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Abstract: Developing effective strategies for reducing the atmospheric pollutant concentrations below
regulatory threshold levels requires identifying the main origins/sources of air pollution. This can
be achieved by implementing so called source apportionment methods in atmospheric dispersion
models. This study presents the results of a source apportionment module implemented in the
SIRANE urban air-quality model. This module uses the tagged species approach and includes two
methods, named SA-NO and SA-NOX, in order to evaluate the sources’ contributions to the NO2
concentrations in air. We also present results of a data assimilation method, named SALS, that
uses the source apportionment estimates to improve the accuracy of the SIRANE model results.
The source apportionment module and the assimilation method have been tested on a real case study
(the urban agglomeration of Lyon, France, for the year 2008) focusing on the NO2 emissions and
concentrations. Results of the source apportionment with the SA-NO and SA-NOX models are similar.
Both models show that traffic is the main cause of NO2 air pollution in the studied area. Results of
the SALS data assimilation method highlights its ability in improving the predictions of an urban
atmospheric models.
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1. Introduction

Obtaining information about the intensity of the pollutant sources is essential in order to determine
the main causes of air pollution and to define the relevant actions for its reduction. The assessment
of the intensity of the pollutant sources can rely on different criteria, namely on the estimate of the
contribution of (i) different typology of sources (e.g., traffic, industry, agriculture or residential-tertiary
emissions) [1–5], (ii) sources located in different geographical areas (e.g., emissions from different
regions of Europe) [3,6–8], and (iii) emissions occurring at different times. The methods adopted to
estimate the contribution of different sources are usually referred to as source apportionment methods,
and can be classified in three main approaches.

The first is based on the analysis of the chemical composition of the pollutant. This method is
essentially applied to particulate matter (PM), which is composed from a variety of chemical elements,
some of which are specific to some sources [9–11]. For example, the black carbon reveals the emission
by combustion processes [11], whereas the dehydroabietic acid is characteristic of natural sources,
as coniferae [9,12].
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The second is based on the so called receptor models [13,14]. These are statistical approaches,
based on mass conservation principles [14], requiring as input data the concentrations measured at
the monitoring stations. These models are generally classified into two different categories, known
as Chemical Mass Balance (CMB) models [15–19] and multivariate models [17,19–24]. The receptor
models are mainly used to evaluate sources of PM pollution [14,17,24,25], but can in principle also be
used for other species [26,27].

The third method is based on the use of atmospheric dispersion models. These estimate the
concentration field of a pollutant by solving, analytically or numerically, the advection-diffusion equation:

∂c
∂t

+ u· ∇c = ∇· (Dt∇c) + S, (1)

where c is the (time) averaged pollutant concentration, u is the (time) averaged wind velocity, Dt is
the turbulent diffusivity and S represents the source terms (emissions, losses, chemical reactions).
Without chemical reactions (i.e., S = 0), Equation (1) is linear for the concentration. Therefore, sources’
contributions can be assessed by separately addressing emissions from each source. This approach
is no longer valid when considering reactive pollutants because chemical reactions induce nonlinear
effects. As pointed out by Koo et al. [28], this nonlinearity precludes an exact reconstruction of the
sources’ contributions, which can therefore be evaluated in several different ways.

One of the simplest methods to evaluate the source effect with an atmospheric dispersion model
is the so called brute force method (BFM) [3,28,29]. This is carried out in two steps. The first step consists
of performing a reference simulation including all sources. The second step consists of carrying out
simulations excluding some of these sources (or a typology of sources). The difference between the
results of the two simulations quantifies the contribution of the sources that have been removed.
Nevertheless, this method is computationally expensive because the second step has to be carried
out for each source typology considered. A suitable approach to reduce the computational costs is to
perform a single simulation with tagged species [1,4,5,8,28,30–35]. Tagging the emitted species allows
them to be tracked and their origin to be identified: emissions of two sources SR and SB, emitting the
tagged species COR and COB, provide concentration fields of COR and COB, which corresponds to the
SR and SB contributions, respectively.

