [24]). Presumably because of the sparseness
of surface observation and the deficit of model parameterizations, a discrepancy among reanalyses
is not negligible in the tropics [25,26]. While most previous works evaluated GCMs’ performance
with their own reanalysis as the verification, the reanalysis average enabled us to fairly compare the
prediction among models [27], which was expected to provide a more optimal estimate than a single
analysis [28].

The MJO phase space is spanned by two gravest combined empirical orthogonal function (EOF)
modes of zonal wind at 200 hPa and 850 hPa, averaged between 15◦ S and 15◦ N based on NCEP’s
CFS (Climate Forecast System) reanalysis version 2 from 1979 to 2015 [29]. If the data were replaced
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with the reanalysis average, the MJO phase space changed little. We excluded the outgoing longwave
radiation data from the combined EOF analysis for simplicity, as the two gravest EOF modes with
outgoing longwave radiation and zonal winds have little difference from those with zonal winds
only [4,30]. Climatology and the 120-day average were removed from zonal wind prior to the EOF
analysis to extract the intraseasonal variations, and the signal of the El Niño/Southern Oscillation was
automatically removed in this processing [8]. We classified the MJO phase as conventional and the
non-MJO phase was defined as the state where the MJO amplitude is less than unity.

2.2. Forecast Data

We used reforecast data with three GCMs joining the S2S project (http://s2sprediction.net/):
operational models of ECMWF [10], GSM1403C of the JMA [31] and CFS version 2 of NCEP [32].
The details are provided in Table 1. Hereafter, each model is called by the name of its organization
(e.g., the JMA model for GSM1403). The data period is from January 1999 to December 2009. Model
forecast data were also projected on the phase space, after a removal of the seasonality and 120-day
average using the reanalysis provided with the corresponding model. In S2S reforecast data, an initial
perturbation was created using singular vector and ensemble data assimilation perturbation by
ECMWF, using the bred vector and lagged averaging (LAF) method by the JMA, and using the LAF
method for NCEP.

Table 1. Subeasonal-to-seasonal (S2S) forecast models selected in this model.

Organization ECMWF JMA NCEP

Forecast period 32 days 33 days 44 days

Initial perturbation Singular vector and ensemble
data assimilation perturbation

Bred vector and lagged
averaging method

Lagged averaging
method

Ensemble size 4 4 3

Initial time 00 UTC 12 UTC 00 UTC

Frequency Twice a week 3 times a month Everyday

Total number of forecasts 1397 396 3972

Horizontal resolution TL639 (TL319 after day 10) TL319 T126

Vertical layers 91 60 64

ECMWF: the European Centre for Medium-Range Weather Forecasts; JMA: the Japan Meteorological Agency;
NCEP: the National Centers for Environmental Prediction.

A stumbling block when using the reforecast data joining the S2S project is a different interval of
initial date and time, which makes it difficult to find a set of models initialized on the same date. The
ECMWF model has 1397 forecasts that were initialized at 00 UTC of the calendar date, corresponding
to Thursdays between January 2015 and May 2016, or Mondays from 14 May 2015 to 30 May 2016. The
JMA model has 396 forecasts that ran from 12 UTC of the 10th, 20th and the last day of each month.
The NCEP model has 3972 forecasts beginning from 00 UTC of every date during the period. For the
multimodel ensemble forecast analysis, ECMWF, JMA and NCAR reforecasts were selected only if
the difference of initial time is less than 12 h; for example, the JMA model’s reforecast, initialized on
the 20th of March at 12 UTC, was grouped in the multimodel analysis with the ECMWF and NCEP
models’ reforecasts, which were initialized on the 21st of March at 00 UTC. This selection was effective
in matching the initial date among the forecasts, and we realized multimodel ensemble analysis with
250 independent forecasts. The list of calendar dates is provided in Table 2, and the number of single
model and multimodel forecasts initialized in each MJO phase are shown in Table 3. It is noted that
the forecasts initialized on 1 January 1999, 1 February 2003 and 11 February 2003 were excluded for a
technical reason.

http://s2sprediction.net/
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Table 2. A list of months and days on which the multimodel ensemble analysis was performed between
1999 and 2009.

Month Day

Jan. 1 11 21
Feb. 1 11
Mar. 10 21 31
Apr. 11 21 30
May 21
Jun. 11
Jul. 20

Aug. 10 20 31
Sep. 10 21
Oct. 1
Nov. 30
Dec. 10 21

Table 3. The number of individual forecasts, each with its own forecast period, starting from each
piecewise area in the Madden–Julian Oscillation (MJO) phase space.

Phase Block ECMWF JMA NCEP Multimodel Ensemble

Non-MJO phase 570 160 1661 107
All MJO phase 827 236 2311 143

Phases 2–3 182 51 511 41
Phases 4–5 218 64 638 43
Phases 6–7 196 58 529 31
Phases 8–1 231 63 633 28

3. Alternative Method to Estimate Potential Predictability

Consider the time-series of the true value, Xo, and the perfect model hypothetically (Figure 1).
We first clip a part of the time-series Xo in the range from t0 to t0 + T, and the time segment is renamed
as Xo

1(τ) for 0 ≤ τ ≤ T. We numbered the time segment (see below) in the subscript. The superscripts
o, f and e mean the truth, the ensemble mean and the initial-value error, respectively, almost following
the notation of data assimilation [33]. The perfect model, as a thought experiment, would be repeatedly
integrated from Xo

1(0) plus an initial error, the magnitude of which is infinitesimally small and
randomly given. Taking an average over infinite ensemble members of the above experiment, we can
obtain the time segments of the ensemble mean perfect-model forecast written as Xf

1 here. We now
emphasize that the nonlinearity intrinsic to the system causes the difference between Xo

1 and Xf
1 for

τ > 0. This difference, expanding in time, is regarded as the initial-value error Xe
1(τ) = Xo

1(τ)−Xf
1(τ).

As τ approaches infinity, the ensemble members of the perfect model scatter over the phase space
following the climatological probability density function (PDF) of the true value. The ensemble-mean
Xf

1(τ) is asymptotic to the origin of the phase space, while the true value Xo
1(τ) is not converged to a

certain value as τ → ∞ .
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Figure 1. A schematic of time evolution of a single time segment of the true value and perfect model’s 
ensemble forecast. True value (solid line and closed circles) and the ensemble-mean perfect-model 
forecast (open circles) from the initial to the infinite lead time . The forecast expansion of the 
ensemble members is represented by the thick lines enclosed by their mean.  

Next, we labeled a set of time segments of the true value as ( ), ( ), … , ( )  (1) 

and that of corresponding ensemble-mean forecasts as ( ), ( ), … , ( )  (2) 

where N is the total number of selected time segments. As ( ) is uncorrelated with the initial-
value error ( ) for all time segments 1 ≤ ≤ , the variance of the true values among a set of time 
segments Equation (1), ( ) , can be represented by the variance of the ensemble-mean forecasts 
among a set of time segments Equation (2), ( ) , added by the initial-value error spread 
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At = 0, ( ) is equal to  as the initial-value error should be zero. As  approaches 
infinity, ( ) becomes the variance of climatological probability density function (PDF). For this 
limit, since →  for all time segments , the variance is exactly zero. Now we introduce the 
anomaly correlation coefficient (ACC) between the true value and ensemble-mean forecast as  
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where the angle bracket denotes the average over the time segments. The ACC is high if the true 
value is well covariated with the forecast (Figure 2a); otherwise, it is low (Figure 2b). By using the 
relation ( ) = ( ) + ( )  and the independence between ( )  and ( ) , the ACC is 
reduced to the ratio of the standard deviation of the forecast to that of the true value:  = ( ) (5) 

  

Figure 1. A schematic of time evolution of a single time segment of the true value and perfect model’s
ensemble forecast. True value (solid line and closed circles) and the ensemble-mean perfect-model
forecast (open circles) from the initial to the infinite lead time τ. The forecast expansion of the ensemble
members is represented by the thick lines enclosed by their mean.