Atmospheric dispersion models have been frequently used to evaluate the sources’ contributions
to PM concentrations [1,5,7,8,28,35]. Studies have also been carried out to estimate the sources’
contributions to ozone [8,32–34], CO [36–39] and SO2 [2,40] concentrations. All of these studies
were performed with mesoscale atmospheric dispersion models. In this study, we aim instead at
implementing a source apportionment module in an urban dispersion model, simulating pollutant
transport at the local scale (a few tens of kilometers).

Results provided by source apportionment methods are here subsequently coupled with a
data assimilation method. In the literature, any modelling approach coupling a model and field
measurements in order to improve the accuracy of the prediction of a generic physical system is
usually referred to as data assimilation [41–45]. Data assimilation methods are used since several
decades in atmospheric sciences [46–50]. More recently, they have also been applied in air quality
studies [51–55], mainly adopting chemical transport models [51–67], and more rarely with urban
dispersion models [68]. Here, we present the results of a data assimilation method named Source
Apportionment Least Square (SALS), developed for the SIRANE urban air quality model [69,70].
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In what follows, we first present the SIRANE model and the chemical scheme implemented in it
(Sections 2.1 and 2.2). Secondly, we introduce the principles of the source apportionment modules and
the data assimilation technique adopted (Section 2.3). Finally, we show the results of a real case study
(Section 3), the urban Lyon agglomeration, for the year 2008.

2. Methods

2.1. The SIRANE Model

SIRANE is an operational model to simulate the atmospheric pollutants’ dispersion at the urban
scale. It is based on the street network concept [69,71] and adopts parametric laws to model the main
flow and dispersion processes within an urban area: advection along the street axes, turbulent transfer
across the street-atmosphere interfaces, and exchanges at the street intersections. The presence of
a roughness sub-layer just above the urban canopy (above roof level) is neglected and the flow is
modelled as a boundary layer over a rough surface. There, the pollutants dispersion is modelled by
a Gaussian plume, whose standard deviations are parametrised according to the Monin–Obukhov
similarity theory. As customary for local scale dispersion models, SIRANE adopts a quasi-steady
approach to deal with the unsteadiness of meteorological conditions and pollutant emissions, with
an hourly time step. The input data are the urban geometry, the meteorological data, the locations
and the modulations of the emissions (represented as point, line, and surface sources) and the hourly
evolution of the background concentration, i.e., the concentration due to sources placed outside the
domain. More details on the SIRANE model can be found in Soulhac et al. [69] and Soulhac et al. [72].

2.2. Modelling Chemical Reactions

The only chemical reactions taken into account in the SIRANE model concern the NO2-NO-O3
cycle. In steady state conditions, i.e., at the photo-stationary equilibrium, this is usually represented by
the following set of reactions [73]: 

NO2 + hν
k1−−→ NO + O•,

O• + O2 + M
k2−−→ O3 + M,

NO + O3
k3−−→ NO2 + O2,

(2a)

(2b)

(2c)

where k1, k2, and k3 are the kinetic constants of reaction and M is a third body species, e.g., O2 and N2.
Note that the cycle (2) is in reality perturbed by other reactions, as [74]:

{
RO2 + NO −−→ NO2 + RO,

HO2 + NO −−→ NO2 + OH,

(3a)

(3b)

where the RO2 radical is due to VOC oxidation, occurring over different times scale (larger than
those of Equation (2)), depending on VOC chemical lifetime (typically a few hours). Nitroxen oxide
concentrations can also be affected by losses due to reactions involving the hydroxyl radical OH, and
leading to the production of nitric acid:

OH + NO2 + M −−→ HNO3 + M. (4)

For typical OH concentration in the urban atmosphere (6× 106 molec cm−3), the NOx
chemical lifetime is approximately 4 h, i.e., similar to the time scales of advection across a large
urban agglomeration.
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As is customary in dispersion models at the local scale [75], reactions (3) and (4) are neglected,
and the modelling of chemical transformation of nitrogen oxide relies on Equation (2) only. Since the
radical O• is very reactive, the characteristic time of ozone production (2b) is much smaller than that
of the two other reactions, so that the photo-stationary equilibrium (2) can be further simplified as:

[NO2] =
k3

k1
[O3] [NO] , (5)

where [NO], [NO2] and [O3] represent the NO, NO2, and O3 molar concentrations, respectively.
To estimate the NO, NO2 and O3 concentrations, it is then necessary to determine k1 and k3 (for each
hourly time step), which can be conveniently modelled as [73,76]:

k1 =
1

60

(
0.5699−

[
9.056e−3(90− χ)

]2.546
)(

1− 0.75
[

Cld
8

]3.4
)
[s−1],

k3 = 1.325e6 exp
(
−1430

T

)
[m3mole−1s−1],

(6)

where χ is the solar elevation, Cld is the cloud cover, and T is the temperature.
As already mentioned, Equation (2) represents an over-simplification of the chemical

processes occurring in the urban atmosphere. Nevertheless, validation studies [70,72] show good
agreement between SIRANE results, obtained adopting this simplified chemical scheme, and
on-site measurements.

2.3. Source Apportionment Module

When activating the source apportionment module in the SIRANE model, the sources emit both
classical species (e.g., NO) and tagged species (e.g., NOg for the source g). In simulating their dispersion
in the atmosphere, as a first step, these are both treated as inert species. The role of chemical reactions
is then taken into account in a second step of the simulation. The concentration of the species s is
denoted as cd

s at the end of the dispersion phase and as cs after the chemical reactions phase. Similarly,
the concentration of the species s tagged from the source g is denoted cd

s,g, after the dispersion phase,
and cs,g, at the end of the chemical reactions.

2.3.1. Inert Pollutant Species

Tagged species emitted by each source are treated as different species (e.g., NOtraffic and
NOindustrial). In this way, we avoid performing G separate simulations to evaluate the contribution
of G sources (or group of sources) for N species, performing instead a single simulation taking into
account G× N species, reducing the computational costs.

2.3.2. Reactive Pollutant Species

The assessment of the sources’ contributions for the reactive species is carried out in two
steps. The first step consists of determining the sources’ contributions after their emission and their
atmospheric dispersion, as happens for inert species. The second step consists of evaluating the sources’
contributions once the chemical reactions took place. The source module apportionment integrates
two models, named SA-NO and SA-NOX. In both, it is assumed that molecules of a same species have
the same probability of reacting, independently of their origin [1]. Both take into account the chemical
reactions included in Equation (2c) only, but in a different way. In the SA-NO model, we assume that the
photo-stationary equilibrium has not been reached, so that the chemical reactions (2c) occurs from the
left to the right only. In the SA-NOX model, we assume instead that the photo-stationary equilibrium
has already been reached, and that (2c) can be expressed in the form of a dynamical equilibrium:

NO + O3 −−⇀↽−− NO2 + O2. (7)
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Model SA-NO

The mass concentration of the specie s (NO, NO2 or O3) after the chemical reactions can be
expressed as:

cs = cd
s + δcs, (8)

where δcs is the variation induced by the chemical reactions. The contribution of a source g for the
species s after the chemical reactions is then:

cs,g = cd
s,g + δcs,g, (9)

where δcs,g is the contribution of the source g to the concentration variation of the species s due to
chemical reactions. The objective of the SA-NO method is to determine δcs,g. Since NOx emissions
are predominantly NO emissions [77], we assume that the ratio [cd

NO]/[c
d
NO2

] after the dispersion
modelling phase (before modelling chemical reactions) is higher than the ratio [cNO]/[cNO2

] at the
photo-stationary equilibrium (after the chemical reactions), whose achievement requires NO molecules
to be consumed and NO2 molecules to be produced. Since the probability that a NO molecule is
involved in a chemical reaction is independent of its origin, the relative sources’ contributions to the
NO concentration variation is equal to their relative contribution to the NO concentration at the end of
the dispersion phase:

cd
NO,g

cd
NO

=
δcNO,g

δcNO
. (10)

The variation of O3 and NO2 molar concentration induced by (2c) is directly related to the
variation of NO moles. The relative sources’ contributions to O3 and NO2 concentration variation is
then equal to their relative contribution to NO concentration at the end of the dispersion phase:

cd
NO,g

cd
NO

=
δcNO2,g

δcNO2

=
δcO3,g

δcO3

=
δcs,g

δcs
. (11)

Thus, the SA-NO method evaluates the contribution of each source g as:

cs,g = cd
s,g + δcs

cd
NO,g

cd
NO

. (12)

Note that, with the SA-NO method, the sources’ contributions may be negative, namely when
the concentration computed after chemical reaction (cs) is lower than that before (cd

s ). In addition, (12)
indicates that a source contributes to NO concentrations only if it emits NO. This constitutes an evident
shortcoming of the SA-NO method since, according to the NO2-NO-O3 cycle (2), NO concentrations
can be enhanced also by contributing to NO2 and O3 concentration.

Model SA-NOX

Based on the fact that the relative sources’ contributions to NOx concentration (NO + NO2) are
the same before and after the chemical reactions, we can write:

[cd
NO,g] + [cd

NO2,g]

[cd
NO] + [cd

NO2
]

=
[cNO,g] + [cNO2,g]

[cNO] + [cNO2
]

. (13)
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By further assuming that the relative sources’ contributions to NO and NO2 concentrations are
the same as their relative contribution to NOx concentration, we have that:

cNO,g

cNO
=

cNO2,g

cNO2

=
[cNO,g] + [cNO2,g]

[cNO] + [cNO2
]

. (14)

The SA-NOX method then evaluates the sources’ contributions to NO and NO2 concentration by
estimating their contribution to the nitrogen atoms of these molecules:

cs,g = cs
[cd

NO,g] + [cd
NO2,g]

[cd
NO] + [cd

NO2
]

. (15)

Differently from the SA-NO model, (15) guarantees the contribution of all sources to be positive.
Note also that, differently from the SA-NO method, a source can contribute to NO concentrations also
by emitting NO2 (or eventually O3).

2.4. Data Assimilation Using Source Apportionment Results

The source apportionment results provide useful information that can be used to improve
the performances of the dispersion model by means of the data assimilation techniques. Here,
we present a data assimilation method called a Source Apportionment Least Square method (SALS).
This method consists of modulating, in an optimal way, the sources’ contributions estimated with a
source apportionment method.

We represent the simulated ground level concentration field c(x, y), over n grid points and at a
given time t, as a vector ct of size n. This vector, called background, is then expressed as the sum of
different vectors cg,t, each of them representing the modelled contribution to ct due to the different
g sources:

ct =
G

∑
g

cg,t, (16)

where G is the number of the different sources (or groups of sources). The aim of the SALS method is
to obtain estimates of the ct as close as possible to their corresponding measured value. More precisely,
the objective is estimating a vector, named analysis and referred to as ĉt, defined as a linear combination
of the sources’ contributions:

ĉt =
G

∑
g

αg,tcg,t, (17)

where αg,t is the (time dependent) modulation coefficient, related to the sources g at the time t.
The analysis ĉt is evaluated by computing αg,t coefficients minimizing the cost function J (representing
the quadratic error):

J(α1,t, α2,t, ..., αG,t) =
1

mt

(
yt −

G

∑
g

αg,tHtcg,t

)T(
yt −

G

∑
g

αg,tHtcg,t

)
, (18)

where yt is a vector containing the mt measurement (at the time step t). The matrix Ht, called
observation operator, is a matrix of size mt × n filled of 0 and 1. When applied to the background vector
cg,t, it provides a vector of size mt containing the modelled concentrations at the same location of the
measured ones (and at a given time t). The coefficients αg,t, considered as uniform over the whole
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domain (for each time step and each source contribution), are therefore determined by solving the
following system: (Htc1,t)

T(Htc1,t) . . . (Htc1,t)
T(HtcG,t)

...
. . .

...
(HtcG,t)

T(Htc1,t) . . . (HtcG,t)
T(HtcG,t)


 α1,t

...
αG,t

 =

 (yt)T(Htc1,t)
...