Next, we labeled a set of time segments of the true value as

{Xo
1(τ), Xo

2(τ), . . . , Xo
N(τ)} (1)

and that of corresponding ensemble-mean forecasts as{
Xf

1(τ), Xf
2(τ), . . . , Xf

N(τ)
}

(2)

where N is the total number of selected time segments. As Xf
j(τ) is uncorrelated with the initial-value

error Xe
j (τ) for all time segments 1 ≤ j ≤ N, the variance of the true values among a set of

time segments Equation (1), σ2[Xo(τ)], can be represented by the variance of the ensemble-mean
forecasts among a set of time segments Equation (2), σ2

[
Xf(τ)

]
, added by the initial-value error

spread [16,34,35]:
σ2[Xo(τ)] = σ2

[
Xf(τ)

]
+ σ2[Xe(τ)] (3)

At τ = 0, σ2(Xo) is equal to σ2
(

Xf
)

as the initial-value error should be zero. As τ approaches

infinity, σ2(Xo) becomes the variance of climatological probability density function (PDF). For this
limit, since Xf

j → 0 for all time segments j, the variance is exactly zero. Now we introduce the anomaly
correlation coefficient (ACC) between the true value and ensemble-mean forecast as

r =
1

N − 1

N

∑
j=1

(Xo
j − 〈Xo〉) · (Xf

j − 〈X
f〉)

σ(Xo) σ(Xf)
(4)

where the angle bracket denotes the average over the time segments. The ACC is high if the true value
is well covariated with the forecast (Figure 2a); otherwise, it is low (Figure 2b). By using the relation
Xo

j (τ) = Xf
j(τ) + Xe

j (τ) and the independence between Xf
j(τ) and Xf

i(τ), the ACC is reduced to the
ratio of the standard deviation of the forecast to that of the true value:

r =
σ
(

Xf
)

σ(Xo)
(5)
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Figure 2. A schematic describing forecast groups with (a) high and (b) low anomaly correlation 
coefficient skill. The open circles are the forecasts and the filled circles are the verifications. The 
number on them denotes the time segment label. 
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Finally, we arrive at the hypothesis that Xf
j would be created with the perfect model. If Xf is

reconsidered to be the ensemble-mean of an imperfect model forecast, we add one extra term of
covariance between forecast and error, C

(
Xf, Xe

)
, as

r =
σ
(

Xf
)

σ(Xo)
+

C
(

Xf, Xe
)

σ(Xo)σ
(

Xf
) (6)

Because the initial-value error deteriorates the forecast, the extra cross-correlation term is, in
general, negative. Therefore, the equality in Equation (6) is replaced with the inequality as below [18]:

r ≤
σ
(

Xf
)

σ(Xo)
(7)

The ACC is unity at the initial time and almost monotonically decreases with the lead time.
Within the range of a positive ACC, using Equation (3), we can derive the inequality that determines a
possible maximum value of initial-value error based on a set of time segments of the true value and
the ensemble-mean forecasts as

σ(Xe) ≤ σ(Xo)
√

1− r2 (8)

The prediction limit should be evaluated as the time when σ(Xo)
√

1− r2 reaches a threshold
value. On the MJO phase space, we used the threshold value of unity, that is, about 70 percent of the
climatological variance. It is worthwhile remarking that the new method only uses the ensemble-mean
forecast data and does not use each ensemble member like the conventional method. Expanding
Equation (8) to multi-model analysis with M models, the inequality should be σ(Xe) ≤ σ(Xo)

√
1− R2.

Here, R is the maximum ACC among the models and their mean, because our evaluation only provides
the lower bound of predictability.

For a practical use of the above theoretical consideration in this paper, we replaced the true value
with verification defined in Section 2, the reanalysis average. Even so, the discrepancy in the initial
state between verification and ensemble-mean forecast was not negligible. We hence constantly offset
the time segment of forecast Xf

j(τ), so as to match its initial state Xj
f(0) with the verification Xo

j (0) for
each time segment:

X̃
f
j(τ) = Xf

j(τ)−
(

Xf(0)−Xo(0)
)

(9)

Moreover, the bias correction is made, the details of which will be explained in the next section.
Since we focus on the MJO behavior, Xo and Xf are hereafter two-dimensional vectors on the MJO
phase space.
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It is cautioned that the ACC is different from the bivariate correlation coefficient (BCC) that was
often used for the evaluation of prediction skill on the MJO phase space [15]:

ρ =
1

N − 1

N

∑
j=1

Xo
j ·X

f
j

s(Xo) s
(

Xf
) (10)

where s(X) is mean amplitude
√

1/N ∑N
j=1
∣∣Xj
∣∣2. The BCC is formerly related to the ACC as

ρ = r +
1

N − 1

N

∑
j=1

〈Xo〉 ·
〈

Xf
〉

s(Xo) s
(

Xf
) (11)

only when the lead time is sufficiently large so that σ(X) = s(X). Now, as we evaluate the predictability
for forecasts initialized on some blocks of the MJO phase space, the mean of state is generally non-zero.
Hence, the BCC cannot simply be relevant to the initial-value error in the way described in our
formulation.

4. Results

4.1. The Prediction Skill and Bias Correction

This section shows the predictability estimated with the new method developed in the above
section, which provides a maximum possible value of initial-value error based on a pair of analysis and
ensemble-mean forecast datasets. To effectively test the new method, it is better to remove the model
bias from the forecast data in advance. Hence, we first discuss the prediction skill for each model,
and then make the bias correction by removing the bias vector averaged over each MJO phase. The
prediction skill is now evaluated as the distance between ensemble-mean forecast state and the analysis
state on the MJO phase space, defined as the two gravest combined-EOF modes of tropical zonal wind.
Each separated block in the figures of this paper corresponds to the MJO phase: the convective center
is located over the Indian Ocean in Phases 2–3, the Maritime Continent in Phases 4–5 and the western
Pacific in Phases 6–7, while Phases 8–1 correspond to suppressed or formation stages. Figure 3 displays
the prediction skill at 10-day lead time calculated for each forecast as the dot plot at the initial-state
position on the MJO phase space, with the root-mean-square error (RMSE) as the statistics among
forecasts. The best-performing model was ECMWF’s, with the RMSE less than unity at this lead time.
The RMSE was 1.07 for the NCEP model and 1.15 for JMA’s. The two models (Figure 3b,c) especially
provided erroneous forecasts with the RMSE exceeding 1.4 when initialized in Phases 4–5, in which
convection is active over the Maritime Continent. Contrastingly, the ECMWF model predicted the
MJO state more accurately when initialized there, while it provided erroneous forecasts initialized in
Phases 8–2, in which the signal resides between Africa and the central Indian Ocean.
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The magnitude of error is represented with gray scale as per the reference on the right. The MJO 
phases are labeled and partitioned by dashed lines in the plot. The number of forecasts and the root-
mean-square error among all forecasts are provided at the top of the panels. 

Figure 3. The prediction skill measured by a two-dimensional error vector on the Madden–Julian
Oscillation (MJO) phase space for each forecast at 10-day lead time plotted at the initial-state position
for (a) ECMWF, (b) JMA, and (c) NCEP models. The NCEP model plot is every 10 days for clarity. The
magnitude of error is represented with gray scale as per the reference on the right. The MJO phases are
labeled and partitioned by dashed lines in the plot. The number of forecasts and the root-mean-square
error among all forecasts are provided at the top of the panels.