(yt)T(HtcG,t)

. (19)

The resolution of the system (19), that can be typically obtained by solving a least square problem,
is here carried out with the method of Lawson and Hanson [78], which guarantees the coefficients
αg,t to be positive. The SALS method can be applied only when mt ≥ G, i.e., when the measurements
number mt is higher than the number of sources G. The choice of the sources (number and/or type)
is a key element in the SALS method. Sources can be grouped based on their corresponding activity
sectors (transport, industry, residential-tertiary, agriculture) or on their geographical localisation. Note
that, for inert species (or low-reactive species), the application of the SALS method, i.e., the modulation
of the sources’ contributions, can be interpreted as a method to correct the intensity of the emissions.

3. Case Study—The Lyon Urban Agglomeration

We present an application of the source apportionment module (with the SA-NO and the SA-NOX
models) to evaluate the source contribution to NO2 concentration on the Lyon urban agglomeration
(approximately 1.4 million people) , for the year 2008. The case study is the same as that used for an
extensive analysis of the performances of the SIRANE model, recently presented by Soulhac et al. [72].

We consider the contributions by three typologies of pollutant sources, namely (i) traffic,
(ii) industrial sources, and (iii) miscellaneous distributed sources (all other sources not included
in the two previous categories, mainly domestic heating), as well as that due to the background
concentration (Figure 1a), i.e., related to all sources that are placed outside the studied domain.

Simulations were run over a 36 km × 40 km domain, with a spatial resolution of 10 m. The traffic
and industrial emissions are represented by 21833 line sources and 83 point sources, respectively.
Miscellaneous distributed sources are represented by surface emissions with a 1 km × 1 km resolution.
The annual averaged emissions are represented in Figure 1. Most of the point sources do not exceed
0.05 g s−1 (Figure 1b), and the largest emissions are related to chimneys of road tunnels. The traffic
emissions are higher in the city centre and along the main roads (Figure 1c). Miscellaneous distributed
emissions are higher on the centre of the agglomeration (Figure 1d).

In the simulation, the background concentrations of the different species are assumed to be equal
to those measured at the Saint-Exupéry (STE) station, located at about 20 km from the Lyon city center
(see Figure 1a).

The meteorological wind field was reconstructed with an hourly time-step and according to
the Monin-Obuhkov similarity theory, from data registered at the Météo-France station in Bron
(Figure 1a). The dominant wind direction is North–South, with wind speeds that rarely exceed 6 m s−1

(Figure 2a). The stability conditions computed by the meteorological pre-processor are presented
in (Figure 2b), where we plot the inverse of the Monin–Obukhov length (LMO). The distribution
of the ratio 1/LMO suggests an equal repartition between stable (LMO > 0) and unstable (LMO < 0)
atmospheric conditions. The high frequency of the condition 1/LMO in the range 0.01–0.02 is due to
the fact that we have imposed a minimum value for LMO. The purpose of this is to avoid stability
conditions (here estimated by means of cloud cover measurements) that rarely occur over an urban
area, due to the heat anthropogenic fluxes and the wind shear induced by the presence of the urban
canopy. Further details on the input data and the model set-up can be found in Soulhac et al. [72].
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Time-series of NO2 concentration used to evaluate the SALS data assimilation method were
collected in different measurement sites over the whole year 2008 by Atmo Auvergne Rhône-Alpes
(AURA), the local authority for air quality. These include hourly measurements provided by
16 permanent measurement stations, which have been classified by Atmo AURA into four different
categories: suburban stations (Côtière de l’Ain, Genas, Saint-Exupéry and Ternay) placed on
high-intensity traffic roads (Berthelot, Grandclément, Lyon périphérique, Mulatière and Vaise), stations
close to industrial sites (Feyzin and Saint-Fons) and stations within the urban agglomeration and away
from high-intensity traffic roads (Gerland, Lyon centre, Saint-Just and Vaulx-en-Velin). For all these
stations, missing hourly data do not exceed 3% over the whole year 2008.

(a) Measurement and meteorology stations (b) Industrial emissions

(c) Traffic emissions (d) Miscellaneous distributed sources

a

Figure 1. Localisation of the measurements and meteorology (Bron) stations (a); annual mean emissions
of industries (b); traffic (c); and distributed miscellaneous sources (mainly domestic heating) (d).
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(a) Windrose (b) Probability density function of the ratio 1/LMO

Figure 2. Annual statistics of data collected at the Bron meteorological station in 2008: (a) Windrose
and (b) probability density function of the ratio 1/LMO.