The model bias as a function of lead time was defined for each initial phase as the bias vector
averaged over the forecasts starting from a phase (Figure 4). The bias vector at 10-day lead time in the
JMA model showed a clockwise tendency with a leftward translation over the phase space (Figure 4b),
moderately consistent with Ichikawa and Inatsu [15]. The bias vector in the NCEP model showed
a tendency toward the positive direction of the second principal component with a weak clockwise
motion (Figure 4c). The bias vector of ECMWF was characterized by clockwise rotation uniformly
over the space, corresponding to a bias of slower eastward propagation of the MJO convective center
(Figure 4a). The bias correction was made for each model forecast by subtracting the bias vector
shown in Figure 4 from the original forecast state vector. Figure 5 shows the error plot after making
a bias correction. The bias correction made the error phase-independent in all three models. The
RMSE decreased by 0.1 for the ECMWF and NCEP models (Figure 5a,c). In the JMA model, the RMSE
dropped from 1.15 to 0.97 as a result of the effective bias correction (Figure 5b).
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4.2. Prediction Limit and Its Comparison with a Conventional Method

Predictability was evaluated with prediction limit in this paper. The proposed method provided
a maximum-possible value of initial-value error variance as a function of the lead time. Therefore,
it provided a minimum-possible value of the prediction limit defined as the lead day just before the
initial-value error variance attains unity, accounting for half the climatological variance of the data on
the 2-dimensional phase space. As the time goes to infinity, the variance of analysis time segments is
asymptotic to 2. The new method, in essence, evaluates the prediction limit when a possible maximum
of initial-value error multiplied by

√
2 reaches this limitation. This is analogous to the conventional

method in which the prediction limit is defined as the time when the ensemble spread multiplied by
√

2
reaches the MJO amplitude. It is worthwhile noting that σ(Xo)→

√
2 can be used in the new method

but the spread goes to the MJO amplitude in the limit due to the model’s imperfectness [5]. In order
to be fairly compared with the method proposed in this paper, the prediction limit was evaluated
following Neena et al. [5], except that we did not take a 51-day running average for amplitude due to
the limited length of prediction. As the new method gives the minimum possible value of prediction
limit, it can be said that the conventional method provides a fake short limit when it is shorter than the
new method estimation.

We first tested the new method in light of the classification of forecasts on the initial MJO
amplitude. Averaging over forecasts of which the initial MJO amplitude exceeds unity, a minimum
possible value of prediction limit was 14 days based on the ECMWF model and 10 days based on the
JMA and NCEP models (Figure 6a–c). In contrast, averaging over forecasts starting from a non-MJO
state, the minimum-possible prediction limit was 12 days based on the ECMWF model, 9 days based
on JMA’s and 10 days based on NCEP’s (Figure 6d–f), slightly shorter than forecasts from MJO states.
This result suggests that the forecasts starting from an MJO state are, on average, more predictable than
those starting from a non-MJO state. This is consistent with the consequence from the conventional
method. The prediction limit in the ECMWF model was estimated as 23 days for forecasts from an MJO
state, while it was 18 days for forecasts from a non-MJO state (Figure 6a,d). Similarly, the prediction
limit for the NCEP model was 23 days for an initial MJO state and 21 days for an initial non-MJO state
(Figure 6c,e). Although the conventional method did not provide the prediction limit for the JMA
model due to no crossing of amplitude and spread lines, the prediction limit seems shorter in forecasts
with initial non-MJO states (Figure 6d). This result was not substantially changed even if we classified
forecasts by the average MJO amplitude through forecast period, and we found a longer prediction
limit for the forecasts for which average amplitude exceeded unity (not shown).
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Figure 6. (a–c) MJO amplitude (solid line), ensemble spread multiplied by
√

2 on the MJO phase space
(dashed line), and a maximum possible value of initial-value error evaluated with the method proposed
in this paper (dotted line), averaged over forecasts of which the MJO amplitude initially exceeds unity
for (a) ECMWF, (b) JMA and (c) NCEP models. The prediction limit (day) is denoted as the vertical
line for the new and conventional methods, if any. Figures (d–f) are the same as (a–c), but for forecasts
from the initial state with the MJO amplitude less than unity.

Our method can also be utilized to estimate the dependence of MJO predictability at the initial
phase. Here, the results are shown in Figure 7 for the NCEP model and Table 4 for the ECMWF model.
A minimum-possible prediction limit based on the NCEP model was longest for forecasts from Phases
6–7 and shortest for forecasts from Phases 2–3. This phase dependence is coherent with the prediction
limit estimated with ensemble spread, and the low prediction limit for forecasts initialized in Phases
2–3 may be due to an irregular amplitude change over the Maritime Continent. The ECMWF model
provided a minimum-possible prediction limit at 27 days for forecasts from Phases 4–5, much longer
than that for forecasts from other phases. This is likely because there is little possibility to initiate
another MJO event under the dry environment that occurs after the MJO passage over the Indian
Ocean and the Maritime Continent. This is also in line with the prediction limit estimated with the
conventional method, although the difference among phases is not so prominent.

Table 4. The list of prediction limits for the ECMWF model (day) for forecasts from each MJO phase
with the proposed and conventional methods.

Initial State Proposed Method Conventional Method

Phases 2–3 15 17
Phases 4–5 27 27
Phases 6–7 16 25
Phases 8–1 14 17
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4.3. The Multimodel Ensemble Analysis

The multimodel analysis combined the estimates of prediction limit from each of the single
models and the multimodel average. The multimodel average is expected, in general, to provide a
better forecast than the single model. Figure 8 shows the prediction skill of forecasts averaged among
the ECMWF, JMA and NCEP models after a bias correction. Although the sample number was only
250, as pointed out in section 2, the RMSE was less than any other models’ (Figure 5). Similarly,
the multimodel analysis gives a longer estimate of potential predictability than the single model
analysis. Considering this point, we now regard the multimodel average as one of the model results,
and a minimum-possible prediction limit is defined as the lead day just before the smallest estimate
of initial-value error among the models reaches unity, in order to get the longest minimum values
possible. The new method can extend to multimodel analysis in this manner, while the conventional
method cannot.
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A minimum-possible prediction limit in the multimodel analysis is shown in Figure 9. For
forecasts of which the initial amplitude exceeded unity, the smallest estimate of initial-value error
reached unity at 18 days (Figure 9a). For forecasts starting from a non-MJO state (Figure 9b), in contrast,
the minimum-possible prediction limit was 12 days. The multimodel analysis also supports the notion
that the potential predictability of forecasts from an MJO state is longer than that from a non-MJO state.
Having classified the initial state as in the previous section, we investigated the dependence of the
potential predictability on MJO phase in the multimodel analysis. The minimum-possible prediction
limit for forecasts initialized in Phases 4–5 was 28 days, while that for forecasts initialized in other
phases was 15–18 days. This is because the variance σ2(X0) is so small that the initial-value error can
keep less than unity even with the relatively low ACC.

It is cautioned that there is an estimation error in the evaluation above caused by the small sample
size in the multimodel analysis. For example, there are only 31 and 28 forecasts initialized in Phases 6–7
and Phases 8–1, respectively (Table 3). In these cases, the estimation error of the initial-value error
could be as large as ~0.05–0.08 around the lead time when it reaches unity, according to the boot-strap
method (not shown).Atmosphere 2017, 8, 150  12 of 15 
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Figure 9. (a,b) Initial-value error for the ECMWF (mark E), JMA (mark J) and NCEP (mark N) models,
and the multimodel average (mark M), averaged over forecasts of which the initial MJO amplitude is
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5. Concluding Remarks