3.1. Source Apportionment Results

3.1.1. Comparison of the Results Obtained with the SA-NO and SA-NOX Models

The contribution of traffic, miscellaneous distributed sources, industry and background
concentration to NO2 annual mean concentration estimated by the SA-NO and SA-NOX models
are shown in Figures 3 and 4. A relevant difference between the two models is related to the negative
contributions of the miscellaneous distributed sources estimated by the SA-NO model (Figure 3).
According to the SA-NO model formulation (12), these negative contributions indicate that NO2
concentrations are higher after the first step of the simulation (i.e., before the occurrence of chemical
reactions) and that the miscellaneous distributed sources contribute to a consumption of NO2 molecules
larger than its initial (before chemical reactions) contribution. Similar considerations hold for industrial
sources (not shown in Figure 3). The contribution of traffic and the miscellaneous distributed sources’
contributions are slightly higher when estimated with with the SA-NOX model (on average these are
larger of approximately 0.59µg m−3 and 0.49µg m−3 for the miscellaneous distributed sources and the
traffic, respectively). At the measurement stations’ locations, the mean difference is slightly larger than
over the whole agglomeration and is equal to 1.90µg m−3 for the miscellaneous distributed sources,
and to 2.01µg m−3 for traffic. On the other hand, the contribution of the background concentration
is slightly higher when estimated with the SA-NO model. On average, these exceed those estimated
by means of the SA-NOX model by 1.07µg m−3, when considering the whole agglomeration, and by
3.96µg m−3, when considering the measurement stations only.

In summary, we observe a clear tendency of the SA-NO model in overestimating background
contribution (with respect to the SA-NOX model), and therefore in underestimating the relative
contribution of all other sources. This is due to the fact that, for the background concentration,
the relative NO2 contribution (to the total NO2 concentration) is inevitably higher than the relative
NOx contribution (to the total NOx concentration). This enhanced NO2 contribution of the background
concentration is emphasised in the formulation of the SA-NO model, notably by the first term, the r.h.s
of Equation (12).

Despite these slight differences, results obtained with the SA-NO and SA-NOX models are very
similar. In what follows, we will however exploit only the results of the SA-NOX model, since it
guarantees the contribution of all pollutant sources to be positive.
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(a) Traffic (SA-NO) (b) Traffic (SA-NOX)

(c) Distributed sources (SA-NO) (d) Distributed sources (SA-NOX)

(e) Background concentration (SA-NO) (f) Background concentration (SA-NOX)

Figure 3. Traffic, miscellaneous distributed sources, background contribution (µg m−3) to the NO2
annual mean concentration on the Lyon agglomeration in 2008 estimated with the SA-NO model (a,c,e)
and SA-NOX (b,d,f) models (grey areas correspond to negative contributions).
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Figure 4. Traffic, miscellaneous distributed sources, industry, and background contribution (µg m−3)
to the NO2 annual mean concentration at the measurement station located in the Lyon agglomeration
in 2008 estimated with the SA-NO (left bars) and the SA-NOX (right-handed bars) models.

3.1.2. Estimates of Sources’ Contributions

Results show that the industrial sources’ contributions to NO2 mean concentration are very low
over the Lyon agglomeration. Those of the miscellaneous distributed sources are generally larger in
the city centre (on average 6.42µg m−3) (Figure 3). Results also show that the traffic contributions
are on average higher close to the roads and in the centre of the agglomeration (Figure 3), where
NO2 traffic-induced concentrations can exceed the annual average concentration threshold set by the
European Directive 2008/50/EC (40µg m−3). Conversely, the background concentration contribution
is at its lowest in the city centre and close to the main roads (on average 17.43µg m−3).

The spatial variability of the relative contributions (on percentage) is different (Figure 5).
The relative contribution of background concentration (on the total concentration) is globally larger
than 50%, except close to some main roads (Figures 5c and 6a). As expected, the traffic contribution
is instead higher close to the roads, where its relative contribution exceeds 50% (Figures 5a and 6a).
For the miscellaneous distributed sources, the relative contribution is generally higher in the centre
of the agglomeration, with some hot spot in the suburbs (Figure 5b). The industrial contribution is
spatially homogeneous and relatively low (not shown in Figure 5).

The results of the source apportionment methods allow us to evaluate the contribution to the
concentration registered at the monitoring station. We can therefore evaluate ex-post the pertinence of
the classification of the monitoring stations adopted by the local air quality authority Atmo AURA.
This classification is fully adapted for traffic-type and background-type stations, at which traffic and
background contributions, respectively, both exceed 50% (Figure 4). Note also that the industrial,
traffic, and miscellaneous distributed sources’ contributions are very low for the Saint-Exupéry station,
which is therefore representative for the background concentration values.
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(a) Traffic (b) Miscellaneous distributed sources

(c) Background concentration

Figure 5. (a) Traffic, (b) miscellaneous distributed sources, and (c) background relative contribution
[%] to the NO2 annual mean concentration on the Lyon agglomeration in 2008 estimated with the
SA-NOX model.

A main objective of this kind of analysis is to identify sources having the main impacts on air
quality and determine to what extent their emissions have to be reduced in order to attain given
concentration threshold. As an example, we show in Figure 6b the contribution(s) to be reduced
to lower concentrations below regulatory threshold values. These are determined by successively
removing the different contributions, from the largest to the lowest, until reaching a concentration
below the threshold value. The analysis suggests that the priority is to reduce the traffic emissions
and, to a lesser extent, the emissions from sources placed outside the Lyon urban area (i.e., outside the
domain taken into account this simulation), responsible for the background pollution.
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(a) Most important contributions (b) Contributions to reduce or eliminate

Figure 6. Map of (a) the most important NO2 contributor on the Lyon urban area in 2008 and
(b) the NO2 contributions to reduce or eliminate in order to achieve air quality European standard in
2008 (the concentration is (already) below the threshold value in area in white).

3.2. Data Assimilation Results

The SALS method is here applied using three groups of sources: (1) traffic emissions,
(2) miscellaneous distributed sources and (3) background concentration and industrial sources.

To evaluate the performances of the method, we compare its results to those provided by the
reference simulation (without data assimilation), using the leave-one-out cross-validation approach
(LOOCV). This consists of estimating the concentration at one station (at each time step) using all
available measured concentrations, except for that associated to that particular station. This procedure
is repeated for each of the monitoring stations. The final estimates are compared to the measured
concentrations. To evaluate the quality of the model results, we use six statistical indices: the bias,
the fractional bias, the root mean square error (RMSE), the normalized mean square error (NMSE),
the correlation coefficient (r) and the factor 2 (FAC2) [79]. The definition of these statistical indices are
described in Table 1, where cm is the measured concentration and cp is the predicted concentration.

The statistical performances associated to the SALS method are given in Table 2. For all stations,
statistical performances are good, except for the stations named A7 south Lyon (A7) and Lyon center
(LC) (see Figure 1a), at which the correlation coefficient (or the bias) does not satisfy the quality criteria.

Table 1. Statistical indices and quality criteria used to evaluate results quality (cm is the measured
concentration and cp is the predicted concentration).

Bias RMSE r

Definition cm − cp

(
cm − cp

)2

cm cp

(cm − cm)
(
cp − cp

)√
(cm − cm)

2 (cp − cp
)2

Criteria |Bias| ≤ 0.33 cm RMSE ≤ cm r ≥ 0.60
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Table 1. Cont.

FB NMSE FAC2

Definition
2
(
cm − cp

)
cm + cp

(
cm − cp

)2

cm cp
Fraction of data that
satisfy 0.5 ≤ cm/cp ≤ 2

Criteria |FB| ≤ 0.67 NMSE ≤ 6 FAC2 ≥ 0.30

Table 2. Statistical performances of the SALS method (cm: mean measured concentration, cp: mean
modelled concentration). Red values are those that do not respect the quality criteria.