This study has proposed an alternative method to estimate potential predictability without making
the perfect model assumption. The formulation started from the definition of the initial-value error as
the difference between the analysis and ensemble-mean forecast. Their covariance among a bundle
of time segments is a key point in developing the new method. Applying it to the two-dimensional
state on the MJO phase space, the potential predictability for three operational models participating
in the S2S project was successfully evaluated. The results suggested that forecasts from an MJO state
provided a longer prediction limit, on average, than forecasts from a non-MJO state. Our method also
detected a longer prediction limit for forecasts initially from Phases 4–5. We obtained consistent results
from a conventional method in which the initial-value error was estimated with the spread of ensemble
members normalized by the amplitude of the MJO signal. Though we obtained a similar result to
the conventional method, our new method has three merits: it can be used for phenomena that are
not well forecasted by models; it can be used for multimodel ensemble analysis; and it can identify a
fake short prediction limit obtained using the conventional method. Another different point from the
conventional method is the use of the ensemble spread. The ensemble members or their spread might
have more information than their mean. Though they might give some statistical stability, however,
this point is actually beyond the scope of this paper and will be reported elsewhere.

We have already compared the new method with the conventional method, though the former
only gives a minimum-possible value of prediction limit. As reviewed in the introduction, several
publications were devoted to exploring potential predictability related to the MJO with the conventional
method. Even with different metrics or different models, Waliser et al. [3] and Neena et al. [5] found
that the prediction limit for forecasts from an MJO state is a few days longer than that for forecasts
from a non-MJO state, quite consistent with our result. Related to the phase-dependency, however,
our result—that an initial state in Phases 4–5 is preferable to predictability—is different from previous
studies: Neena et al. [5] found slightly higher potential predictability for forecasts initialized in
Phases 2–3 and Phases 6–7, while Kim et al. [11] indicated little dependence of potential predictability
on the initial phase. We consider that more forecast samples are necessary to get stable statistics
on the phase dependency. Moreover, if one used the precipitation pattern as the metric to estimate
predictability, the prediction limit would be much shorter [3]. Similarly, the prediction limit was only
4 days for unfiltered zonal wind that contains small scale variability [36]. It should be kept in mind
that our estimate focused only on the planetary-scale aspect of MJO that was well represented by the
projection onto the two-dimensional phase space.

Even though the phase dependency on potential predictability is still unsolved, the comparison
with prediction skill is interesting. At least in our result based on the JMA and NCEP models, forecasts
from Phases 4–5 provide a longer prediction limit. In contrast, they provide a low prediction skill, which
is probably related to the so-called “maritime continent barrier”, which prevents the model MJO from
propagating eastwards beyond the Maritime Continent [4,10,13]. This difference of phase dependency
between prediction skill and prediction limit from Phases 4–5 suggests that the “maritime continent
barrier” is not related to the intrinsic prediction limit, but instead to the insufficient representation of
the MJO in numerical models. This is in line with the suggestion by Neena et al. [5], Kim et al. [11]
and Seo et al. [37] with different analyses from ours. We finally discuss a possible effect of the initial
variance of time segments to prediction limit estimation in this study. Since the standard deviation
of the state σ(Xo) is initially 1.6 in the MJO state and 0.7 in the non-MJO state (Figure 10), the latter
case allows a smaller ACC if σ(Xo) slowly grows in the lead time. However, σ(Xo) for the forecasts
initialized with the MJO and non-MJO states rapidly converge to the same value around 14 days,
which is related to the system memory over the phase space. The prediction limit is solely decided by
ACC after that. Because the ACC was higher for forecasts from an MJO state (not shown), its prediction
limit turns out to be slightly longer than that from a non-MJO state, in spite of a larger σ(Xo) in the
initial time. Hence, the difference in initial amplitude has little effect on prediction limit estimation.
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