Type Station cm cp Bias FB RMSE NMSE r FAC2
(µg m−3) (µg m−3) (µg m−3) (µg m−3)

Traffic

A7 79.05 72.39 6.66 0.09 40.33 0.28 0.56 0.79
BER 52.50 60.14 −7.64 −0.14 18.77 0.11 0.81 0.92
GAR 74.06 61.78 12.28 0.18 26.80 0.16 0.81 0.95
GC 47.06 43.41 3.65 0.08 19.39 0.18 0.79 0.90
LP 50.67 54.26 −3.59 −0.07 23.04 0.19 0.70 0.87

VAI 59.10 42.63 16.47 0.32 25.60 0.26 0.77 0.82

Urban

GER 38.08 39.47 −1.39 −0.04 9.95 0.07 0.91 0.96
LC 37.95 50.87 −12.92 −0.29 17.82 0.16 0.90 0.87
STJ 36.78 45.27 −8.48 −0.21 17.88 0.19 0.83 0.89
VeV 26.67 31.39 −4.72 −0.16 10.61 0.13 0.89 0.82

Industrial FEY 33.84 34.23 −0.39 −0.01 12.94 0.14 0.80 0.89
STF 35.35 35.59 −0.24 −0.01 12.50 0.12 0.88 0.93

Background

COT 23.26 24.59 −1.33 −0.06 11.98 0.25 0.80 0.73
GEN 33.36 34.73 −1.37 −0.04 13.22 0.15 0.80 0.86
STE 17.78 22.04 −4.26 −0.21 12.21 0.38 0.79 0.64
TER 29.41 26.27 3.14 0.11 11.57 0.17 0.82 0.83

The bias, the RMSE and the correlation coefficients (r) of the SALS method are compared with
those of the reference simulation in Figure 7. The bias of the SALS method is better than that associated
to the reference simulation for half of the stations. Moreover, the absolute value of the least satisfactory
bias is similar, with and without data assimilation. The RMSE values of the SALS method are generally
better than those related to the reference simulation. However, the worst RMSE is of the same order
of magnitude, with and without data assimilation. Similarly, the correlation coefficients associated
with the SALS method are better than those related to the reference SIRANE simulation for most of the
stations. Note, however, that the worst correlation coefficient does not vary significantly, with and
without the application of the SALS method. Note that the bias, evaluated both before and after data
assimilation, is generally negative for urban and background stations, therefore revealing a tendency of
the model in overpredicting concentrations. This overprediction can be, at least partially, explained by
the fact that SIRANE neglects the role of NO2 losses induced by the reactions induced by the hydroxyl
radical OH (Equation (4)).
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(a) Bias (b) RMSE

(c) r

Figure 7. (a) Bias, (b) RMSE, and (c) correlation coefficients before and after data assimilation (the
green zone indicates results improved after data assimilation and the red region indicates results
worsened after data assimilation. Green (red) dot line indicates improvement (worsening) of 20% after
data assimilation).

4. Conclusions

A source apportionment module, using the tagged species approach, has been developed for
the SIRANE model in order to estimate the contribution to air pollution of different typologies of
pollutant sources. This module includes two methods, named SA-NO and SA-NOX, to evaluate
the sources’ contributions to NO2 concentrations. This module has been applied to evaluate the
traffic, miscellaneous distributed sources including residential-tertiary sector, industrial sources
and background concentration contribution to NO2 concentration on the Lyon agglomeration in
2008. Overall, the NO2 contributions evaluated with the SA-NO and SA-NOX models are similar.
The contribution of the industrial sources to the NO2 annual mean concentrations on the Lyon
agglomeration is negligible compared to the other emissions’ sectors.The traffic emissions are instead
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the most important contributors. Their reduction is therefore essential to attain the threshold values
set by the European regulations on air quality. The evaluation of the sources’ contributions allows also
for an improvement of the urban air quality simulations’ results by means of the data assimilation
method called Source Apportionment Least Square (SALS). Results highlight usefulness of the source
apportionment method as a tool for the assessment of emissions reduction strategies at the local
urban scale.
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